# Overview COEN 296 Topics in Computer Engineering Introduction to Pattern Recognition and Data Mining Course Goals Syllabus

Save this PDF as:

Size: px
Start display at page:

Download "Overview COEN 296 Topics in Computer Engineering Introduction to Pattern Recognition and Data Mining Course Goals Syllabus"

## Transcription

1 Overview COEN 296 Topics in Computer Engineering to Pattern Recognition and Data Mining Instructor: Dr. Giovanni Seni Department of Computer Engineering Santa Clara University Course Goals & Syllabus Pattern Recognition Features Classification Generalization System components Related Fields: ML & DM Design Cycle Computational Complexity The R Language G.Seni Q1/04 2 Course Goals Syllabus Convey excitement about an immensely useful field Large increase in digital data (barcode scanners, e-commerce, etc.) Moore s Law Provide foundation for further study/research Expose to real data Introduce you to toolbox of methods Jan 6 Jan 13 Jan 20 Jan 27 Feb 3 Feb 10 Feb 17 Feb 24 Mar 2 Mar 9 Bayesian Decision Theory ( , 2.9) Parameter Estimation ( ; see also 4.5 HMS) Linear Discriminant Functions (3.8.2, ) Neural Networks ( ) Neural Networks (6.6, 6.8) Clustering (10.6, 10.7; see also HMS) Clustering (10.9) Non-metric: Association Rules (5.3.2 HMS) Text Retrieval ( HMS) G.Seni Q1/04 3 G.Seni Q1/04 4

2 Pattern Recognition The act of taking in raw data and taking an action based on the category of the pattern Sorting incoming Fish on a conveyor according to species using optical sensing Useful applications Speech recognition Word & Character Recognition OCR (Optical Character Recognition) Fingerprint identification ( biometrics ) DNA sequence identification ( bioinformatics ) Fraud detection etc. category-1: sea bass category-2: salmon G.Seni Q1/04 5 G.Seni Q1/04 6 Feature Extraction Representation in which patterns that lead to same action are close to one another, yet far" from those that demand a different action i.e., discriminative Data reduction Initial model: sea bass is generally longer and lighter than salmon Histograms on training samples Features to explore Length, Lightness, Width, Number and shape of fins, Position of the mouth, etc ID Class length lightness G.Seni Q1/04 7 G.Seni Q1/04 8

3 Feature Space Classification Fish X = x1 = lightness x2 = width Separate feature space into regions corresponding to the classes The separating boundary is called the decision boundary Perfect classification is often impossible use probability framework Easy to incorporate priors and misclassification costs G.Seni Q1/04 9 G.Seni Q1/04 10 Generalization Ability to correctly classify novel input Tradeoff between decision model complexity and generalization performance Pattern Recognition System input sensing segmentation feature extraction decision Post-processing classification complex lower training error higher test error simpler higher training error lower test error Sensing converts physical inputs into signal data Bandwidth, resolution, sensitivity, distortion of transducer imposes limitations on system Segmentation - isolates objects from background or other objects Post-processing account for context and cost of errors G.Seni Q1/04 11 G.Seni Q1/04 12

4 Related Disciplines Data Mining produce insight and understanding about the structure of large observational datasets e.g., Find interesting relationships Summarize the data in new ways that are understandable and actionable Machine Learning how to construct computer programs that automatically improve with experience (Mitchell) Theory and algorithms Other Statistics, information theory, etc. Related Disciplines (2) Data Mining Algorithm Components Task: visualization, classification, clustering, regression, rule discovery Structure: functional form of the model we are fitting to the data (e.g., linear, hierarchical) Score function: goodness-of-fit function we are using to judge the quality of our fitted model on observed data Search/optimization method: computational procedure used to find the maximum (or minimum) of the score function for a particular model Data management technique: location and manner in which data is accessed G.Seni Q1/04 13 G.Seni Q1/04 14 Design Cycle Design Cycle (2) Representative set of examples for training and testing the system Can account for large part of the development cost Data matrix: n d ID Age 54?? 29 Sex Male Female Male Marital Status Education Income Married High school Married High school Married Some college G.Seni Q1/04 15 Feature choice useful for discriminating Easy to extract Invariant to irrelevant transformations Insensitive to noise Type Quantitative measured on a numerical scale Categorical: nominal and ordinal (possessing a natural order) G.Seni Q1/04 16

5 Design Cycle (3) Design Cycle (4) Predictive Modeling the value of one variable is predicted from the known values of other variables (classification, regression) E.g., a nonlinear model Y = ax 2 + bx + c Descriptive Modeling clustering and segmentation, depency modeling, probability density estimation Training using training patterns to learn or estimate the parameters of the model (supervised or unsupervised) Score Function: quantifies how well model fits a given data set E.g., likelihood, sum of square errors, misclassification rate Optimization (or Search) Method: determine the parameter values that achieve a minimum (or maximum) of the score function E.g., gradient descent G.Seni Q1/04 17 G.Seni Q1/04 18 Design Cycle (5) Evaluation measure performance and adjust components appropriately Train vs. Test Error Overfitting Bias-variance tradeoff Dimensionality Classification accuracy deps upon the dimensionality and the amount of training data Theoretically, error rate can be reduced by introducing new, indepent features Need features that help separate the class pairs most frequently confused (e.g., distance between class means) G.Seni Q1/04 19 G.Seni Q1/04 20

6 Dimensionality (2) Practical paradox: beyond a certain point, the inclusion of additional features leads to worse performance Source of difficulty Wrong model E.g., Gaussian assumption Indepence assumption Inadequate number of training samples Distributions are not estimated accurately Computational Complexity Time/space considerations are of considerable practical importance at each stage A table lookup might result in error-free recognition but impractical Scalability as a function of: Number of features (d) Number of patterns (n) Cumber of classes (c) Learning vs. decision-making time G.Seni Q1/04 21 G.Seni Q1/04 22 The R Language An open source version of S a language and environment for data analysis Library provides many datasets Sample commands: > x <- read.table( mydata.txt", header = TRUE) > dim(x) [1] > x[5, 7:9] P S K > hist(x[,7], breaks=100, xlab="amount", main= P") The R Language (2) Other useful functions: Input/Output: read.table, read.delim, scan, write, write.table Extraction: which, apply Names: row.names, colnames, names Plots: hist, plot, points, lines, pdf, dev.off Error catching: stop, warning Sizes: dim, nrow, ncol, length Math: sum, mean, cor, log, max, min, range Casts: as.matrix, as.vector, as.numeric Type test: is.matrix, is.vector, is.numeric, is.data.frame Ordering: sort, order Help:?command G.Seni Q1/04 23 G.Seni Q1/04 24

### Introduction to Pattern Recognition

Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University)

### Introduction to Machine Learning Reykjavík University Spring Instructor: Dan Lizotte

Introduction to Machine Learning Reykjavík University Spring 2007 Instructor: Dan Lizotte Logistics To contact Dan: dlizotte@cs.ualberta.ca http://www.cs.ualberta.ca/~dlizotte/teaching/ Books: Introduction

### L1: Course introduction

Introduction Course organization Grading policy Outline What is pattern recognition? Definitions from the literature Related fields and applications L1: Course introduction Components of a pattern recognition

### Programming Social Robots for Human Interaction. Lecture 4: Machine Learning and Pattern Recognition

Programming Social Robots for Human Interaction Lecture 4: Machine Learning and Pattern Recognition Zheng-Hua Tan Dept. of Electronic Systems, Aalborg Univ., Denmark zt@es.aau.dk, http://kom.aau.dk/~zt

### ECE-271A Statistical Learning I

ECE-271A Statistical Learning I Nuno Vasconcelos ECE Department, UCSD The course the course is an introductory level course in statistical learning by introductory I mean that you will not need any previous

### Big Data Analytics Clustering and Classification

E6893 Big Data Analytics Lecture 4: Big Data Analytics Clustering and Classification Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science September 28th, 2017 1

### Machine Learning and Applications in Finance

Machine Learning and Applications in Finance Christian Hesse 1,2,* 1 Autobahn Equity Europe, Global Markets Equity, Deutsche Bank AG, London, UK christian-a.hesse@db.com 2 Department of Computer Science,

### Pattern Classification and Clustering Spring 2006

Pattern Classification and Clustering Time: Spring 2006 Room: Instructor: Yingen Xiong Office: 621 McBryde Office Hours: Phone: 231-4212 Email: yxiong@cs.vt.edu URL: http://www.cs.vt.edu/~yxiong/pcc/ Detailed

### Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

### STA 414/2104 Statistical Methods for Machine Learning and Data Mining

STA 414/2104 Statistical Methods for Machine Learning and Data Mining Radford M. Neal, University of Toronto, 2014 Week 1 What are Machine Learning and Data Mining? Typical Machine Learning and Data Mining

### Lecture 1: Machine Learning Basics

1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

### Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

### Session 1: Gesture Recognition & Machine Learning Fundamentals

IAP Gesture Recognition Workshop Session 1: Gesture Recognition & Machine Learning Fundamentals Nicholas Gillian Responsive Environments, MIT Media Lab Tuesday 8th January, 2013 My Research My Research

### Lecture 1. Introduction Bastian Leibe Visual Computing Institute RWTH Aachen University

Advanced Machine Learning Lecture 1 Introduction 20.10.2015 Bastian Leibe Visual Computing Institute RWTH Aachen University http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de Organization Lecturer

### Python Machine Learning

Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

### CS534 Machine Learning

CS534 Machine Learning Spring 2013 Lecture 1: Introduction to ML Course logistics Reading: The discipline of Machine learning by Tom Mitchell Course Information Instructor: Dr. Xiaoli Fern Kec 3073, xfern@eecs.oregonstate.edu

### 36-350: Data Mining. Fall Lectures: Monday, Wednesday and Friday, 10:30 11:20, Porter Hall 226B

36-350: Data Mining Fall 2009 Instructor: Cosma Shalizi, Statistics Dept., Baker Hall 229C, cshalizi@stat.cmu.edu Teaching Assistant: Joseph Richards, jwrichar@stat.cmu.edu Lectures: Monday, Wednesday

### COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.

COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise

### Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

### COMP 551 Applied Machine Learning Lecture 11: Ensemble learning

COMP 551 Applied Machine Learning Lecture 11: Ensemble learning Instructor: Herke van Hoof (herke.vanhoof@mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp551

(Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

### Evaluation and Comparison of Performance of different Classifiers

Evaluation and Comparison of Performance of different Classifiers Bhavana Kumari 1, Vishal Shrivastava 2 ACE&IT, Jaipur Abstract:- Many companies like insurance, credit card, bank, retail industry require

### Machine Learning for Computer Vision

Prof. Daniel Cremers Machine Learning for Computer PD Dr. Rudolph Triebel Lecturers PD Dr. Rudolph Triebel rudolph.triebel@in.tum.de Room number 02.09.058 (Fridays) Main lecture MSc. Ioannis John Chiotellis

### ECT7110 Classification Decision Trees. Prof. Wai Lam

ECT7110 Classification Decision Trees Prof. Wai Lam Classification and Decision Tree What is classification? What is prediction? Issues regarding classification and prediction Classification by decision

### ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

### CSE 258 Lecture 3. Web Mining and Recommender Systems. Supervised learning Classification

CSE 258 Lecture 3 Web Mining and Recommender Systems Supervised learning Classification Last week Last week we started looking at supervised learning problems Last week We studied linear regression, in

### Welcome to CMPS 142 and 242: Machine Learning

Welcome to CMPS 142 and 242: Machine Learning Instructor: David Helmbold, dph@soe.ucsc.edu Office hours: Monday 1:30-2:30, Thursday 4:15-5:00 TA: Aaron Michelony, amichelo@soe.ucsc.edu Web page: www.soe.ucsc.edu/classes/cmps242/fall13/01

### Principle Component Analysis for Feature Reduction and Data Preprocessing in Data Science

Principle Component Analysis for Feature Reduction and Data Preprocessing in Data Science Hayden Wimmer Department of Information Technology Georgia Southern University hwimmer@georgiasouthern.edu Loreen

### Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

### CS545 Machine Learning

Machine learning and related fields CS545 Machine Learning Course Introduction Machine learning: the construction and study of systems that learn from data. Pattern recognition: the same field, different

### Machine Learning L, T, P, J, C 2,0,2,4,4

Subject Code: Objective Expected Outcomes Machine Learning L, T, P, J, C 2,0,2,4,4 It introduces theoretical foundations, algorithms, methodologies, and applications of Machine Learning and also provide

### CS Machine Learning

CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

### Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Lecture 1-2: Concept Learning (M. Pantic) Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) Lecture 5-6: Evaluating Hypotheses (S. Petridis) Lecture

### Introduction to Classification

Introduction to Classification Classification: Definition Given a collection of examples (training set ) Each example is represented by a set of features, sometimes called attributes Each example is to

### Dudon Wai Georgia Institute of Technology CS 7641: Machine Learning Atlanta, GA

Adult Income and Letter Recognition - Supervised Learning Report An objective look at classifier performance for predicting adult income and Letter Recognition Dudon Wai Georgia Institute of Technology

### Machine Learning :: Introduction. Konstantin Tretyakov

Machine Learning :: Introduction Konstantin Tretyakov (kt@ut.ee) MTAT.03.183 Data Mining November 5, 2009 So far Data mining as knowledge discovery Frequent itemsets Descriptive analysis Clustering Seriation

### Artificial Neural Networks. Andreas Robinson 12/19/2012

Artificial Neural Networks Andreas Robinson 12/19/2012 Introduction Artificial Neural Networks Machine learning technique Learning from past experience/data Predicting/classifying novel data Biologically

### 10701/15781 Machine Learning, Spring 2005: Homework 1

10701/15781 Machine Learning, Spring 2005: Homework 1 Due: Monday, February 6, beginning of the class 1 [15 Points] Probability and Regression [Stano] 1 1.1 [10 Points] The Matrix Strikes Back The Matrix

### P(A, B) = P(A B) = P(A) + P(B) - P(A B)

AND Probability P(A, B) = P(A B) = P(A) + P(B) - P(A B) P(A B) = P(A) + P(B) - P(A B) Area = Probability of Event AND Probability P(A, B) = P(A B) = P(A) + P(B) - P(A B) If, and only if, A and B are independent,

### COMP 551 Applied Machine Learning Lecture 12: Ensemble learning

COMP 551 Applied Machine Learning Lecture 12: Ensemble learning Associate Instructor: Herke van Hoof (herke.vanhoof@mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

### CPSC 340: Machine Learning and Data Mining. Course Review/Preview Fall 2015

CPSC 340: Machine Learning and Data Mining Course Review/Preview Fall 2015 Admin Assignment 6 due now. We will have office hours as usual next week. Final exam details: December 15: 8:30-11 (WESB 100).

### COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.

COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551

### Introduction to Classification, aka Machine Learning

Introduction to Classification, aka Machine Learning Classification: Definition Given a collection of examples (training set ) Each example is represented by a set of features, sometimes called attributes

### Speech Accent Classification

Speech Accent Classification Corey Shih ctshih@stanford.edu 1. Introduction English is one of the most prevalent languages in the world, and is the one most commonly used for communication between native

### Lecture 1: Introduc4on

CSC2515 Spring 2014 Introduc4on to Machine Learning Lecture 1: Introduc4on All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

### This thesis is presented as part of the requirements for the award of the degree of Doctor of Philosophy from the University of Technology Sydney

Advanced neural network head movement classification for HANDS-FREE CONTROL OF This thesis is presented as part of the requirements for the award of the degree of Doctor of Philosophy from the University

### Automatic Text Summarization for Annotating Images

Automatic Text Summarization for Annotating Images Gediminas Bertasius November 24, 2013 1 Introduction With an explosion of image data on the web, automatic image annotation has become an important area

### Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 15th, 2018

Data Mining CS573 Purdue University Bruno Ribeiro February 15th, 218 1 Today s Goal Ensemble Methods Supervised Methods Meta-learners Unsupervised Methods 215 Bruno Ribeiro Understanding Ensembles The

### Performance Analysis of Various Data Mining Techniques on Banknote Authentication

International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 5 Issue 2 February 2016 PP.62-71 Performance Analysis of Various Data Mining Techniques on

### Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2011-2012 Lecture 11: 21 May 2012 Unsupervised Learning (cont ) Slides

### A study of the NIPS feature selection challenge

A study of the NIPS feature selection challenge Nicholas Johnson November 29, 2009 Abstract The 2003 Nips Feature extraction challenge was dominated by Bayesian approaches developed by the team of Radford

### learn from the accelerometer data? A close look into privacy Member: Devu Manikantan Shila

What can we learn from the accelerometer data? A close look into privacy Team Member: Devu Manikantan Shila Abstract: A handful of research efforts nowadays focus on gathering and analyzing the data from

About This Specialization The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended

### Machine Learning : Hinge Loss

Machine Learning Hinge Loss 16/01/2014 Machine Learning : Hinge Loss Recap tasks considered before Let a training dataset be given with (i) data and (ii) classes The goal is to find a hyper plane that

### Fundamentals of Machine Learning for Predictive Data Analytics

Fundamentals of Machine Learning for Predictive Data Analytics Machine Learning for Predictive Data Analytics John Kelleher and Brian Mac Namee and Aoife D Arcy john.d.kelleher@dit.ie brian.macnamee@ucd.ie

### Unsupervised Learning and Dimensionality Reduction A Continued Study on Letter Recognition and Adult Income

Unsupervised Learning and Dimensionality Reduction A Continued Study on Letter Recognition and Adult Income Dudon Wai, dwai3 Georgia Institute of Technology CS 7641: Machine Learning Abstract: This paper

### K-Means Clustering. By Susan L. Miertschin

K-Means Clustering By Susan L. Miertschin 1 Data Mining - Task Types Classification Clustering Discovering Association Rules Discovering Sequential Patterns Sequence Analysis Regression Detecting Deviations

### TOWARDS DATA-DRIVEN AUTONOMICS IN DATA CENTERS

TOWARDS DATA-DRIVEN AUTONOMICS IN DATA CENTERS ALINA SIRBU, OZALP BABAOGLU SUMMARIZED BY ARDA GUMUSALAN MOTIVATION 2 MOTIVATION Human-interaction-dependent data centers are not sustainable for future data

### PRESENTATION TITLE. A Two-Step Data Mining Approach for Graduation Outcomes CAIR Conference

PRESENTATION TITLE A Two-Step Data Mining Approach for Graduation Outcomes 2013 CAIR Conference Afshin Karimi (akarimi@fullerton.edu) Ed Sullivan (esullivan@fullerton.edu) James Hershey (jrhershey@fullerton.edu)

### Statistical Learning- Classification STAT 441/ 841, CM 764

Statistical Learning- Classification STAT 441/ 841, CM 764 Ali Ghodsi Department of Statistics and Actuarial Science University of Waterloo aghodsib@uwaterloo.ca Two Paradigms Classical Statistics Infer

### CS540 Machine learning Lecture 1 Introduction

CS540 Machine learning Lecture 1 Introduction Administrivia Overview Supervised learning Unsupervised learning Other kinds of learning Outline Administrivia Class web page www.cs.ubc.ca/~murphyk/teaching/cs540-fall08

### Welcome to CMPS 142: Machine Learning. Administrivia. Lecture Slides for. Instructor: David Helmbold,

Welcome to CMPS 142: Machine Learning Instructor: David Helmbold, dph@soe.ucsc.edu Web page: www.soe.ucsc.edu/classes/cmps142/winter07/ Text: Introduction to Machine Learning, Alpaydin Administrivia Sign

### Department of Biostatistics

The University of Kansas 1 Department of Biostatistics The mission of the Department of Biostatistics is to provide an infrastructure of biostatistical and informatics expertise to support and enhance

### Machine Learning. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning Introduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1 / 15 Table of contents 1 What is machine learning?

### Bioinformatics II Theoretical Bioinformatics and Machine Learning Part 1. Sepp Hochreiter

Bioinformatics II Theoretical Bioinformatics and Machine Learning Part 1 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Course 6 ECTS 4 SWS VO (class) 3 ECTS 2 SWS UE (exercise)

### A Review on Classification Techniques in Machine Learning

A Review on Classification Techniques in Machine Learning R. Vijaya Kumar Reddy 1, Dr. U. Ravi Babu 2 1 Research Scholar, Dept. of. CSE, Acharya Nagarjuna University, Guntur, (India) 2 Principal, DRK College

### Linear Regression. Chapter Introduction

Chapter 9 Linear Regression 9.1 Introduction In this class, we have looked at a variety of di erent models and learning methods, such as finite state machines, sequence models, and classification methods.

### Unsupervised Learning

09s1: COMP9417 Machine Learning and Data Mining Unsupervised Learning June 3, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997 http://www-2.cs.cmu.edu/~tom/mlbook.html

### COLLEGE OF SCIENCE. School of Mathematical Sciences. NEW (or REVISED) COURSE: COS-STAT-747 Principles of Statistical Data Mining.

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences NEW (or REVISED) COURSE: COS-STAT-747 Principles of Statistical Data Mining 1.0 Course Designations

### Rituparna Sarkar, Kevin Skadron and Scott T. Acton

A META-ALGORITHM FOR CLASSIFICATION BY FEATURE NOMINATION Rituparna Sarkar, Kevin Skadron and Scott T. Acton Electrical and Computer Engineering, University of Virginia Computer Science Department, University

### COMP 527: Data Mining and Visualization. Danushka Bollegala

COMP 527: Data Mining and Visualization Danushka Bollegala Introductions Lecturer: Danushka Bollegala Office: 2.24 Ashton Building (Second Floor) Email: danushka@liverpool.ac.uk Personal web: http://danushka.net/

### Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. January 11, 2011

Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 11, 2011 Today: What is machine learning? Decision tree learning Course logistics Readings: The Discipline

### Word Sense Determination from Wikipedia. Data Using a Neural Net

1 Word Sense Determination from Wikipedia Data Using a Neural Net CS 297 Report Presented to Dr. Chris Pollett Department of Computer Science San Jose State University By Qiao Liu May 2017 Word Sense Determination

### Lecture I Outline. Course information and details Why do machine learning? What is machine learning? Why now? Type of Learning

Lecture I Outline Course information and details Why do machine learning? What is machine learning? Why now? Type of Learning Association Classification Three types: Linear, Decision Tree, and Nearest

### What is Visual Analytics? What is Visual Analytics? CS 796/896 Visual Analytics Seminar Spring Dr. Michele C. Weigle

CS 796/896 Visual Analytics Seminar Spring 2011 What is Visual Analytics? Dr. Michele C. Weigle http://www.cs.odu.edu/~mweigle/cs796-s11/ What is Visual Analytics?! New multidisciplinary field! Combines

### EECS 349 Machine Learning

EECS 349 Machine Learning Instructor: Doug Downey (some slides from Pedro Domingos, University of Washington) 1 Logistics Instructor: Doug Downey Email: ddowney@eecs.northwestern.edu Office hours: Mondays

### Introduction to Machine Learning

Introduction to Machine Learning D. De Cao R. Basili Corso di Web Mining e Retrieval a.a. 2008-9 April 6, 2009 Outline Outline Introduction to Machine Learning Outline Outline Introduction to Machine Learning

### A COMPARATIVE STUDY FOR PREDICTING STUDENT S ACADEMIC PERFORMANCE USING BAYESIAN NETWORK CLASSIFIERS

IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 2 (Feb. 2013), V1 PP 37-42 A COMPARATIVE STUDY FOR PREDICTING STUDENT S ACADEMIC PERFORMANCE USING BAYESIAN NETWORK

### Speaker Recognition Using Vocal Tract Features

International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 1 (August 2013) PP: 26-30 Speaker Recognition Using Vocal Tract Features Prasanth P. S. Sree Chitra

### Getting started with Weka. Yishuang Geng, Kexin Shi, Pei Zhang, Angel Trifonov, Jiefeng He, Xiaolu Xiong

Getting started with Weka Yishuang Geng, Kexin Shi, Pei Zhang, Angel Trifonov, Jiefeng He, Xiaolu Xiong Lesson 1.1 - Introduction Purpose of this course Take the mystery out of data mining. How to use

### When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification Bufford, Teresa Chen, Yuxin Horning, Mitchell Shee, Liberty Supervised by: Prof. Yohann Tero August 9, 213 Abstract This report details and exts the implementation

### Introduction to Machine Learning

Introduction to Machine Learning Hamed Pirsiavash CMSC 678 http://www.csee.umbc.edu/~hpirsiav/courses/ml_fall17 The slides are closely adapted from Subhransu Maji s slides Course background What is the

### Naive Bayesian. Introduction. What is Naive Bayes algorithm? Algorithm

Naive Bayesian Introduction You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importance of variables. Within an hour, stakeholders

### Machine Learning Algorithms: A Review

Machine Learning Algorithms: A Review Ayon Dey Department of CSE, Gautam Buddha University, Greater Noida, Uttar Pradesh, India Abstract In this paper, various machine learning algorithms have been discussed.

### Linear Models Continued: Perceptron & Logistic Regression

Linear Models Continued: Perceptron & Logistic Regression CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Linear Models for Classification Feature function

### Performance Analysis of Spoken Arabic Digits Recognition Techniques

JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL., NO., JUNE 5 Performance Analysis of Spoken Arabic Digits Recognition Techniques Ali Ganoun and Ibrahim Almerhag Abstract A performance evaluation of

### Introduction to Machine Learning for NLP I

Introduction to Machine Learning for NLP I Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Introduction to Machine Learning for NLP I 1 / 49 Outline 1 This Course 2 Overview 3 Machine Learning

### Gender Classification Based on FeedForward Backpropagation Neural Network

Gender Classification Based on FeedForward Backpropagation Neural Network S. Mostafa Rahimi Azghadi 1, M. Reza Bonyadi 1 and Hamed Shahhosseini 2 1 Department of Electrical and Computer Engineering, Shahid

### Stay Alert!: Creating a Classifier to Predict Driver Alertness in Real-time

Stay Alert!: Creating a Classifier to Predict Driver Alertness in Real-time Aditya Sarkar, Julien Kawawa-Beaudan, Quentin Perrot Friday, December 11, 2014 1 Problem Definition Driving while drowsy inevitably

### Generalizing Detection of Gaming the System Across a Tutoring Curriculum

Generalizing Detection of Gaming the System Across a Tutoring Curriculum Ryan S.J.d. Baker 1, Albert T. Corbett 2, Kenneth R. Koedinger 2, Ido Roll 2 1 Learning Sciences Research Institute, University

### EECS 349 Machine Learning

EECS 349 Machine Learning Instructor: Doug Downey (some slides from Pedro Domingos, University of Washington) 1 Logistics Instructor: Doug Downey Email: ddowney@eecs.northwestern.edu Office hours: Mondays

### COMP150 DR Final Project Proposal

COMP150 DR Final Project Proposal Ari Brown and Julie Jiang October 26, 2017 Abstract The problem of sound classification has been studied in depth and has multiple applications related to identity discrimination,

### COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning Nakul Verma Machine learning: what? Study of making machines learn a concept without having to explicitly program it. Constructing algorithms that can: learn

### Acoustic Scene Classification

1 Acoustic Scene Classification By Yuliya Sergiyenko Seminar: Topics in Computer Music RWTH Aachen 24/06/2015 2 Outline 1. What is Acoustic scene classification (ASC) 2. History 1. Cocktail party problem

### CS 510: Lecture 8. Deep Learning, Fairness, and Bias

CS 510: Lecture 8 Deep Learning, Fairness, and Bias Next Week All Presentations, all the time Upload your presentation before class if using slides Sign up for a timeslot google doc, if you haven t already

### E9 205 Machine Learning for Signal Processing

E9 205 Machine Learning for Signal Processing Introduction to Machine Learning of Sensory Signals 14-08-2017 Instructor - Sriram Ganapathy (sriram@ee.iisc.ernet.in) Teaching Assistant - Aravind Illa (aravindece77@gmail.com).