Practical Applications of Deep Learning

Size: px
Start display at page:

Download "Practical Applications of Deep Learning"

Transcription

1 Practical Applications of Deep Learning A hands-on MATLAB workshop Pitambar Dayal Abhijit Bhattacharjee Product Marketing Manager Application Engineer The MathWorks, Inc.

2

3

4 Agenda Introduction Exercise : Deep learning in lines of code Deep learning fundamentals Exercises and : Exploring pretrained networks/classifying handwritten digits Transfer learning Exercise : Creating a food classifier Deploying deep neural networks Conclusion

5 Deep Learning Applications Voice assistants (speech to text) Teaching character to beat video game Automatically coloring black and white images

6 What is Deep Learning?

7 What is Deep Learning? Subset of machine learning with automatic feature extraction Learns features and tasks directly from data More Data = better model Machine Learning Deep Learning Deep Learning

8 DL Applications include image classification, speech recognition, autonomous driving, etc. Detection of cars and road in autonomous driving systems Rain Detection and Removal Iris Recognition.% accuracy. Deep Joint Rain Detection and Removal from a Single Image" Wenhan Yang, Robby T. Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Source: An experimental study of deep convolutional features for iris recognition Signal Processing in Medicine and Biology Symposium (SPMB), IEEE Shervin Minaee ; Amirali Abdolrashidiy ; Yao Wang; An experimental study of deep convolutional features for iris recognition

9 Deep Learning Models can Surpass Human Accuracy. Human Accuracy Source: ILSVRC Top- Error on ImageNet

10 Deep Learning Enablers Increased GPU acceleration Labeled public datasets World-class models AlexNet PRETRAINED MODEL ResNet PRETRAINED MODEL VGG-/ PRETRAINED MODEL GoogLeNet PRETRAINED MODEL Caffe MODEL IMPORTER TensorFlow-Keras MODEL IMPORTER

11 Deep Learning Datatypes Image Signal Numeric Text

12 Let s try it out! Open: DeepLearningInLines.mlx in folder -DeepLearningInLines

13 Deep learning is not complicated. It can be easy!

14 Deep Learning Uses a Neural Network Architecture Input Layer Hidden Layers (n) Output Layer

15 Thinking about Layers Layers are like blocks Stack on top of each other Replace one block with a different one Each hidden layer processes the information from the previous layer

16 Thinking about Layers Layers are like blocks Stack on top of each other Replace one block with a different one Each hidden layer processes the information from the previous layer Layers can be ordered in different ways

17 Convolutional Neural Networks (CNNs) Special layer combinations that make them great for image classification Convolution Layer Max Pooling Layer ReLU Layer

18 Convolution Layers Search for Patterns These patterns would be common in the number

19 All patterns are compared to the patterns on a new image. Pattern starts at left corner Perform comparison Slide over one pixel Reach end of image Repeat for next pattern

20 Convolution Layers Search for Patterns These patterns would be common in the number

21 Good pattern matching in convolution improves chances that object will classify properly This image would not match well against the patterns for the number zero It would only do very well against this pattern

22 Max Pooling is a down-sampling operation Shrink large images while preserving important information x filters Stride Length =

23 Rectified Linear Units Layer (ReLU) Typically converts negative numbers to zero

24 CNNs typically end with Layers Fully Connected Layer Looks at which high-level features correspond to a specific category Calculates scores for each category (highest score wins) Softmax Layer Turns scores into probabilities. Classification Layer Categorizes image into one of the classes that the network is trained on

25 Deep Learning Workflow Preprocess Data Repeat these steps until network reaches desired level of accuracy Define Layers Set training options Train the network Test/deploy trained network

26 Pretrained Networks Researchers created network architecture for classifying hundreds of objects MATLAB makes it easy to import these networks AlexNet, GoogLeNet, ResNet, VGG, Caffe models, TensorFlow-Keras models This is what we did for the peppers example! (AlexNet) AlexNet PRETRAINED MODEL ResNet PRETRAINED MODEL VGG-/ PRETRAINED MODEL GoogLeNet PRETRAINED MODEL Caffe MODEL IMPORTER TensorFlow-Keras MODEL IMPORTER

27 Import Models from Keras-Tensorflow and Caffe

28 Questions?

29 Let s try it out! Exercise: Work_ExploringPretrainedNetworks.mlx in folder -PretrainedModelExercise Exercise: MNIST_HandwritingRecognition.mlx in folder -MNISTExercise

30 Takeaways Pre-trained networks have a pre-determined layer order that makes them effective for classifying images Typically trained to classify lots of images Different networks yield different results Great starting point, but not consistently accurate We ll fix this later with transfer learning!

31 Takeaways Deep learning for image classification uses CNNs CNNs can have different combinations of initial layers but usually end with: Fully Connected Layer Softmax Layer Classification Layer Important factors that affect accuracy and training time Network architecture Initial learning rate

32 Two Approaches for Deep Learning. Train a Deep Neural Network from Scratch. Fine-tune a pre-trained model (transfer learning)

33 Transfer Learning Workflow Load pretrained network Early layers that learned low-level features (edges, blobs, colors) Last layers that learned task specific features Replace final layers New layers to learn features specific to your data Train network Training images Training options Predict and assess network accuracy Test images Deploy results Probability Boat Plane Car Train Trained Network million images s classes Fewer classes Learn faster s images s classes

34 Transfer Learning Workflow Step Load pretrained network Early layers learn lowlevel features (edges, blobs, colors) Last layers learn taskspecific features million images s classes

35 Transfer Learning Workflow Step Replace final layers New layers learn features specific to your data Load pretrained network Early layers that learned low-level features (edges, blobs, colors) Last layers that learned task specific features Fewer classes Learn faster million images s classes

36 Transfer Learning Workflow Step Train network Training images Training options Load pretrained network Early layers that learned low-level features (edges, blobs, colors) Last layers that learned task specific features Replace final layers New layers to learn features specific to your data s images s classes million images s classes Fewer classes Learn faster

37 Transfer Learning Workflow Step Predict and assess network accuracy Test images Load pretrained network Early layers that learned low-level features (edges, blobs, colors) Last layers that learned task specific features Replace final layers New layers to learn features specific to your data Train network Training images Training options Trained Network million images s classes Fewer classes Learn faster s images s classes

38 Transfer Learning Workflow Step Predict Deploy and results assess network accuracy Probability Test images Boat Load pretrained network Early layers that learned low-level features (edges, blobs, colors) Last layers that learned task specific features Replace final layers New layers to learn features specific to your data Train network Trained Network Plane Car Training images Train Training options Predict and assess network accuracy Test images million images s classes Fewer classes Learn faster s images s classes Trained Network

39 Transfer Learning Workflow Load pretrained network Early layers that learned low-level features (edges, blobs, colors) Last layers that learned task specific features Replace final layers New layers to learn features specific to your data Train network Training images Training options Predict and assess network accuracy Test images Deploy results Probability Boat Plane Car Train Trained Network million images s classes Fewer classes Learn faster s images s classes

40 Let s try it out! Exercise: Work_SeeFoodTransferLearning.mlx in folder -TransferLearningExercise

41 Takeaways Transfer Learning Replace last layers with our own layers Efficient way to modify pre-trained models to our needs Use an Image datastore when working with lots of images MATLAB lets you visualize activations in a network

42 Deep Learning Workflow Extends Beyond Training LABEL AND PREPROCESS DATA DEVELOP PREDICTIVE MODELS INTEGRATE MODELS WITH SYSTEMS Data Augmentation/ Transformation Hardware-Accelerated Training Desktop Apps Labeling Automation Hyperparameter Tuning Enterprise Scale Systems Import Reference Models Network Visualization Embedded Devices and Hardware

43 Automated Object Detection

44 Labeling Data Image Labeler App Object Detection Pixel Labeling Ground-truth Labeler App Videos for automated driving applications D Point Cloud Labeling with Semantic Segmentation Labeling Big Images

45 One Step Left Deployment! Access Data Preprocess Select Network Train Deploy Image Acquisition Image Processing Neural Network Parallel Computing GPU Coder Computer Vision System

46 GPU Coder Automatically generates CUDA Code from MATLAB Code can be used on NVIDIA GPUs

47

48 How fast is GPU Coder? Vision Algorithms compared to C on CPU Fog removal x speedup Frangi filter x speedup Distance transform x speedup Ray tracing x speedup SURF feature extraction x speedup

49 GPU Coder Demo Deploying our deep network on a GPU Open: GenerateGPUCode.mlx in folder -GPUCoder

50 Takeaways GPU Coder MATLAB supports entire deep learning workflow Generate code for various targets from MATLAB code GPU Coder+TensorRT fastest for series networks GPU Coder very fast for DAG networks

51 Deep Learning OnRamp Self-paced FREE course Hands-on experience Everything done in the browser

52 Resources Web Documentation Community File Exchange/GitHub Deep Learning OnRamp

53 POP QUIZ Results will be reported to your manager

54 What is the difference between Machine Learning and Deep Learning? A. Deep learning is machine learning done really far underground. B. I don t know, I didn t pay attention, I actually don t even work here, I just show up to these things. C. Machine learning requires manual feature extraction while deep learning automatically extracts features making it end-to-end learning

55 What is the difference between Machine Learning and Deep Learning? A. Deep learning is machine learning done really far underground. B. I don t know, I didn t pay attention, I actually don t even work here, I just show up to these things. C. Machine learning requires manual feature extraction while deep learning automatically extracts features making it end-to-end learning

56 Which of the following is not an application of deep learning? A. Image classification B. Speech recognition C. Automated driving D. Filtering applications like rain removal E. Recognizing people s faces on your phone s photo app F. Building a hotdog/not-hotdog classifier G. None of the above

57 Which of the following is not an application of deep learning? A. Image classification B. Speech recognition C. Automated driving D. Filtering applications like rain removal E. Recognizing people s faces on your phone s photo app F. Building a hotdog/not-hotdog classifier G. None of the above

58 Which of the following is NOT a layer in deep networks? A. Fully Connected Layer B. Softmax Layer C. Classification Layer D. Convolution Layer E. ReLu Layer F. MaxPooling Layer G. Banana Layer (classifies all objects as Banana)

59 Which of the following is NOT a layer in deep networks? A. Fully Connected Layer B. Softmax Layer C. Classification Layer D. Convolution Layer E. ReLu Layer F. MaxPooling Layer G. Banana Layer (classifies all objects as Banana)

60 What does the Fully Connected Layer do? A. Calculates a score for each category B. Plays a full game of Connect Four C. Saves you % or more on car insurance

61 What does the Fully Connected Layer do? A. Calculates a score for each category B. Ensures your layered sandwiches stay Fully Connected C. Saves you % or more on car insurance

62 How do we perform transfer learning? A. Change every other layer of our network to a softmax layer B. Transfer all data from the CPU to the GPU C. Load in a pre-trained network, modify the last few layers, and train it on our data.

63 How do we perform transfer learning? A. Change every other layer of our network to a softmax layer B. Transfer all data from the CPU to the GPU C. Load in a pre-trained network, modify the last few layers, and train it on our data.

64 What are three hyperparameters that have a major impact on training time and accuracy? A. Network Architecture B. Mini Batch Size C. Learning Rate D. Flux Capacitor

65 What are three hyperparameters that have a major impact on training time and accuracy? A. Network Architecture B. Mini Batch Size C. Learning Rate D. Flux Capacitor

66 What is loss? A. The opposite of a win B. The state or feeling of grief when deprived of someone or something of value C. A measurement of error between predicted labels and actual labels. Loss has an inverse relationship with score, and our goal is to minimize loss. D. All of the above

67 What is loss? A. The opposite of a win B. The state or feeling of grief when deprived of someone or something of value C. A measurement of error between predicted labels and actual labels. Loss has an inverse relationship with score, and our goal is to minimize loss. D. All of the above

68 Which of the following statements is false? A. MATLAB makes it easy to import pre-trained models through add-ons and model importers B. MATLAB supports the entire deep learning workflow including labeling, training, and deployment C. MATLAB has visual training plots that allow you to see accuracy and loss during training D. We do a great job of subtly marketing MATLAB s deep learning capabilities

69 Which of the following statements is false? A. MATLAB makes it easy to import pre-trained models through add-ons and model importers B. MATLAB supports the entire deep learning workflow including labeling, training, and deployment C. MATLAB has visual training plots that allow you to see accuracy and loss during training D. We do a great job of subtly marketing MATLAB s deep learning capabilities

70 Free Seminar: ADAS and Automated Driving Development Using MATLAB and Simulink

71 Questions?

72 Convolution Layer Core building block of a CNN Convolve the filters sliding them across the input, computing the dot product dot W sum dot W Intuition: learn filters that activate when they see some specific feature

73 Rectified Linear Unit (ReLU) Layer Frequently used in combination with Convolution layers Do not add complexity to the network Most popular choice: f x = max, x, activation is thresholded at

74 Pooling Layer Perform a downsampling operation across the spatial dimensions Goal: progressively decrease the size of the layers Max pooling and average pooling methods Popular choice: Max pooling with x filters, Stride = Max pooling Average pooling

75 Convolution

76 Convolution

77 - - Convolution

78 Convolution

79 Convolution

80 Convolution

81 Activation ReLU

82 Activation ReLU

83 Activation ReLU

84 Activation ReLU

85 Pooling

86 Pooling

87 Pooling

88 Pooling

89 Pooling

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

More information

A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention

A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention Damien Teney 1, Peter Anderson 2*, David Golub 4*, Po-Sen Huang 3, Lei Zhang 3, Xiaodong He 3, Anton van den Hengel 1 1

More information

Semantic Segmentation with Histological Image Data: Cancer Cell vs. Stroma

Semantic Segmentation with Histological Image Data: Cancer Cell vs. Stroma Semantic Segmentation with Histological Image Data: Cancer Cell vs. Stroma Adam Abdulhamid Stanford University 450 Serra Mall, Stanford, CA 94305 adama94@cs.stanford.edu Abstract With the introduction

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Deep search. Enhancing a search bar using machine learning. Ilgün Ilgün & Cedric Reichenbach

Deep search. Enhancing a search bar using machine learning. Ilgün Ilgün & Cedric Reichenbach #BaselOne7 Deep search Enhancing a search bar using machine learning Ilgün Ilgün & Cedric Reichenbach We are not researchers Outline I. Periscope: A search tool II. Goals III. Deep learning IV. Applying

More information

Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

More information

Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski

Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski Problem Statement and Background Given a collection of 8th grade science questions, possible answer

More information

arxiv: v1 [cs.cv] 10 May 2017

arxiv: v1 [cs.cv] 10 May 2017 Inferring and Executing Programs for Visual Reasoning Justin Johnson 1 Bharath Hariharan 2 Laurens van der Maaten 2 Judy Hoffman 1 Li Fei-Fei 1 C. Lawrence Zitnick 2 Ross Girshick 2 1 Stanford University

More information

HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION

HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION Atul Laxman Katole 1, Krishna Prasad Yellapragada 1, Amish Kumar Bedi 1, Sehaj Singh Kalra 1 and Mynepalli Siva Chaitanya 1 1 Samsung

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

arxiv: v1 [cs.lg] 15 Jun 2015

arxiv: v1 [cs.lg] 15 Jun 2015 Dual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy arxiv:1506.04477v1 [cs.lg] 15 Jun 2015 Sang-Woo Lee Min-Oh Heo School of Computer Science and

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

Using Deep Convolutional Neural Networks in Monte Carlo Tree Search

Using Deep Convolutional Neural Networks in Monte Carlo Tree Search Using Deep Convolutional Neural Networks in Monte Carlo Tree Search Tobias Graf (B) and Marco Platzner University of Paderborn, Paderborn, Germany tobiasg@mail.upb.de, platzner@upb.de Abstract. Deep Convolutional

More information

Forget catastrophic forgetting: AI that learns after deployment

Forget catastrophic forgetting: AI that learns after deployment Forget catastrophic forgetting: AI that learns after deployment Anatoly Gorshechnikov CTO, Neurala 1 Neurala at a glance Programming neural networks on GPUs since circa 2 B.C. Founded in 2006 expecting

More information

A Compact DNN: Approaching GoogLeNet-Level Accuracy of Classification and Domain Adaptation

A Compact DNN: Approaching GoogLeNet-Level Accuracy of Classification and Domain Adaptation A Compact DNN: Approaching GoogLeNet-Level Accuracy of Classification and Domain Adaptation Chunpeng Wu 1, Wei Wen 1, Tariq Afzal 2, Yongmei Zhang 2, Yiran Chen 3, and Hai (Helen) Li 3 1 Electrical and

More information

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

More information

FUZZY EXPERT. Dr. Kasim M. Al-Aubidy. Philadelphia University. Computer Eng. Dept February 2002 University of Damascus-Syria

FUZZY EXPERT. Dr. Kasim M. Al-Aubidy. Philadelphia University. Computer Eng. Dept February 2002 University of Damascus-Syria FUZZY EXPERT SYSTEMS 16-18 18 February 2002 University of Damascus-Syria Dr. Kasim M. Al-Aubidy Computer Eng. Dept. Philadelphia University What is Expert Systems? ES are computer programs that emulate

More information

Human Emotion Recognition From Speech

Human Emotion Recognition From Speech RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

More information

THE enormous growth of unstructured data, including

THE enormous growth of unstructured data, including INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2014, VOL. 60, NO. 4, PP. 321 326 Manuscript received September 1, 2014; revised December 2014. DOI: 10.2478/eletel-2014-0042 Deep Image Features in

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

Circuit Simulators: A Revolutionary E-Learning Platform

Circuit Simulators: A Revolutionary E-Learning Platform Circuit Simulators: A Revolutionary E-Learning Platform Mahi Itagi Padre Conceicao College of Engineering, Verna, Goa, India. itagimahi@gmail.com Akhil Deshpande Gogte Institute of Technology, Udyambag,

More information

OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

More information

Lip Reading in Profile

Lip Reading in Profile CHUNG AND ZISSERMAN: BMVC AUTHOR GUIDELINES 1 Lip Reading in Profile Joon Son Chung http://wwwrobotsoxacuk/~joon Andrew Zisserman http://wwwrobotsoxacuk/~az Visual Geometry Group Department of Engineering

More information

Notetaking Directions

Notetaking Directions Porter Notetaking Directions 1 Notetaking Directions Simplified Cornell-Bullet System Research indicates that hand writing notes is more beneficial to students learning than typing notes, unless there

More information

A Review: Speech Recognition with Deep Learning Methods

A Review: Speech Recognition with Deep Learning Methods Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.1017

More information

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing a Moving Target How Do We Test Machine Learning Systems? Peter Varhol, Technology

More information

Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

More information

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Read Online and Download Ebook ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Click link bellow and free register to download

More information

arxiv: v4 [cs.cl] 28 Mar 2016

arxiv: v4 [cs.cl] 28 Mar 2016 LSTM-BASED DEEP LEARNING MODELS FOR NON- FACTOID ANSWER SELECTION Ming Tan, Cicero dos Santos, Bing Xiang & Bowen Zhou IBM Watson Core Technologies Yorktown Heights, NY, USA {mingtan,cicerons,bingxia,zhou}@us.ibm.com

More information

Taxonomy-Regularized Semantic Deep Convolutional Neural Networks

Taxonomy-Regularized Semantic Deep Convolutional Neural Networks Taxonomy-Regularized Semantic Deep Convolutional Neural Networks Wonjoon Goo 1, Juyong Kim 1, Gunhee Kim 1, Sung Ju Hwang 2 1 Computer Science and Engineering, Seoul National University, Seoul, Korea 2

More information

Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

More information

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

More information

arxiv: v2 [cs.ro] 3 Mar 2017

arxiv: v2 [cs.ro] 3 Mar 2017 Learning Feedback Terms for Reactive Planning and Control Akshara Rai 2,3,, Giovanni Sutanto 1,2,, Stefan Schaal 1,2 and Franziska Meier 1,2 arxiv:1610.03557v2 [cs.ro] 3 Mar 2017 Abstract With the advancement

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models

Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models Navdeep Jaitly 1, Vincent Vanhoucke 2, Geoffrey Hinton 1,2 1 University of Toronto 2 Google Inc. ndjaitly@cs.toronto.edu,

More information

Modeling user preferences and norms in context-aware systems

Modeling user preferences and norms in context-aware systems Modeling user preferences and norms in context-aware systems Jonas Nilsson, Cecilia Lindmark Jonas Nilsson, Cecilia Lindmark VT 2016 Bachelor's thesis for Computer Science, 15 hp Supervisor: Juan Carlos

More information

Cultivating DNN Diversity for Large Scale Video Labelling

Cultivating DNN Diversity for Large Scale Video Labelling Cultivating DNN Diversity for Large Scale Video Labelling Mikel Bober-Irizar mikel@mxbi.net Sameed Husain sameed.husain@surrey.ac.uk Miroslaw Bober m.bober@surrey.ac.uk Eng-Jon Ong e.ong@surrey.ac.uk Abstract

More information

Calibration of Confidence Measures in Speech Recognition

Calibration of Confidence Measures in Speech Recognition Submitted to IEEE Trans on Audio, Speech, and Language, July 2010 1 Calibration of Confidence Measures in Speech Recognition Dong Yu, Senior Member, IEEE, Jinyu Li, Member, IEEE, Li Deng, Fellow, IEEE

More information

Android App Development for Beginners

Android App Development for Beginners Description Android App Development for Beginners DEVELOP ANDROID APPLICATIONS Learning basics skills and all you need to know to make successful Android Apps. This course is designed for students who

More information

arxiv: v1 [cs.lg] 7 Apr 2015

arxiv: v1 [cs.lg] 7 Apr 2015 Transferring Knowledge from a RNN to a DNN William Chan 1, Nan Rosemary Ke 1, Ian Lane 1,2 Carnegie Mellon University 1 Electrical and Computer Engineering, 2 Language Technologies Institute Equal contribution

More information

TRANSFER LEARNING OF WEAKLY LABELLED AUDIO. Aleksandr Diment, Tuomas Virtanen

TRANSFER LEARNING OF WEAKLY LABELLED AUDIO. Aleksandr Diment, Tuomas Virtanen TRANSFER LEARNING OF WEAKLY LABELLED AUDIO Aleksandr Diment, Tuomas Virtanen Tampere University of Technology Laboratory of Signal Processing Korkeakoulunkatu 1, 33720, Tampere, Finland firstname.lastname@tut.fi

More information

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17.

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17. Semi-supervised methods of text processing, and an application to medical concept extraction Yacine Jernite Text-as-Data series September 17. 2015 What do we want from text? 1. Extract information 2. Link

More information

Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

More information

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

GRAPHIC DESIGN TECHNOLOGY Associate in Applied Science: 91 Credit Hours

GRAPHIC DESIGN TECHNOLOGY Associate in Applied Science: 91 Credit Hours GRAPHIC DESIGN TECHNOLOGY Associate in Applied Science: 91 Credit Hours Prior Learning Assessment Opportunities Course GRD 1133 Basic Drawing GRD 1143 Basic Design MMT 1113 Introduction to 3D MMT 2423

More information

Multisensor Data Fusion: From Algorithms And Architectural Design To Applications (Devices, Circuits, And Systems)

Multisensor Data Fusion: From Algorithms And Architectural Design To Applications (Devices, Circuits, And Systems) Multisensor Data Fusion: From Algorithms And Architectural Design To Applications (Devices, Circuits, And Systems) If searching for the ebook Multisensor Data Fusion: From Algorithms and Architectural

More information

arxiv:submit/ [cs.cv] 2 Aug 2017

arxiv:submit/ [cs.cv] 2 Aug 2017 Associative Domain Adaptation Philip Haeusser 1,2 haeusser@in.tum.de Thomas Frerix 1 Alexander Mordvintsev 2 thomas.frerix@tum.de moralex@google.com 1 Dept. of Informatics, TU Munich 2 Google, Inc. Daniel

More information

Dual-Memory Deep Learning Architectures for Lifelong Learning of Everyday Human Behaviors

Dual-Memory Deep Learning Architectures for Lifelong Learning of Everyday Human Behaviors Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-6) Dual-Memory Deep Learning Architectures for Lifelong Learning of Everyday Human Behaviors Sang-Woo Lee,

More information

A study of speaker adaptation for DNN-based speech synthesis

A study of speaker adaptation for DNN-based speech synthesis A study of speaker adaptation for DNN-based speech synthesis Zhizheng Wu, Pawel Swietojanski, Christophe Veaux, Steve Renals, Simon King The Centre for Speech Technology Research (CSTR) University of Edinburgh,

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

Longest Common Subsequence: A Method for Automatic Evaluation of Handwritten Essays

Longest Common Subsequence: A Method for Automatic Evaluation of Handwritten Essays IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 6, Ver. IV (Nov Dec. 2015), PP 01-07 www.iosrjournals.org Longest Common Subsequence: A Method for

More information

arxiv: v2 [cs.cv] 30 Mar 2017

arxiv: v2 [cs.cv] 30 Mar 2017 Domain Adaptation for Visual Applications: A Comprehensive Survey Gabriela Csurka arxiv:1702.05374v2 [cs.cv] 30 Mar 2017 Abstract The aim of this paper 1 is to give an overview of domain adaptation and

More information

A Coding System for Dynamic Topic Analysis: A Computer-Mediated Discourse Analysis Technique

A Coding System for Dynamic Topic Analysis: A Computer-Mediated Discourse Analysis Technique A Coding System for Dynamic Topic Analysis: A Computer-Mediated Discourse Analysis Technique Hiromi Ishizaki 1, Susan C. Herring 2, Yasuhiro Takishima 1 1 KDDI R&D Laboratories, Inc. 2 Indiana University

More information

Offline Writer Identification Using Convolutional Neural Network Activation Features

Offline Writer Identification Using Convolutional Neural Network Activation Features Pattern Recognition Lab Department Informatik Universität Erlangen-Nürnberg Prof. Dr.-Ing. habil. Andreas Maier Telefon: +49 9131 85 27775 Fax: +49 9131 303811 info@i5.cs.fau.de www5.cs.fau.de Offline

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Software Maintenance

Software Maintenance 1 What is Software Maintenance? Software Maintenance is a very broad activity that includes error corrections, enhancements of capabilities, deletion of obsolete capabilities, and optimization. 2 Categories

More information

Enduring Understandings: Students will understand that

Enduring Understandings: Students will understand that ART Pop Art and Technology: Stage 1 Desired Results Established Goals TRANSFER GOAL Students will: - create a value scale using at least 4 values of grey -explain characteristics of the Pop art movement

More information

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

More information

INPE São José dos Campos

INPE São José dos Campos INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

More information

Connect Communicate Collaborate. Transform your organisation with Promethean s interactive collaboration solutions

Connect Communicate Collaborate. Transform your organisation with Promethean s interactive collaboration solutions Connect Communicate Collaborate Transform your organisation with Promethean s interactive collaboration solutions Promethean your trusted partner in interactive collaboration solutions Promethean is a

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Twitter Sentiment Classification on Sanders Data using Hybrid Approach

Twitter Sentiment Classification on Sanders Data using Hybrid Approach IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

More information

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering Lecture Details Instructor Course Objectives Tuesday and Thursday, 4:00 pm to 5:15 pm Information Technology and Engineering

More information

On the Combined Behavior of Autonomous Resource Management Agents

On the Combined Behavior of Autonomous Resource Management Agents On the Combined Behavior of Autonomous Resource Management Agents Siri Fagernes 1 and Alva L. Couch 2 1 Faculty of Engineering Oslo University College Oslo, Norway siri.fagernes@iu.hio.no 2 Computer Science

More information

AGENDA LEARNING THEORIES LEARNING THEORIES. Advanced Learning Theories 2/22/2016

AGENDA LEARNING THEORIES LEARNING THEORIES. Advanced Learning Theories 2/22/2016 AGENDA Advanced Learning Theories Alejandra J. Magana, Ph.D. admagana@purdue.edu Introduction to Learning Theories Role of Learning Theories and Frameworks Learning Design Research Design Dual Coding Theory

More information

A Deep Bag-of-Features Model for Music Auto-Tagging

A Deep Bag-of-Features Model for Music Auto-Tagging 1 A Deep Bag-of-Features Model for Music Auto-Tagging Juhan Nam, Member, IEEE, Jorge Herrera, and Kyogu Lee, Senior Member, IEEE latter is often referred to as music annotation and retrieval, or simply

More information

arxiv: v2 [cs.ir] 22 Aug 2016

arxiv: v2 [cs.ir] 22 Aug 2016 Exploring Deep Space: Learning Personalized Ranking in a Semantic Space arxiv:1608.00276v2 [cs.ir] 22 Aug 2016 ABSTRACT Jeroen B. P. Vuurens The Hague University of Applied Science Delft University of

More information

Knowledge Transfer in Deep Convolutional Neural Nets

Knowledge Transfer in Deep Convolutional Neural Nets Knowledge Transfer in Deep Convolutional Neural Nets Steven Gutstein, Olac Fuentes and Eric Freudenthal Computer Science Department University of Texas at El Paso El Paso, Texas, 79968, U.S.A. Abstract

More information

Model Ensemble for Click Prediction in Bing Search Ads

Model Ensemble for Click Prediction in Bing Search Ads Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Microsoft Bing xiaoling@microsoft.com Hucheng Zhou Microsoft Research huzho@microsoft.com Weiwei Deng Microsoft Bing dedeng@microsoft.com

More information

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan Gong, Li Deng Department of Electrical and Computer Engineering,

More information

SORT: Second-Order Response Transform for Visual Recognition

SORT: Second-Order Response Transform for Visual Recognition SORT: Second-Order Response Transform for Visual Recognition Yan Wang 1, Lingxi Xie 2( ), Chenxi Liu 2, Siyuan Qiao 2 Ya Zhang 1( ), Wenjun Zhang 1, Qi Tian 3, Alan Yuille 2 1 Cooperative Medianet Innovation

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037 Marek WIŚNIEWSKI *, Wiesława KUNISZYK-JÓŹKOWIAK *, Elżbieta SMOŁKA *, Waldemar SUSZYŃSKI * HMM, recognition, speech, disorders

More information

Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling

Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Notebook for PAN at CLEF 2013 Andrés Alfonso Caurcel Díaz 1 and José María Gómez Hidalgo 2 1 Universidad

More information

Control Tutorials for MATLAB and Simulink

Control Tutorials for MATLAB and Simulink Control Tutorials for MATLAB and Simulink Last updated: 07/24/2014 Author Information Prof. Bill Messner Carnegie Mellon University Prof. Dawn Tilbury University of Michigan Asst. Prof. Rick Hill, PhD

More information

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration INTERSPEECH 2013 Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration Yan Huang, Dong Yu, Yifan Gong, and Chaojun Liu Microsoft Corporation, One

More information

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

More information

The University of Amsterdam s Concept Detection System at ImageCLEF 2011

The University of Amsterdam s Concept Detection System at ImageCLEF 2011 The University of Amsterdam s Concept Detection System at ImageCLEF 2011 Koen E. A. van de Sande and Cees G. M. Snoek Intelligent Systems Lab Amsterdam, University of Amsterdam Software available from:

More information

Create Quiz Questions

Create Quiz Questions You can create quiz questions within Moodle. Questions are created from the Question bank screen. You will also be able to categorize questions and add them to the quiz body. You can crate multiple-choice,

More information

Intel-powered Classmate PC. SMART Response* Training Foils. Version 2.0

Intel-powered Classmate PC. SMART Response* Training Foils. Version 2.0 Intel-powered Classmate PC Training Foils Version 2.0 1 Legal Information INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

More information

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval Yelong Shen Microsoft Research Redmond, WA, USA yeshen@microsoft.com Xiaodong He Jianfeng Gao Li Deng Microsoft Research

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT PRACTICAL APPLICATIONS OF RANDOM SAMPLING IN ediscovery By Matthew Verga, J.D. INTRODUCTION Anyone who spends ample time working

More information

Computer Software Evaluation Form

Computer Software Evaluation Form Computer Software Evaluation Form Title: ereader Pro Evaluator s Name: Bradley A. Lavite Date: 25 Oct 2005 Subject Area: Various Grade Level: 6 th to 12th 1. Program Requirements (Memory, Operating System,

More information

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Devendra Singh Chaplot, Eunhee Rhim, and Jihie Kim Samsung Electronics Co., Ltd. Seoul, South Korea {dev.chaplot,eunhee.rhim,jihie.kim}@samsung.com

More information

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

More information

EVERYTHING DiSC WORKPLACE LEADER S GUIDE

EVERYTHING DiSC WORKPLACE LEADER S GUIDE EVERYTHING DiSC WORKPLACE LEADER S GUIDE Module 1 Discovering Your DiSC Style Module 2 Understanding Other Styles Module 3 Building More Effective Relationships MODULE OVERVIEW Length: 90 minutes Activities:

More information

Lip reading: Japanese vowel recognition by tracking temporal changes of lip shape

Lip reading: Japanese vowel recognition by tracking temporal changes of lip shape Lip reading: Japanese vowel recognition by tracking temporal changes of lip shape Koshi Odagiri 1, and Yoichi Muraoka 1 1 Graduate School of Fundamental/Computer Science and Engineering, Waseda University,

More information

Exposé for a Master s Thesis

Exposé for a Master s Thesis Exposé for a Master s Thesis Stefan Selent January 21, 2017 Working Title: TF Relation Mining: An Active Learning Approach Introduction The amount of scientific literature is ever increasing. Especially

More information

Sample Problems for MATH 5001, University of Georgia

Sample Problems for MATH 5001, University of Georgia Sample Problems for MATH 5001, University of Georgia 1 Give three different decimals that the bundled toothpicks in Figure 1 could represent In each case, explain why the bundled toothpicks can represent

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Evolutive Neural Net Fuzzy Filtering: Basic Description

Evolutive Neural Net Fuzzy Filtering: Basic Description Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

More information

Custom Program Title. Leader s Guide. Understanding Other Styles. Discovering Your DiSC Style. Building More Effective Relationships

Custom Program Title. Leader s Guide. Understanding Other Styles. Discovering Your DiSC Style. Building More Effective Relationships Custom Program Title Leader s Guide Module 1 Discovering Your DiSC Style Module 2 Understanding Other Styles Module 3 Building More Effective Relationships by Inscape Publishing MODULE OVERVIEW Length:

More information

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand Texas Essential Knowledge and Skills (TEKS): (2.1) Number, operation, and quantitative reasoning. The student

More information

Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments

Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments Vijayshri Ramkrishna Ingale PG Student, Department of Computer Engineering JSPM s Imperial College of Engineering &

More information

Pre-AP Geometry Course Syllabus Page 1

Pre-AP Geometry Course Syllabus Page 1 Pre-AP Geometry Course Syllabus 2015-2016 Welcome to my Pre-AP Geometry class. I hope you find this course to be a positive experience and I am certain that you will learn a great deal during the next

More information