# Curriculum Design Project with Virtual Manipulatives. Gwenanne Salkind. George Mason University EDCI 856. Dr. Patricia Moyer-Packenham

Size: px
Start display at page:

Download "Curriculum Design Project with Virtual Manipulatives. Gwenanne Salkind. George Mason University EDCI 856. Dr. Patricia Moyer-Packenham"

Transcription

1 Curriculum Design Project with Virtual Manipulatives Gwenanne Salkind George Mason University EDCI 856 Dr. Patricia Moyer-Packenham Spring 2006

2 Curriculum Design Project with Virtual Manipulatives Table of Contents Lesson 1: Which is More Likely?...3 Implementation...6 External Review...6 Lesson 2: Is It Fair?...8 Implementation...11 External Review...11 Lesson 3: Problem Solving with Spinners...13 Student Work Sample...20 Implementation...22 External Review...22 Lesson 4: Secret Spinners...23 Student Work Samples...33 Implementation...39 External Review...39 Lesson 5: Space Blocks...40 Student Work...47 Implementation...51 External Review...51

3 3 Lesson 1 Title: Which Is More Likely? This lesson was adapted from Hide & Spin lessons in Data, Chance, and Probability (Jones & Thornton, 1992). Contributor s Name: Gwenanne Salkind Grade Level Band: K-2 NCTM Mathematics Standard: Data Analysis and Probability Students should discuss events related to students experiences as likely or unlikely. Lesson Objectives: Conduct simple probability experiments using spinners Identify events that are likely or unlikely Mathematics Vocabulary: probability, possible, impossible, likely, unlikely, outcome Virtual Manipulative Web Site: National Library of Virtual Manipulatives for Interactive Mathematics Grade Band Pre-K-2, Data Analysis & Probability, Spinners Materials: A computer with internet access and a presentation station Computers with internet access (one for each pair of students) Red and blue unifix cubes Discussion of the Mathematics: This lesson helps students recognize that some events are more likely than others. The warm up activity involves situations that occur in everyday life. In the rest of the lesson, students explore a spinner that has a greater chance of spinning blue than red. Approximate Duration of Lesson: 30 minutes Preparation: Prepare a spinner like this one on each computer that will be used in the lesson. (Or you can teach students how to modify the virtual spinner on the website.)

5 5 It is possible to make a virtual spinner with the same color in separate sections, but it is tricky. Suppose you want to make a spinner that looks like the one below. In the spinner site, click on Change Spinner. Type purple, red, green, blue, red, yellow in the text boxes. To set the colors, put your curser in the box you want to set. Click on the color you want. Here s the trick, you must set the second red section first. If you set the first red section first, it will not allow you to set the second section to red. Note: when you use this type of spinner on the site, the graph records the two red sections separately. Student Assessment: Are students able to predict which color the spinner will land on? Can students explain the reasons for their predictions? Do students use the words likely and unlikely to describe events? Student Work: In the warm up activity, student votes for the first question should be more one sided than the second question. It is much more likely that students bring umbrellas than wear swimsuits. The vote for the second question should be closer because both answers are reasonable. The cold weather may not affect the lunch count. Students may think that the spinner will land on red because it is their favorite color or because it landed on blue the last time and now it is red s turn. Students might also think that the spinner is deliberately creating a pattern. Help students to consider the reasonableness of their thinking. Be aware that the concepts involved in this lesson develop naturally over time. Students need many experiences and opportunities to discuss those experiences. If students have difficulty understanding, they need more experiences with these ideas. Extensions: Use the same lesson format to explore other spinners such as the ones shown below. References: Jones, G. A., & Thornton, C. A. (1992). Data, chance & probability: Grades 1-2 activity book. Vernon Hills, Illinois: Learning Resources, Inc. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

7 8 Lesson 2 Title: Is It Fair? This lesson was adapted from Spin It in Navigating through Data Analysis and Probability in Prekindergarten Grade 2 (Sheffield et al., 2002). Contributor s Name: Gwenanne Salkind Grade Level Band: K-2 NCTM Mathematics Standard: Data Analysis and Probability Students should discuss events related to students experiences as likely or unlikely. Lesson Objectives: Conduct simple probability experiments using spinners Predict the results of probability experiments and test the predictions Identify events that are certain, possible, or impossible Identify events that are likely or unlikely Mathematics Vocabulary: probability, always, sometimes, never, likely, unlikely, possible, impossible, outcome Virtual Manipulative Web Site: National Library of Virtual Manipulatives for Interactive Mathematics Grade Band Pre-K-2, Data Analysis & Probability, Spinners Materials: A computer with internet access and a presentation station Computers with internet access (one for each pair of students) Red and blue unifix cubes (about 10 per student) Chart paper and markers Discussion of the Mathematics: In this lesson, students will have beginning experiences with probability. They will play games with spinners and discuss whether they think the games are fair or not. Students will be encouraged to play the games and discuss the results. They will also be asked to make predictions about the results of games with different spinners. Approximate Duration of Lesson: 45 minutes

9 10 same pairs of students to create Virtual Spinner #2 and play the game as before. 10. When students are finished playing, lead a whole class discussion. Record the results of the games on a similar chart. Ask the students: How are the two games alike? How are they different? Is Game #2 a fair game? Why or why not? Teacher Notes: It is possible to make a virtual spinner with the same color in separate sections, but it is tricky. Suppose you want to make a spinner that looks like the one below. In the spinner site, click on Change Spinner. Type purple, red, green, blue, red, yellow in the text boxes. To set the colors, put your curser in the box you want to set. Click on the color you want. Here s the trick, you must set the second red section first. If you set the first red section first, it will not allow you to set the second section to red. Note: when you use this type of spinner on the site, the graph records the two red sections separately. Student Assessment: Are students able to predict which color the spinner will land on? Can students explain the reasons for their predictions? Can students say whether they think a game is fair or not? Can students explain why they think a game is fair or not? Student Work: Students may think that the spinner will land on red (or blue) because it is their favorite color or because it landed on blue the last time and now it is red s turn. Students may also think that the spinner is deliberately creating a pattern. Help students to consider the reasonableness of their thinking. Be aware that the concepts involved in this lesson develop naturally over time. Students need many experiences and opportunities to discuss those experiences. If students have difficulty understanding, they need more experiences with these ideas. Extensions: Have students play the game with Spinner #3. (See teacher notes for directions how to create this type of spinner. It may be necessary for the Spinner #3 teacher to create this spinner for the students to use.) Ask students to predict the results of the game before they play it. Ask if the results of this game would be like Game #1 or Game #2. Why do they think so? Ask the students to create a virtual spinner that would help blue win. Have them play the game with the spinner they created to see whether blue wins. Ask students to design spinners with more than two colors. For each spinner they design, discuss whether the game would be fair.

11 Notes from External Reviewer: 12

12 13 Lesson 3 Title: Problem Solving with Spinners Contributor s Name: Gwenanne Salkind Grade Level Band: 3-5 NCTM Mathematics Standards: Data Analysis and Probability In grades 3-5 all students should: collect data using observations, surveys, and experiments; represent data using tables; describe events as likely or unlikely and discuss the degree of likelihood using such words as certain, equally likely, and impossible; predict the probability of outcomes of simple experiments ant test the predictions; understand that the measure of the likelihood of an event can be represented by a number from 0 to 1. Lesson Objectives: Design a spinner based on given criteria Predict the outcomes of simple experiments using spinners and test the predictions Determine the probability of a given simple event Write probability as ratios Mathematical Vocabulary: probability, outcome, chance, fraction, ratio, likely, unlikely, equally likely, possible, impossible, likelihood Virtual Manipulative Web Site: National Library of Virtual Manipulatives for Interactive Mathematics ( Grade Band 3-5, Data Analysis and Probability, Spinner ( Materials: A computer with internet connection for every two students Problem Solving with Spinners Record Sheet (one for every two students) One transparency of the Problem Solving with Spinners Record Sheet A paper lunch bag (one for every two students) A set of Spinner Cards (one set for every two students) Discussion of the Mathematics: In this lesson, students will explore probability by creating virtual spinners and conducting probability experiments. They will think and reason mathematically as they use given criteria to design spinners. They will list possible outcomes, write probabilities as fractions, make predictions, test their predictions, and record actual results. Additionally, students will explain why or why not their results represent their spinners.

15 Name 16 Problem Solving with Spinners Record Sheet Draw a spinner card from the paper bag. Design a virtual spinner that meets the conditions on the card. For each spinner you create: 1) draw the spinner, 2) list the possible outcomes, and 3) list the probability of each outcome as a fraction. You will conduct two probability experiments using each spinner you create. For each experiment: 1) decide how many times you will spin the spinner, 2) predict how many times the spinner will land on each color, 3) spin the spinner the correct number of times, and 4) record the number of times the spinner lands on each color. Spinner Possible Outcomes Probability (fraction) Trial #1 ( spins) Trial #2 ( spins) Predict Actual Predict Actual Draw your spinner. Spinner Possible Outcomes Probability (fraction) Trial #1 ( spins) Trial #2 ( spins) Predict Actual Predict Actual Draw your spinner.

16 17 Spinner Possible Outcomes Probability (fraction) Trial #1 ( spins) Trial #2 ( spins) Predict Actual Predict Actual Draw your spinner. Spinner Possible Outcomes Probability (fraction) Trial #1 ( spins) Trial #2 ( spins) Predict Actual Predict Actual Draw your spinner. Choose your favorite spinner. Spinner Do your experimental results represent your spinner? Why or why not?

17 Spinner Cards 18 A B C Design a spinner that has an equal chance of landing on red or blue. D Design a spinner that has no chance of spinning red. G E Design a twocolor spinner that has a slightly better chance of landing on red. Design a fourcolor spinner that has an equal chance for all four colors. H Design a spinner that has a much greater chance of landing on blue than red. F Design a four-color spinner that has a much greater chance of getting one of the colors than any other color. I Design a spinner that has a 3/8 probability of getting blue. Design a spinner that is three times more likely to spin green than blue. Design a spinner that has a ½ probability of spinning red and a ¼ probability of spinning blue.

18 Spinner Cards 19 J K L Design a spinner that has a 5/6 chance of NOT spinning green. M Design a threecolor spinner that is twice as likely to spin one color than the other two. N Design a spinner that has a ¼ chance of spinning blue, a 1/8 chance of spinning green, and a ½ chance of spinning red. O Design your own spinner. Design your own spinner. Design your own spinner. P Q R Design a spinner that works like flipping a coin. Design a spinner that works like rolling a die. Design a spinner that has a 1/3 chance of spinning red.

19 22 Implementation I implemented this lesson with a small group of fifth graders. During the course of the lesson I noticed that there was no way for the teacher to tell if the students had created appropriate spinners based on the given criteria because the spinner cards were not labeled. I decided to label the spinner cards with letters and have the students record the letter of the card above the picture of the spinner they created on the worksheet. This will allow the teacher to assess whether the students can create a spinner based on given criteria. I also added this assessment idea to the student assessment part of the lesson. External Review The notes from the external reviewer are listed below. I addressed the reviewer s suggestions in the following ways: I revised the lesson objectives to make them more specific and measurable. I removed a vague objective: Reason mathematically about probability. I added a timeframe for the lesson. Since many of the reviewers seemed concerned about mathematics vocabulary, I added a mathematics vocabulary section to the lesson plan.

20 23 Lesson 4 Title: Secret Spinners Contributor: Gwenanne Salkind Grade Level Band: 3-5 NCTM Mathematics Standard: Data Analysis and Probability In grades 3-5 all students should: collect data using observations, surveys, and experiments; represent data using tables and graphs such as bar graphs; describe events as likely or unlikely and discuss the degree of likelihood using such words as certain, equally likely, and impossible; predict the probability of outcomes of simple experiments ant test the predictions; understand that the measure of the likelihood of an event can be represented by a number from 0 to 1. Lesson Objectives: Predict the probability of outcomes of simple experiments using spinners and test the predictions Represent and interpret data using bar graphs Mathematical Vocabulary: probability, outcome, chance, multiple, factor, likely, unlikely, equally likely, possible, impossible, likelihood Virtual Manipulative Web Site: National Library of Virtual Manipulatives for Interactive Mathematics ( Grade Band 3-5, Data Analysis and Probability, Spinner ( Materials: 1 copy of Spinner Cards (cut apart) 9 x 12 envelopes (one for each group) Secret Spinner Record Sheets (one for each group) Bar Graph Template (one for each group) Spinner Template (one for each group) Markers (set of 8 classic colors for each group) Secret Spinner Class Summary Page (one for each student) Discussion of the Mathematics: In this lesson, students work in small groups. Each group creates a different spinner using the virtual spinner in the Library of Virtual Manipulatives. The groups use the spinners they created to conduct probability experiments. They create bar graphs of the results which are posted for all students to see. The secret spinners are also revealed. The students use their

21 24 knowledge of probability to match the spinners to the bar graphs. As students match the spinners to the graphs they justify and explain their decisions based upon their knowledge of probability. Students also have opportunities to discuss the difference between theoretical and experimental probability as some of the class experiments may not yield the expected results. They should notice that the experimental probability approaches the theoretical probability as the number of spins increases. Preparation: 1. Divide the class into 6-12 groups of 2-4 students. Each group will need a computer with internet access. 2. Prepare a Secret Spinner envelope for each group. Each envelope should contain: a. A Spinner Card (a different card for each group) b. A Secret Spinner Record Sheet c. A Bar Graph Template d. A Spinner Template Approximate Duration of Lesson: 60 minutes Procedures: 1. If students have never used the virtual spinner before, demonstrate how to use it. 2. Explain/model the activity to the class using a spinner that is half red and half blue. Model creating the spinner, making predictions for the first four trials, and conducting Trials #1, #2, and #3. Conduct Trials #1 and #2 using single spins and tally marks. Conduct Trial #3 using the multiple spin option. Be sure to model how to spin the spinner multiply times and how to clear the graph between trials. 3. Each group will: a. Find the Secret Spinner Card in their envelope. Follow the directions on the card to create a specific virtual spinner. b. List the possible outcomes of the spinner on their Secret Spinner Record Sheet. c. Predict the outcomes of the first four trials (Trial #1 6 spins, Trial #2 12 spins, Trial #3 60 spins, Trial #4 120 spins). d. Conduct the first four trials by spinning the virtual spinner. Record the results on the Secret Spinner Record Sheet. e. Use the data from Trial #4 to create a bar graph using the Bar Graph Template. f. Use the Spinner Template to create a paper copy of their virtual spinner. g. Conduct Trails #5-#8. Students can decide how many times to spin the spinner for each of these trials. They should make a prediction for each experiment before conducting it. h. Draw their spinner on the Secret Spinner Record Sheet. i. Discuss and write an answer to the following questions: Do you experimental results represent your spinner? What happens to your results as you increase the number of spins in each trial? j. Post their graph in a central location. Give their paper spinner to the teacher. 4. After all the bar graphs have been posted, post the spinners together in a group. Give each student a copy of the Secret Spinner Class Summary Page. Allow 5-10 minutes for students to individually record their predictions on the Secret Spinner Class Summary Page.

22 25 5. Ask students to share their predictions with a partner. Students should discuss the matches they made and justify their decisions to their partner. 6. Lead a whole group activity to physically match the paper spinners to the bar graphs. Before starting, tell students they are not allowed to match the spinner and bar graph that their group made. Call on one student at a time to chose a spinner and match it to a graph. The student must tell why he/she thinks the spinner matches the graph. Have the other students show a thumbs up if they agree. If students disagree, they should tell why. Continue having students match spinners to graphs until all the matches are made. Teacher Notes: It is possible to make a virtual spinner with the same color in separate sections, but it is tricky. Suppose you want to make a spinner that looks like this one. In the spinner site, click on Change Spinner. Type purple, red, green, blue, red, yellow in the text boxes. To set the colors, put your curser in the box you want to set. Click on the color you want. Here s the trick, you must set the second red section first. If you set the first red section first, it will not allow you to set the second section to red. Note: when you use this type of spinner on the site, the graph records the two red sections separately. The Bar graph template is designed to be used with many different results. The students will need to decide the increments that they should use to create their bar graph. Equal increments should be used. There are 30 spaces in each bar. If the spinner landed on each color 30 or less times, students can use increments of one. In this case they would label the y-axis from 1 to 30. If the spinner landed on a color more than 30 times, the students will need to use increments of 2 or more. They might label the y-axis from 2 to 60 or from 3 to 90. See examples of student work for clarification. Student Assessment: Can the student tell all the possible outcomes that could result from spinning a spinner? Can the student predict the results of spinning a spinner a certain number of times? Can the student explain the reasons for his/her prediction? Does the bar graph accurately portray the results of the probability experiment? Is the student able to explain why the experimental results represent or do not represent the spinner? Is the student using appropriate vocabulary such as outcome, likely, unlikely, and chance? Student Work: See student work samples. Blackline Masters: BLM 1 & 2 Secret Spinner Cards BLM 3 Secret Spinner Record Sheet BLM 4 Bar Graph Template BLM 5 Spinner Template BLM 6 Secret Spinner Class Summary Page

23 26 References: National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

24 Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-third green one-third orange one-sixth blue one-sixth red Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-half red one-sixth green one-sixth orange one-sixth blue Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is five-sixth red one-sixth blue Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is two-thirds green one-sixth blue one-sixth red Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-half blue one-sixth yellow one-sixth red one-sixth green Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-half red one-sixth yellow one-sixth green one-sixth blue Spinner Cards BLM 1

25 Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-third red one-third blue one-third green Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is two-thirds blue one-sixth red one-sixth green Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-sixth green one-sixth yellow one-sixth orange one-sixth red one-sixth purple one-sixth blue Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-sixth green one-third red one-sixth orange one-third blue Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is two-thirds red one-third blue Secret Spinners Go to the National Library of Virtual Manipulatives Click on the box in the matrix: 3-5, Data Analysis & Probability Click on Spinners Make a spinner that is one-half blue one-half red Spinner Cards BLM 2

26 Names Secret Spinner Record Sheet List all the possible outcomes for your spinner. For each trial, record your prediction for how many times each outcome will occur. Spin the virtual spinner as many times as the trial calls for. Record the outcomes. Possible Outcomes Trial #1 (6 spins) Trial #2 (12 spins) Trial #3 (60 spins) Trial #4 (120 spins) Prediction Actual Prediction Actual Prediction Actual Prediction Actual Possible Outcomes Trial #5 ( spins) Trial #6 ( spins) Trial #7 ( spins) Trial #8 ( spins) Prediction Actual Prediction Actual Prediction Actual Prediction Actual How did you choose the number of spins in each trial? Draw your spinner. Do your experimental results represent your spinner? BLM 3

27 Make a bar graph to record your data from Trial #4. Group # Number of Spins Color BLM 4

28 BLM 5

30 40 Lesson 5 Title: Space Blocks Contributor: Gwenanne Salkind Grade Level Band: 6-8 NCTM Mathematics Standards: Geometry and Measurement In grades 6-8 all students should: use two-dimensional representations of three-dimensional objects to visualize and solve problems such as those involving surface area; understand, select, and use units of appropriate size and type to measure surface area; Lesson Objectives: Investigate and solve problems involving surface area of solid shapes. Use visualization, spatial reasoning, and geometric modeling to solve problems. Develop a procedure and formula for finding the surface area of a rectangular prism. Mathematics Vocabulary: surface area, minimum, maximum Virtual Manipulative Web Site: National Library of Virtual Manipulatives for Interactive Mathematics Grade Band 6-8, Geometry, Space Blocks Materials: Computers with internet connection (one for every two students) BLM 1 Space Blocks Worksheet (one per student) Centimeter or inch cubes Discussion of the Mathematics: In this lesson, students will use visualization and spatial reasoning to solve problems involving surface area of solid shapes. They will build geometric solids with cubes using Space Blocks (a virtual manipulative). I suggest that actual cubes are also available (centimeter cubes, 2-cm cubes, or inch cubes) as some students may have difficulty visualizing three-dimensional figures on a two-dimensional computer screen. There are three problems that students will be asked to solve in the lesson: 1. Connect 8 blocks to form a solid with minimum surface area. 2. Connect 8 blocks to form a solid with the largest possible surface area. 3. Connect 8 blocks to form a solid with surface area equal to 28 square units. Students will also be asked to write similar problems involving surface area. They will use isometric grid paper to draw their solutions. They will explain their strategies for solving the problems and finding surface area. Students will work with partners as they solve problems and share solution strategies.

31 41 While students may explore surface area of solid shapes that are not rectangular prisms, this lesson gives them an opportunity to explore surface areas of rectangular prisms. Encourage students to develop procedures and formulas for finding the surface area of a rectangular prism. Approximate Duration of Lesson: minutes (can be done over two class periods) Procedures: 1. Model the Space Blocks web site to students. Show them how to add blocks, turn blocks, and connect blocks. Give them time to explore the website. 2. Ask students to work in pairs. Give each student a Space Blocks Worksheet. 3. Explain the activity, showing students where the three problems are located on the website and how the computer can be asked to check their solutions. Review the concept of surface area by asking students to figure out the surface area of a shape that you have created on the Space Blocks web site. (Do not create a shape that solves one of the problems posed on the site.) Tell students that they may work together, but each student must fill out his/her own worksheet. 4. Allow students time to complete the worksheet. Students should work with a partner. Encourage partners to solve each others problems and discuss their solution strategies. As students are working, circulate. Ask: How do you know when you ve found the minimum surface area? Why do you think the shape you created has the largest surface area? What is your strategy for finding building a solid with a surface area of 28? 5. During the last 10 minutes of class, lead a whole class discussion. Ask students to share their solution strategies. Focus on strategies for finding surface area of rectangular prisms. What ideas do students have about finding the minimum and maximum surface areas with a given amount of blocks? Teacher Notes: The three problems posed in this lesson are on the Space Blocks web site. Go to Activities, then List Activities. Students will work on the third problem first, Minimizing Surface Area; then the second problem, Maximizing Surface Area; then the first problem, Constructing Figures with a Given Surface Area. Students will also create their own problems. When they create their own problems, they can use the web site to build solid shapes, but the computer will not check their work. Be sure they understand this aspect of the web site. The surface area of a rectangular prism is the sum of the areas of all six faces (SA = 2lw + 2lh + 2wh). Student Assessment: Does the student use appropriate vocabulary such as surface area, cube, rectangular prism, face, edge, and vertex? Can the student explain his/her strategies for building solid shapes with minimum, maximum, and given surface areas? (The shapes may or may not be rectangular prisms.) Can the student find the surface area of a given rectangular solid? Can the student explain his/her procedure for finding the surface area? Can the student articulate a formula for finding the surface area of a cube? Can the student articulate a formula for finding the surface area of a rectangular prism that is not a cube?

32 42 Student Work: See attached. Blackline Master: BLM 1 Space Blocks Worksheet References: National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

33 Name: Space Blocks Minimizing Surface Area 1. Connect 8 blocks to form a solid with minimum surface area. Draw your solid shape below. 2. What is the surface area of this solid shape? 3. Write your own minimum surface area problem. Ask a friend to use Space Blocks to figure out the answer to your problem. Write your problem below. 4. Draw the answer to your problem here. What is the surface area of this solid shape? BLM 1

34 Maximum Surface Area 5. Connect 8 blocks to form a solid with the largest possible surface area. Draw your solid shape below. What is the surface area of this solid shape? 6. Write your own maximum surface area problem. Ask a friend to use Space Blocks to figure out the answer to your problem. Write your problem below. 7. Draw the answer to your problem here. What is the surface area of this solid shape? BLM 1

35 Constructing Figures with a Given Surface Area 8. Connect 8 blocks to form a solid with surface area equal to 28 square units. Draw your solid shape below. 9. Write your own surface area problem. Ask a friend to use Space Blocks to figure out the answer to your problem. Write your problem below. 10. Draw the answer to your problem here. BLM 1

### Mathematics Success Grade 7

T894 Mathematics Success Grade 7 [OBJECTIVE] The student will find probabilities of compound events using organized lists, tables, tree diagrams, and simulations. [PREREQUISITE SKILLS] Simple probability,

### Spinners at the School Carnival (Unequal Sections)

Spinners at the School Carnival (Unequal Sections) Maryann E. Huey Drake University maryann.huey@drake.edu Published: February 2012 Overview of the Lesson Students are asked to predict the outcomes of

### Dublin City Schools Mathematics Graded Course of Study GRADE 4

I. Content Standard: Number, Number Sense and Operations Standard Students demonstrate number sense, including an understanding of number systems and reasonable estimates using paper and pencil, technology-supported

### Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand Texas Essential Knowledge and Skills (TEKS): (2.1) Number, operation, and quantitative reasoning. The student

### Missouri Mathematics Grade-Level Expectations

A Correlation of to the Grades K - 6 G/M-223 Introduction This document demonstrates the high degree of success students will achieve when using Scott Foresman Addison Wesley Mathematics in meeting the

### If we want to measure the amount of cereal inside the box, what tool would we use: string, square tiles, or cubes?

String, Tiles and Cubes: A Hands-On Approach to Understanding Perimeter, Area, and Volume Teaching Notes Teacher-led discussion: 1. Pre-Assessment: Show students the equipment that you have to measure

### Mathematics Success Level E

T403 [OBJECTIVE] The student will generate two patterns given two rules and identify the relationship between corresponding terms, generate ordered pairs, and graph the ordered pairs on a coordinate plane.

### End-of-Module Assessment Task

Student Name Date 1 Date 2 Date 3 Topic E: Decompositions of 9 and 10 into Number Pairs Topic E Rubric Score: Time Elapsed: Topic F Topic G Topic H Materials: (S) Personal white board, number bond mat,

### First Grade Standards

These are the standards for what is taught throughout the year in First Grade. It is the expectation that these skills will be reinforced after they have been taught. Mathematical Practice Standards Taught

### (I couldn t find a Smartie Book) NEW Grade 5/6 Mathematics: (Number, Statistics and Probability) Title Smartie Mathematics

(I couldn t find a Smartie Book) NEW Grade 5/6 Mathematics: (Number, Statistics and Probability) Title Smartie Mathematics Lesson/ Unit Description Questions: How many Smarties are in a box? Is it the

### Using Proportions to Solve Percentage Problems I

RP7-1 Using Proportions to Solve Percentage Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by

### Contents. Foreword... 5

Contents Foreword... 5 Chapter 1: Addition Within 0-10 Introduction... 6 Two Groups and a Total... 10 Learn Symbols + and =... 13 Addition Practice... 15 Which is More?... 17 Missing Items... 19 Sums with

### Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 1 (Non-Calculator) Foundation Tier. Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes

Centre No. Candidate No. Paper Reference 1 3 8 0 1 F Paper Reference(s) 1380/1F Edexcel GCSE Mathematics (Linear) 1380 Paper 1 (Non-Calculator) Foundation Tier Monday 6 June 2011 Afternoon Time: 1 hour

### Math Grade 3 Assessment Anchors and Eligible Content

Math Grade 3 Assessment Anchors and Eligible Content www.pde.state.pa.us 2007 M3.A Numbers and Operations M3.A.1 Demonstrate an understanding of numbers, ways of representing numbers, relationships among

### Sight Word Assessment

Make, Take & Teach Sight Word Assessment Assessment and Progress Monitoring for the Dolch 220 Sight Words What are sight words? Sight words are words that are used frequently in reading and writing. Because

### Activity 2 Multiplying Fractions Math 33. Is it important to have common denominators when we multiply fraction? Why or why not?

Activity Multiplying Fractions Math Your Name: Partners Names:.. (.) Essential Question: Think about the question, but don t answer it. You will have an opportunity to answer this question at the end of

### Standard 1: Number and Computation

Standard 1: Number and Computation Standard 1: Number and Computation The student uses numerical and computational concepts and procedures in a variety of situations. Benchmark 1: Number Sense The student

### Function Tables With The Magic Function Machine

Brief Overview: Function Tables With The Magic Function Machine s will be able to complete a by applying a one operation rule, determine a rule based on the relationship between the input and output within

### Build on students informal understanding of sharing and proportionality to develop initial fraction concepts.

Recommendation 1 Build on students informal understanding of sharing and proportionality to develop initial fraction concepts. Students come to kindergarten with a rudimentary understanding of basic fraction

### Sample Performance Assessment

Page 1 Content Area: Mathematics Grade Level: Six (6) Sample Performance Assessment Instructional Unit Sample: Go Figure! Colorado Academic Standard(s): MA10-GR.6-S.1-GLE.3; MA10-GR.6-S.4-GLE.1 Concepts

### Hardhatting in a Geo-World

Hardhatting in a Geo-World TM Developed and Published by AIMS Education Foundation This book contains materials developed by the AIMS Education Foundation. AIMS (Activities Integrating Mathematics and

### Arizona s College and Career Ready Standards Mathematics

Arizona s College and Career Ready Mathematics Mathematical Practices Explanations and Examples First Grade ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS FOR STUDENTS State Board Approved June

### Grade 6: Correlated to AGS Basic Math Skills

Grade 6: Correlated to AGS Basic Math Skills Grade 6: Standard 1 Number Sense Students compare and order positive and negative integers, decimals, fractions, and mixed numbers. They find multiples and

### WHAT ARE VIRTUAL MANIPULATIVES?

by SCOTT PIERSON AA, Community College of the Air Force, 1992 BS, Eastern Connecticut State University, 2010 A VIRTUAL MANIPULATIVES PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR TECHNOLOGY

### Extending Place Value with Whole Numbers to 1,000,000

Grade 4 Mathematics, Quarter 1, Unit 1.1 Extending Place Value with Whole Numbers to 1,000,000 Overview Number of Instructional Days: 10 (1 day = 45 minutes) Content to Be Learned Recognize that a digit

### ASSESSMENT TASK OVERVIEW & PURPOSE:

Performance Based Learning and Assessment Task A Place at the Table I. ASSESSMENT TASK OVERVIEW & PURPOSE: Students will create a blueprint for a decorative, non rectangular picnic table (top only), and

### The Evolution of Random Phenomena

The Evolution of Random Phenomena A Look at Markov Chains Glen Wang glenw@uchicago.edu Splash! Chicago: Winter Cascade 2012 Lecture 1: What is Randomness? What is randomness? Can you think of some examples

### Measurement. When Smaller Is Better. Activity:

Measurement Activity: TEKS: When Smaller Is Better (6.8) Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and

### Answer Key For The California Mathematics Standards Grade 1

Introduction: Summary of Goals GRADE ONE By the end of grade one, students learn to understand and use the concept of ones and tens in the place value number system. Students add and subtract small numbers

### Relating Math to the Real World: A Study of Platonic Solids and Tessellations

Sheila Green Professor Dyrness ED200: Analyzing Schools Curriculum Project December 15, 2010 Relating Math to the Real World: A Study of Platonic Solids and Tessellations Introduction The study of Platonic

### Left, Left, Left, Right, Left

Lesson.1 Skills Practice Name Date Left, Left, Left, Right, Left Compound Probability for Data Displayed in Two-Way Tables Vocabulary Write the term that best completes each statement. 1. A two-way table

### Mathematics Session 1

Mathematics Session 1 Question 9 is an open-response question. BE SURE TO ANSWER AND LABEL ALL PARTS OF THE QUESTION. Write your answer to question 9 in the space provided in your Student Answer Booklet.

### Operations and Algebraic Thinking Number and Operations in Base Ten

Operations and Algebraic Thinking Number and Operations in Base Ten Teaching Tips: First Grade Using Best Instructional Practices with Educational Media to Enhance Learning pbskids.org/lab Boston University

### This scope and sequence assumes 160 days for instruction, divided among 15 units.

In previous grades, students learned strategies for multiplication and division, developed understanding of structure of the place value system, and applied understanding of fractions to addition and subtraction

### AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS 1 CALIFORNIA CONTENT STANDARDS: Chapter 1 ALGEBRA AND WHOLE NUMBERS Algebra and Functions 1.4 Students use algebraic

### Learning Lesson Study Course

Learning Lesson Study Course Developed originally in Japan and adapted by Developmental Studies Center for use in schools across the United States, lesson study is a model of professional development in

### Mathematics process categories

Mathematics process categories All of the UK curricula define multiple categories of mathematical proficiency that require students to be able to use and apply mathematics, beyond simple recall of facts

### Focus of the Unit: Much of this unit focuses on extending previous skills of multiplication and division to multi-digit whole numbers.

Approximate Time Frame: 3-4 weeks Connections to Previous Learning: In fourth grade, students fluently multiply (4-digit by 1-digit, 2-digit by 2-digit) and divide (4-digit by 1-digit) using strategies

### Work Stations 101: Grades K-5 NCTM Regional Conference &

: Grades K-5 NCTM Regional Conference 11.20.14 & 11.21.14 Janet (Dodd) Nuzzie, Pasadena ISD District Instructional Specialist, K-4 President, Texas Association of Supervisors of jdodd@pasadenaisd.org PISD

### Characteristics of Functions

Characteristics of Functions Unit: 01 Lesson: 01 Suggested Duration: 10 days Lesson Synopsis Students will collect and organize data using various representations. They will identify the characteristics

### QUICK START GUIDE. your kit BOXES 1 & 2 BRIDGES. Teachers Guides

QUICK START GUIDE BOXES 1 & 2 BRIDGES Teachers Guides your kit Your Teachers Guides are divided into eight units, each of which includes a unit introduction, 20 lessons, and the ancillary pages you ll

### 2 nd grade Task 5 Half and Half

2 nd grade Task 5 Half and Half Student Task Core Idea Number Properties Core Idea 4 Geometry and Measurement Draw and represent halves of geometric shapes. Describe how to know when a shape will show

### 2 nd Grade Math Curriculum Map

.A.,.M.6,.M.8,.N.5,.N.7 Organizing Data in a Table Working with multiples of 5, 0, and 5 Using Patterns in data tables to make predictions and solve problems. Solving problems involving money. Using a

### TabletClass Math Geometry Course Guidebook

TabletClass Math Geometry Course Guidebook Includes Final Exam/Key, Course Grade Calculation Worksheet and Course Certificate Student Name Parent Name School Name Date Started Course Date Completed Course

### Title: George and Sam Save for a Present By: Lesson Study Group 2

Research Aim: Title: George and Sam Save for a Present By: Lesson Study Group 2 Team Members: Jan Arslan, Lindsay Blanchard, Juneanne Demek, Hilary Harrison, Susan Greenwood Research Lesson Date: Tuesday,

### What's My Value? Using "Manipulatives" and Writing to Explain Place Value. by Amanda Donovan, 2016 CTI Fellow David Cox Road Elementary School

What's My Value? Using "Manipulatives" and Writing to Explain Place Value by Amanda Donovan, 2016 CTI Fellow David Cox Road Elementary School This curriculum unit is recommended for: Second and Third Grade

### Grades. From Your Friends at The MAILBOX

From Your Friends at The MAILBOX Grades 5 6 TEC916 High-Interest Math Problems to Reinforce Your Curriculum Supports NCTM standards Strengthens problem-solving and basic math skills Reinforces key problem-solving

### Algebra 2- Semester 2 Review

Name Block Date Algebra 2- Semester 2 Review Non-Calculator 5.4 1. Consider the function f x 1 x 2. a) Describe the transformation of the graph of y 1 x. b) Identify the asymptotes. c) What is the domain

### WiggleWorks Software Manual PDF0049 (PDF) Houghton Mifflin Harcourt Publishing Company

WiggleWorks Software Manual PDF0049 (PDF) Houghton Mifflin Harcourt Publishing Company Table of Contents Welcome to WiggleWorks... 3 Program Materials... 3 WiggleWorks Teacher Software... 4 Logging In...

### Longman English Interactive

Longman English Interactive Level 3 Orientation Quick Start 2 Microphone for Speaking Activities 2 Course Navigation 3 Course Home Page 3 Course Overview 4 Course Outline 5 Navigating the Course Page 6

### MADERA SCIENCE FAIR 2013 Grades 4 th 6 th Project due date: Tuesday, April 9, 8:15 am Parent Night: Tuesday, April 16, 6:00 8:00 pm

MADERA SCIENCE FAIR 2013 Grades 4 th 6 th Project due date: Tuesday, April 9, 8:15 am Parent Night: Tuesday, April 16, 6:00 8:00 pm Why participate in the Science Fair? Science fair projects give students

### Helping Your Children Learn in the Middle School Years MATH

Helping Your Children Learn in the Middle School Years MATH Grade 7 A GUIDE TO THE MATH COMMON CORE STATE STANDARDS FOR PARENTS AND STUDENTS This brochure is a product of the Tennessee State Personnel

### Airplane Rescue: Social Studies. LEGO, the LEGO logo, and WEDO are trademarks of the LEGO Group The LEGO Group.

Airplane Rescue: Social Studies LEGO, the LEGO logo, and WEDO are trademarks of the LEGO Group. 2010 The LEGO Group. Lesson Overview The students will discuss ways that people use land and their physical

### Ohio s Learning Standards-Clear Learning Targets

Ohio s Learning Standards-Clear Learning Targets Math Grade 1 Use addition and subtraction within 20 to solve word problems involving situations of 1.OA.1 adding to, taking from, putting together, taking

### Unit: Human Impact Differentiated (Tiered) Task How Does Human Activity Impact Soil Erosion?

The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

### Learning Mathematics with Technology: The Influence of Virtual Manipulatives on Different Achievement Groups

Utah State University DigitalCommons@USU TEaL Faculty Publications Teacher Education and Leadership 1-1-2011 Learning Mathematics with Technology: The Influence of Virtual Manipulatives on Different Achievement

### Unit 3: Lesson 1 Decimals as Equal Divisions

Unit 3: Lesson 1 Strategy Problem: Each photograph in a series has different dimensions that follow a pattern. The 1 st photo has a length that is half its width and an area of 8 in². The 2 nd is a square

### Unit 2. A whole-school approach to numeracy across the curriculum

Unit 2 A whole-school approach to numeracy across the curriculum 50 Numeracy across the curriculum Unit 2 Crown copyright 2001 Unit 2 A whole-school approach to numeracy across the curriculum Objectives

### Paper 2. Mathematics test. Calculator allowed. First name. Last name. School KEY STAGE TIER

259574_P2 5-7_KS3_Ma.qxd 1/4/04 4:14 PM Page 1 Ma KEY STAGE 3 TIER 5 7 2004 Mathematics test Paper 2 Calculator allowed Please read this page, but do not open your booklet until your teacher tells you

### Leader s Guide: Dream Big and Plan for Success

Leader s Guide: Dream Big and Plan for Success The goal of this lesson is to: Provide a process for Managers to reflect on their dream and put it in terms of business goals with a plan of action and weekly

### Student s Edition. Grade 6 Unit 6. Statistics. Eureka Math. Eureka Math

Student s Edition Grade 6 Unit 6 Statistics Eureka Math Eureka Math Lesson 1 Lesson 1: Posing Statistical Questions Statistics is about using data to answer questions. In this module, the following four

### St Math Teacher Login

St Math Login Free PDF ebook Download: St Math Login Download or Read Online ebook st math teacher login in PDF Format From The Best User Guide Database Ace Arms. Login Instructions. : karlahill6. Student:

### Grade Five Chapter 6 Add and Subtract Fractions with Unlike Denominators Overview & Support Standards:

rade Five Chapter 6 Add and Subtract Fractions with Unlike Denominators Overview & Support Standards: Use equivalent fractions as a strategy to add and subtract fractions. Add and subtract fractions with

### Students will be able to describe how it feels to be part of a group of similar peers.

LESSON TWO LESSON PLAN: WE RE ALL DIFFERENT ALIKE OVERVIEW: This lesson is designed to provide students the opportunity to feel united with their peers by both their similarities and their differences.

### Dear Teacher: Welcome to Reading Rods! Reading Rods offer many outstanding features! Read on to discover how to put Reading Rods to work today!

Dear Teacher: Welcome to Reading Rods! Your Sentence Building Reading Rod Set contains 156 interlocking plastic Rods printed with words representing different parts of speech and punctuation marks. Students

### Activities for School

Activities for School Label the School Label the school in the target language and then do a hide-n-seek activity using the directions in the target language. Label the Classroom I label my room (these

### Zoo Math Activities For 5th Grade

Zoo Math 5th Grade Free PDF ebook Download: Zoo Math 5th Grade Download or Read Online ebook zoo math activities for 5th grade in PDF Format From The Best User Guide Database Successful completion of Algebra

### TEACHING Simple Tools Set II

TEACHING GUIDE TEACHING Simple Tools Set II Kindergarten Reading Level ISBN-10: 0-8225-6880-2 Green ISBN-13: 978-0-8225-6880-3 2 TEACHING SIMPLE TOOLS SET II Standards Science Mathematics Language Arts

### Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified

Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General Grade(s): None specified Unit: Creating a Community of Mathematical Thinkers Timeline: Week 1 The purpose of the Establishing a Community

### LLD MATH. Student Eligibility: Grades 6-8. Credit Value: Date Approved: 8/24/15

PUBLIC SCHOOLS OF EDISON TOWNSHIP DIVISION OF CURRICULUM AND INSTRUCTION LLD MATH Length of Course: Elective/Required: School: Full Year Required Middle Schools Student Eligibility: Grades 6-8 Credit Value:

### MOODLE 2.0 GLOSSARY TUTORIALS

BEGINNING TUTORIALS SECTION 1 TUTORIAL OVERVIEW MOODLE 2.0 GLOSSARY TUTORIALS The glossary activity module enables participants to create and maintain a list of definitions, like a dictionary, or to collect

### Montana Content Standards for Mathematics Grade 3. Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011

Montana Content Standards for Mathematics Grade 3 Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011 Contents Standards for Mathematical Practice: Grade

### Evaluating Statements About Probability

CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Evaluating Statements About Probability Mathematics Assessment Resource Service University of Nottingham

### AP Statistics Summer Assignment 17-18

AP Statistics Summer Assignment 17-18 Welcome to AP Statistics. This course will be unlike any other math class you have ever taken before! Before taking this course you will need to be competent in basic

### Experience College- and Career-Ready Assessment User Guide

Experience College- and Career-Ready Assessment User Guide 2014-2015 Introduction Welcome to Experience College- and Career-Ready Assessment, or Experience CCRA. Experience CCRA is a series of practice

### Physical Versus Virtual Manipulatives Mathematics

Physical Versus Free PDF ebook Download: Physical Versus Download or Read Online ebook physical versus virtual manipulatives mathematics in PDF Format From The Best User Guide Database Engineering Haptic

### How long did... Who did... Where was... When did... How did... Which did...

(Past Tense) Who did... Where was... How long did... When did... How did... 1 2 How were... What did... Which did... What time did... Where did... What were... Where were... Why did... Who was... How many

### Pre-AP Geometry Course Syllabus Page 1

Pre-AP Geometry Course Syllabus 2015-2016 Welcome to my Pre-AP Geometry class. I hope you find this course to be a positive experience and I am certain that you will learn a great deal during the next

### Case study Norway case 1

Case study Norway case 1 School : B (primary school) Theme: Science microorganisms Dates of lessons: March 26-27 th 2015 Age of students: 10-11 (grade 5) Data sources: Pre- and post-interview with 1 teacher

### Similar Triangles. Developed by: M. Fahy, J. O Keeffe, J. Cooper

Similar Triangles Developed by: M. Fahy, J. O Keeffe, J. Cooper For the lesson on 1/3/2016 At Chanel College, Coolock Teacher: M. Fahy Lesson plan developed by: M. Fahy, J. O Keeffe, J. Cooper. 1. Title

### NCSC Alternate Assessments and Instructional Materials Based on Common Core State Standards

NCSC Alternate Assessments and Instructional Materials Based on Common Core State Standards Ricki Sabia, JD NCSC Parent Training and Technical Assistance Specialist ricki.sabia@uky.edu Background Alternate

### Test How To. Creating a New Test

Test How To Creating a New Test From the Control Panel of your course, select the Test Manager link from the Assessments box. The Test Manager page lists any tests you have already created. From this screen

### Multiplication of 2 and 3 digit numbers Multiply and SHOW WORK. EXAMPLE. Now try these on your own! Remember to show all work neatly!

Multiplication of 2 and digit numbers Multiply and SHOW WORK. EXAMPLE 205 12 10 2050 2,60 Now try these on your own! Remember to show all work neatly! 1. 6 2 2. 28 8. 95 7. 82 26 5. 905 15 6. 260 59 7.

### Teacher Action Research Multiple Intelligence Theory in the Foreign Language Classroom. By Melissa S. Ferro George Mason University

Teacher Action Research Multiple Intelligence Theory in the Foreign Language Classroom By Melissa S. Ferro George Mason University mferro@gmu.edu Melissa S. Ferro mferro@gmu.edu I am a doctoral student

### Cal s Dinner Card Deals

Cal s Dinner Card Deals Overview: In this lesson students compare three linear functions in the context of Dinner Card Deals. Students are required to interpret a graph for each Dinner Card Deal to help

### Genevieve L. Hartman, Ph.D.

Curriculum Development and the Teaching-Learning Process: The Development of Mathematical Thinking for all children Genevieve L. Hartman, Ph.D. Topics for today Part 1: Background and rationale Current

### About the Mathematics in This Unit

(PAGE OF 2) About the Mathematics in This Unit Dear Family, Our class is starting a new unit called Puzzles, Clusters, and Towers. In this unit, students focus on gaining fluency with multiplication strategies.

### P a g e 1. Grade 4. Grant funded by: MS Exemplar Unit English Language Arts Grade 4 Edition 1

P a g e 1 Grade 4 Grant funded by: P a g e 2 Lesson 1: Understanding Themes Focus Standard(s): RL.4.2 Additional Standard(s): RL.4.1 Estimated Time: 1-2 days Resources and Materials: Handout 1.1: Details,

### Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade The third grade standards primarily address multiplication and division, which are covered in Math-U-See

### Exemplar 6 th Grade Math Unit: Prime Factorization, Greatest Common Factor, and Least Common Multiple

Exemplar 6 th Grade Math Unit: Prime Factorization, Greatest Common Factor, and Least Common Multiple Unit Plan Components Big Goal Standards Big Ideas Unpacked Standards Scaffolded Learning Resources

### The following shows how place value and money are related. ones tenths hundredths thousandths

2-1 The following shows how place value and money are related. ones tenths hundredths thousandths (dollars) (dimes) (pennies) (tenths of a penny) Write each fraction as a decimal and then say it. 1. 349

### Science Fair Rules and Requirements

Science Fair Rules and Requirements Dear Parents, Soon your child will take part in an exciting school event a science fair. At Forest Park, we believe that this annual event offers our students a rich

### Experience Corps. Mentor Toolkit

Experience Corps Mentor Toolkit 2 AARP Foundation Experience Corps Mentor Toolkit June 2015 Christian Rummell Ed. D., Senior Researcher, AIR 3 4 Contents Introduction and Overview...6 Tool 1: Definitions...8

### Hentai High School A Game Guide

Hentai High School A Game Guide Hentai High School is a sex game where you are the Principal of a high school with the goal of turning the students into sex crazed people within 15 years. The game is difficult

### LESSON PLANS: AUSTRALIA Year 6: Patterns and Algebra Patterns 50 MINS 10 MINS. Introduction to Lesson. powered by

Year 6: Patterns and Algebra Patterns 50 MINS Strand: Number and Algebra Substrand: Patterns and Algebra Outcome: Continue and create sequences involving whole numbers, fractions and decimals. Describe

### Understanding Fair Trade

Prepared by Vanessa Ibarra Vanessa.Ibarra2@unt.edu June 26, 2014 This material was produced for Excellence in Curricula and Experiential Learning (EXCEL) Program, which is funded through UNT Sustainability.

Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

### Getting Started with Deliberate Practice

Getting Started with Deliberate Practice Most of the implementation guides so far in Learning on Steroids have focused on conceptual skills. Things like being able to form mental images, remembering facts