(Sub)Gradient Descent
|
|
- Ross Warren
- 3 years ago
- Views:
Transcription
1 (Sub)Gradient Descent CMSC 422 MARINE CARPUAT Figures credit: Piyush Rai
2 Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include short questions (similar to quizzes) and 2 problems that require applying what you've learned to new settings topics: everything up to this week, including linear models, gradient descent, homeworks and project 1 Next HW due on Tuesday 3/22 by 1:30pm Office hours Tuesday 3/22 after class Please take survey before end of break!
3 What you should know (1) Decision Trees What is a decision tree, and how to induce it from data Fundamental Machine Learning Concepts Difference between memorization and generalization What inductive bias is, and what is its role in learning What underfitting and overfitting means How to take a task and cast it as a learning problem Why you should never ever touch your test data!!
4 What you should know (2) New Algorithms K-NN classification K-means clustering Fundamental ML concepts How to draw decision boundaries What decision boundaries tells us about the underlying classifiers The difference between supervised and unsupervised learning
5 What you should know (3) The perceptron model/algorithm What is it? How is it trained? Pros and cons? What guarantees does it offer? Why we need to improve it using voting or averaging, and the pros and cons of each solution Fundamental Machine Learning Concepts Difference between online vs. batch learning What is error-driven learning
6 What you should know (4) Be aware of practical issues when applying ML techniques to new problems How to select an appropriate evaluation metric for imbalanced learning problems How to learn from imbalanced data using α- weighted binary classification, and what the error guarantees are
7 What you should know (5) What are reductions and why they are useful Implement, analyze and prove error bounds of algorithms for Weighted binary classification Multiclass classification (OVA, AVA, tree) Understand algorithms for Stacking for collective classification ω ranking
8 What you should know (6) Linear models: An optimization view of machine learning Pros and cons of various loss functions Pros and cons of various regularizers (Gradient Descent)
9 Today s topic How to optimize linear model objectives using gradient descent (and subgradient descent) [CIML Chapter 6]
10 Casting Linear Classification as an Optimization Problem Objective function Loss function measures how well classifier fits training data Regularizer prefers solutions that generalize well Indicator function: 1 if (.) is true, 0 otherwise The loss function above is called the 0-1 loss
11 Gradient descent A general solution for our optimization problem Idea: take iterative steps to update parameters in the direction of the gradient
12 Gradient descent algorithm Objective function to minimize Number of steps Step size
13 Illustrating gradient descent in 1-dimensional case
14 Gradient Descent 2 questions When to stop? How to choose the step size?
15 Gradient Descent 2 questions When to stop? When the gradient gets close to zero When the objective stops changing much When the parameters stop changing much Early When performance on held-out dev set plateaus How to choose the step size? Start with large steps, then take smaller steps
16 Now let s calculate gradients for multivariate objectives Consider the following learning objective What do we need to do to run gradient descent?
17 (1) Derivative with respect to b
18 (2) Gradient with respect to w
19 Subgradients Problem: some objective functions are not differentiable everywhere Hinge loss, l1 norm Solution: subgradient optimization Let s ignore the problem, and just try to apply gradient descent anyway!! we will just differentiate by parts
20 Example: subgradient of hinge loss
21 Subgradient Descent for Hinge Loss
22 Summary Gradient descent A generic algorithm to minimize objective functions Works well as long as functions are well behaved (ie convex) Subgradient descent can be used at points where derivative is not defined Choice of step size is important Optional: can we do better? For some objectives, we can find closed form solutions (see CIML 6.6)
Lecture 1: Machine Learning Basics
1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3
Python Machine Learning
Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled
Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler
Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina
CS Machine Learning
CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing
CSL465/603 - Machine Learning
CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am
Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur
Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should
Penn State University - University Park MATH 140 Instructor Syllabus, Calculus with Analytic Geometry I Fall 2010
Penn State University - University Park MATH 140 Instructor Syllabus, Calculus with Analytic Geometry I Fall 2010 There are two ways to live: you can live as if nothing is a miracle; you can live as if
Artificial Neural Networks written examination
1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14
CS 1103 Computer Science I Honors. Fall Instructor Muller. Syllabus
CS 1103 Computer Science I Honors Fall 2016 Instructor Muller Syllabus Welcome to CS1103. This course is an introduction to the art and science of computer programming and to some of the fundamental concepts
Lecture 1: Basic Concepts of Machine Learning
Lecture 1: Basic Concepts of Machine Learning Cognitive Systems - Machine Learning Ute Schmid (lecture) Johannes Rabold (practice) Based on slides prepared March 2005 by Maximilian Röglinger, updated 2010
Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition
Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and
Model Ensemble for Click Prediction in Bing Search Ads
Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Microsoft Bing xiaoling@microsoft.com Hucheng Zhou Microsoft Research huzho@microsoft.com Weiwei Deng Microsoft Bing dedeng@microsoft.com
Probabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview
Learning From the Past with Experiment Databases
Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University
Assignment 1: Predicting Amazon Review Ratings
Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for
Rule Learning With Negation: Issues Regarding Effectiveness
Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United
Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models
Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za
Softprop: Softmax Neural Network Backpropagation Learning
Softprop: Softmax Neural Networ Bacpropagation Learning Michael Rimer Computer Science Department Brigham Young University Provo, UT 84602, USA E-mail: mrimer@axon.cs.byu.edu Tony Martinez Computer Science
arxiv: v2 [cs.cv] 30 Mar 2017
Domain Adaptation for Visual Applications: A Comprehensive Survey Gabriela Csurka arxiv:1702.05374v2 [cs.cv] 30 Mar 2017 Abstract The aim of this paper 1 is to give an overview of domain adaptation and
Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley
Challenges in Deep Reinforcement Learning Sergey Levine UC Berkeley Discuss some recent work in deep reinforcement learning Present a few major challenges Show some of our recent work toward tackling
Active Learning. Yingyu Liang Computer Sciences 760 Fall
Active Learning Yingyu Liang Computer Sciences 760 Fall 2017 http://pages.cs.wisc.edu/~yliang/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
Generative models and adversarial training
Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?
Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE
EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers
Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study
Purdue Data Summit 2017 Communication of Big Data Analytics New SAT Predictive Validity Case Study Paul M. Johnson, Ed.D. Associate Vice President for Enrollment Management, Research & Enrollment Information
CS 101 Computer Science I Fall Instructor Muller. Syllabus
CS 101 Computer Science I Fall 2013 Instructor Muller Syllabus Welcome to CS101. This course is an introduction to the art and science of computer programming and to some of the fundamental concepts of
Learning Methods for Fuzzy Systems
Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8
ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering
ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering Lecture Details Instructor Course Objectives Tuesday and Thursday, 4:00 pm to 5:15 pm Information Technology and Engineering
Laboratorio di Intelligenza Artificiale e Robotica
Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning
Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model
Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.
Rule Learning with Negation: Issues Regarding Effectiveness
Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX
Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling
Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Notebook for PAN at CLEF 2013 Andrés Alfonso Caurcel Díaz 1 and José María Gómez Hidalgo 2 1 Universidad
Axiom 2013 Team Description Paper
Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association
The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X
The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,
System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks
System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering
Math 181, Calculus I
Math 181, Calculus I [Semester] [Class meeting days/times] [Location] INSTRUCTOR INFORMATION: Name: Office location: Office hours: Mailbox: Phone: Email: Required Material and Access: Textbook: Stewart,
The stages of event extraction
The stages of event extraction David Ahn Intelligent Systems Lab Amsterdam University of Amsterdam ahn@science.uva.nl Abstract Event detection and recognition is a complex task consisting of multiple sub-tasks
WHEN THERE IS A mismatch between the acoustic
808 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006 Optimization of Temporal Filters for Constructing Robust Features in Speech Recognition Jeih-Weih Hung, Member,
Many instructors use a weighted total to calculate their grades. This lesson explains how to set up a weighted total using categories.
Weighted Totals Many instructors use a weighted total to calculate their grades. This lesson explains how to set up a weighted total using categories. Set up your grading scheme in your syllabus Your syllabus
Human Emotion Recognition From Speech
RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati
OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS
OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,
Welcome to. ECML/PKDD 2004 Community meeting
Welcome to ECML/PKDD 2004 Community meeting A brief report from the program chairs Jean-Francois Boulicaut, INSA-Lyon, France Floriana Esposito, University of Bari, Italy Fosca Giannotti, ISTI-CNR, Pisa,
CS Course Missive
CS15 2017 Course Missive 1 Introduction 2 The Staff 3 Course Material 4 How to be Successful in CS15 5 Grading 6 Collaboration 7 Changes and Feedback 1 Introduction Welcome to CS15, Introduction to Object-Oriented
Compositional Semantics
Compositional Semantics CMSC 723 / LING 723 / INST 725 MARINE CARPUAT marine@cs.umd.edu Words, bag of words Sequences Trees Meaning Representing Meaning An important goal of NLP/AI: convert natural language
Chinese Language Parsing with Maximum-Entropy-Inspired Parser
Chinese Language Parsing with Maximum-Entropy-Inspired Parser Heng Lian Brown University Abstract The Chinese language has many special characteristics that make parsing difficult. The performance of state-of-the-art
Evolutive Neural Net Fuzzy Filtering: Basic Description
Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:
Probability and Game Theory Course Syllabus
Probability and Game Theory Course Syllabus DATE ACTIVITY CONCEPT Sunday Learn names; introduction to course, introduce the Battle of the Bismarck Sea as a 2-person zero-sum game. Monday Day 1 Pre-test
CS 446: Machine Learning
CS 446: Machine Learning Introduction to LBJava: a Learning Based Programming Language Writing classifiers Christos Christodoulopoulos Parisa Kordjamshidi Motivation 2 Motivation You still have not learnt
ACTL5103 Stochastic Modelling For Actuaries. Course Outline Semester 2, 2014
UNSW Australia Business School School of Risk and Actuarial Studies ACTL5103 Stochastic Modelling For Actuaries Course Outline Semester 2, 2014 Part A: Course-Specific Information Please consult Part B
CS4491/CS 7265 BIG DATA ANALYTICS INTRODUCTION TO THE COURSE. Mingon Kang, PhD Computer Science, Kennesaw State University
CS4491/CS 7265 BIG DATA ANALYTICS INTRODUCTION TO THE COURSE Mingon Kang, PhD Computer Science, Kennesaw State University Self Introduction Mingon Kang, PhD Homepage: http://ksuweb.kennesaw.edu/~mkang9
The Boosting Approach to Machine Learning An Overview
Nonlinear Estimation and Classification, Springer, 2003. The Boosting Approach to Machine Learning An Overview Robert E. Schapire AT&T Labs Research Shannon Laboratory 180 Park Avenue, Room A203 Florham
University of Groningen. Systemen, planning, netwerken Bosman, Aart
University of Groningen Systemen, planning, netwerken Bosman, Aart IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document
Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017
Instructor Syed Zahid Ali Room No. 247 Economics Wing First Floor Office Hours Email szahid@lums.edu.pk Telephone Ext. 8074 Secretary/TA TA Office Hours Course URL (if any) Suraj.lums.edu.pk FINN 321 Econometrics
Discriminative Learning of Beam-Search Heuristics for Planning
Discriminative Learning of Beam-Search Heuristics for Planning Yuehua Xu School of EECS Oregon State University Corvallis,OR 97331 xuyu@eecs.oregonstate.edu Alan Fern School of EECS Oregon State University
AP Chemistry
AP Chemistry 2016-2017 Welcome to AP Chemistry! I am so excited to have you in this course next year! To get geared up for the class, there are some things that you need to do this summer. None of it is
Self Study Report Computer Science
Computer Science undergraduate students have access to undergraduate teaching, and general computing facilities in three buildings. Two large classrooms are housed in the Davis Centre, which hold about
Pretest Integers and Expressions
Speed Drill Pretest Integers and Expressions 2 Ask your teacher to initial the circle before you begin this pretest. Read the numbers to your teacher. ( point each.) [3]. - -23-30 Write the negative numbers.
GACE Computer Science Assessment Test at a Glance
GACE Computer Science Assessment Test at a Glance Updated May 2017 See the GACE Computer Science Assessment Study Companion for practice questions and preparation resources. Assessment Name Computer Science
Natural Language Processing: Interpretation, Reasoning and Machine Learning
Natural Language Processing: Interpretation, Reasoning and Machine Learning Roberto Basili (Università di Roma, Tor Vergata) dblp: http://dblp.uni-trier.de/pers/hd/b/basili:roberto.html Google scholar:
have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words,
A Language-Independent, Data-Oriented Architecture for Grapheme-to-Phoneme Conversion Walter Daelemans and Antal van den Bosch Proceedings ESCA-IEEE speech synthesis conference, New York, September 1994
Short vs. Extended Answer Questions in Computer Science Exams
Short vs. Extended Answer Questions in Computer Science Exams Alejandro Salinger Opportunities and New Directions April 26 th, 2012 ajsalinger@uwaterloo.ca Computer Science Written Exams Many choices of
Math 96: Intermediate Algebra in Context
: Intermediate Algebra in Context Syllabus Spring Quarter 2016 Daily, 9:20 10:30am Instructor: Lauri Lindberg Office Hours@ tutoring: Tutoring Center (CAS-504) 8 9am & 1 2pm daily STEM (Math) Center (RAI-338)
Twitter Sentiment Classification on Sanders Data using Hybrid Approach
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders
Syllabus for CHEM 4660 Introduction to Computational Chemistry Spring 2010
Instructor: Dr. Angela Syllabus for CHEM 4660 Introduction to Computational Chemistry Office Hours: Mondays, 1:00 p.m. 3:00 p.m.; 5:00 6:00 p.m. Office: Chemistry 205C Office Phone: (940) 565-4296 E-mail:
A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and
A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and Planning Overview Motivation for Analyses Analyses and
QuickStroke: An Incremental On-line Chinese Handwriting Recognition System
QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents
Probability and Statistics Curriculum Pacing Guide
Unit 1 Terms PS.SPMJ.3 PS.SPMJ.5 Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods
Carnegie Mellon University Department of Computer Science /615 - Database Applications C. Faloutsos & A. Pavlo, Spring 2014.
Carnegie Mellon University Department of Computer Science 15-415/615 - Database Applications C. Faloutsos & A. Pavlo, Spring 2014 Homework 2 IMPORTANT - what to hand in: Please submit your answers in hard
BUAD 425 Data Analysis for Decision Making Syllabus Fall 2015
BUAD 425 Data Analysis for Decision Making Syllabus Fall 2015 Professor: Dr. Robertas Gabrys Office: BRI 401 O Office Hours: Wed 4:30 pm 5:30 pm or by appointment Phone: 213 740 9668 Email: gabrys@marshall.usc.edu
BADM 641 (sec. 7D1) (on-line) Decision Analysis August 16 October 6, 2017 CRN: 83777
BADM 641 (sec. 7D1) (on-line) Decision Analysis August 16 October 6, 2017 CRN: 83777 SEMESTER: Fall 2017 INSTRUCTOR: Jack Fuller, Ph.D. OFFICE: 108 Business and Economics Building, West Virginia University,
Data Structures and Algorithms
CS 3114 Data Structures and Algorithms 1 Trinity College Library Univ. of Dublin Instructor and Course Information 2 William D McQuain Email: Office: Office Hours: wmcquain@cs.vt.edu 634 McBryde Hall see
arxiv: v1 [cs.lg] 15 Jun 2015
Dual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy arxiv:1506.04477v1 [cs.lg] 15 Jun 2015 Sang-Woo Lee Min-Oh Heo School of Computer Science and
A Neural Network GUI Tested on Text-To-Phoneme Mapping
A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis
COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS
COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS L. Descalço 1, Paula Carvalho 1, J.P. Cruz 1, Paula Oliveira 1, Dina Seabra 2 1 Departamento de Matemática, Universidade de Aveiro (PORTUGAL)
BA 130 Introduction to International Business
BA 130 Introduction to International Business COURSE SYLLABUS Department of Business and Economics Spring, 2017 Credit: Instructor: Office Hours: E-mail: 3 units (45 lecture hours) Dr. Alexander Anokhin
EECS 700: Computer Modeling, Simulation, and Visualization Fall 2014
EECS 700: Computer Modeling, Simulation, and Visualization Fall 2014 Course Description The goals of this course are to: (1) formulate a mathematical model describing a physical phenomenon; (2) to discretize
MTH 215: Introduction to Linear Algebra
MTH 215: Introduction to Linear Algebra Fall 2017 University of Rhode Island, Department of Mathematics INSTRUCTOR: Jonathan A. Chávez Casillas E-MAIL: jchavezc@uri.edu LECTURE TIMES: Tuesday and Thursday,
arxiv: v1 [cs.cv] 10 May 2017
Inferring and Executing Programs for Visual Reasoning Justin Johnson 1 Bharath Hariharan 2 Laurens van der Maaten 2 Judy Hoffman 1 Li Fei-Fei 1 C. Lawrence Zitnick 2 Ross Girshick 2 1 Stanford University
Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus
Language Acquisition Fall 2010/Winter 2011 Lexical Categories Afra Alishahi, Heiner Drenhaus Computational Linguistics and Phonetics Saarland University Children s Sensitivity to Lexical Categories Look,
TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY
TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY Philippe Hamel, Matthew E. P. Davies, Kazuyoshi Yoshii and Masataka Goto National Institute
A Review: Speech Recognition with Deep Learning Methods
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.1017
Calibration of Confidence Measures in Speech Recognition
Submitted to IEEE Trans on Audio, Speech, and Language, July 2010 1 Calibration of Confidence Measures in Speech Recognition Dong Yu, Senior Member, IEEE, Jinyu Li, Member, IEEE, Li Deng, Fellow, IEEE
Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade
Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade The third grade standards primarily address multiplication and division, which are covered in Math-U-See
Knowledge Transfer in Deep Convolutional Neural Nets
Knowledge Transfer in Deep Convolutional Neural Nets Steven Gutstein, Olac Fuentes and Eric Freudenthal Computer Science Department University of Texas at El Paso El Paso, Texas, 79968, U.S.A. Abstract
Chapter 2 Rule Learning in a Nutshell
Chapter 2 Rule Learning in a Nutshell This chapter gives a brief overview of inductive rule learning and may therefore serve as a guide through the rest of the book. Later chapters will expand upon the
Article A Novel, Gradient Boosting Framework for Sentiment Analysis in Languages where NLP Resources Are Not Plentiful: A Case Study for Modern Greek
Article A Novel, Gradient Boosting Framework for Sentiment Analysis in Languages where NLP Resources Are Not Plentiful: A Case Study for Modern Greek Vasileios Athanasiou and Manolis Maragoudakis * Artificial
Ohio s Learning Standards-Clear Learning Targets
Ohio s Learning Standards-Clear Learning Targets Math Grade 1 Use addition and subtraction within 20 to solve word problems involving situations of 1.OA.1 adding to, taking from, putting together, taking
A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation
A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation SLSP-2016 October 11-12 Natalia Tomashenko 1,2,3 natalia.tomashenko@univ-lemans.fr Yuri Khokhlov 3 khokhlov@speechpro.com Yannick
MinE 382 Mine Power Systems Fall Semester, 2014
MinE 382 Mine Power Systems Fall Semester, 2014 Tuesday & Thursday, 9:30 a.m. 10:45 a.m., Room 109 MRB Instructor: Dr. Mark F. Sindelar, P.E. Room 233 MRB (center office in the Mine Design Lab) Mining
CS 100: Principles of Computing
CS 100: Principles of Computing Kevin Molloy August 29, 2017 1 Basic Course Information 1.1 Prerequisites: None 1.2 General Education Fulfills Mason Core requirement in Information Technology (ALL). 1.3
Laboratorio di Intelligenza Artificiale e Robotica
Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning
Syllabus Foundations of Finance Summer 2014 FINC-UB
Syllabus Foundations of Finance Summer 2014 FINC-UB.0002.01 Instructor Matteo Crosignani Office: KMEC 9-193F Phone: 212-998-0716 Email: mcrosign@stern.nyu.edu Office Hours: Thursdays 4-6pm in Altman Room
Second Exam: Natural Language Parsing with Neural Networks
Second Exam: Natural Language Parsing with Neural Networks James Cross May 21, 2015 Abstract With the advent of deep learning, there has been a recent resurgence of interest in the use of artificial neural
Fall 2016 ARA 4400/ 7152
Instructor information: Instructor: Sarra Tlili Office hours: Thursday 10-12 Office: Pugh Hall, 354 Email address: satlili@ufl.edu Phone: (352) 392-8678 meeting times and places Days Per Bldg Room T 08
Learning to Schedule Straight-Line Code
Learning to Schedule Straight-Line Code Eliot Moss, Paul Utgoff, John Cavazos Doina Precup, Darko Stefanović Dept. of Comp. Sci., Univ. of Mass. Amherst, MA 01003 Carla Brodley, David Scheeff Sch. of Elec.
CHAPTER 4: REIMBURSEMENT STRATEGIES 24
CHAPTER 4: REIMBURSEMENT STRATEGIES 24 INTRODUCTION Once state level policymakers have decided to implement and pay for CSR, one issue they face is simply how to calculate the reimbursements to districts
SYLLABUS. EC 322 Intermediate Macroeconomics Fall 2012
SYLLABUS EC 322 Intermediate Macroeconomics Fall 2012 Location: Online Instructor: Christopher Westley Office: 112A Merrill Phone: 782-5392 Office hours: Tues and Thur, 12:30-2:30, Thur 4:00-5:00, or by
IT Students Workshop within Strategic Partnership of Leibniz University and Peter the Great St. Petersburg Polytechnic University
IT Students Workshop within Strategic Partnership of Leibniz University and Peter the Great St. Petersburg Polytechnic University 06.11.16 13.11.16 Hannover Our group from Peter the Great St. Petersburg
Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur)
Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) 1 Interviews, diary studies Start stats Thursday: Ethics/IRB Tuesday: More stats New homework is available
Graphic Organizer For Movie Notes
For Movie Notes Free PDF ebook Download: For Movie Notes Download or Read Online ebook graphic organizer for movie notes in PDF Format From The Best User Guide Database. Use this graphic organizer to take
Speech Recognition at ICSI: Broadcast News and beyond
Speech Recognition at ICSI: Broadcast News and beyond Dan Ellis International Computer Science Institute, Berkeley CA Outline 1 2 3 The DARPA Broadcast News task Aspects of ICSI