ECE271A Statistical Learning I


 Hector Pope
 1 years ago
 Views:
Transcription
1 ECE271A Statistical Learning I Nuno Vasconcelos ECE Department, UCSD
2 The course the course is an introductory level course in statistical learning by introductory I mean that you will not need any previous exposure to the field, not that it is basic we will cover the foundations of Bayesian or generative learning 271B is a followup course on discriminant learning, in alternating years more on generative vs discriminant later 2
3 Logistics Exams: 1 midterm  35% 1 final 45% (covers everything) Homework (20%): one problem set every week. will include a small computational problem. By small, I mean in terms of concepts, thinking, etc. some computational problems will require a fair amount of computer power, e.g. a few hours on a lowend PC. be sure to start early will count 20%, but almost impossible without it. will give you the handson experience needed to be able to claim that you really know learning! 3
4 Homework policies homework is individual OK to work on problems with someone else but you have to: write your own solution write down the names of who you collaborated with homework is due one week after it is issued. 4
5 Cheetah statistical learning only makes sense when you try it on data we will test what we learn on a image processing problem given the cheetah image, can we teach a computer to segment it into object and foreground? the question will be answered with different techniques, typically one problem per week a total of 5 computer problems try to keep an eye on the big picture, e.g. did this improve over what we had done before? 5
6 Resources Course web page: all handouts, problem sets, code will be available there TA: TBA, Me: Nuno Vasconcelos, EBU Office hours: TA: TBA mine: Fridays, 9:3010:30AM for homework talk to TA first, everything else see me My assistant: Travis Spackman outside my office, may sometimes be involved in administrative issues 6
7 Texts required: Pattern Classification, Duda, Hart, and Stork, John Willey and Sons, 2001 will follow closely, handouts where needed various other good, but optional, texts: Pattern Recognition and Machine Learning, Bishop, 2006 Elements of Statistical Learning, Hastie, Tibshirani, Fredman, 2001 Bayesian Data Analysis, Gelman, Rubin, Stern, A Probabilistic Theory of Pattern Recognition, Devroye, Gyorfi, Lugosi, 1998 (more than what we need) stuff you must know really well: Linear Algebra, Gilbert Strang, 1988 Fundamentals of Applied Probability, Drake, McGrawHill,
8 The course why statistical learning? there are many processes in the world that are ruled by deterministic equations e.g. f = ma; linear systems and convolution, Fourier, etc, various chemical laws there may be some noise, error, variability, but we can leave with those we don t need statistical learning learning is needed when there is a need for predictions about variables in the world, Y that depend on factors (other variables) X in a way that is impossible or too difficult to derive an equation for. 8
9 Examples datamining view: large amounts of data that does not follow deterministic rules e.g. given an history of thousands of customer records and some questions that I can ask you, how do I predict that you will pay on time? impossible to derive a theorem for this, must be learned while many associate learning with datamining, it is by no means the only or more important application signal processing view: signals combine in ways that depend on hidden structure (e.g. speech waveforms depend on language, grammar, etc.) signals are usually subject to significant amounts of noise (which sometimes means things we do not know how to model ) 9
10 Examples (cont d) signal processing view: e.g. the cocktail party problem, although there are all these people talking, I can figure everything out. how do I build a chip to separate the speakers? model the hidden dependence as a linear combination of independent sources noise many other examples in the areas of wireless, communications, signal restoration, etc. 10
11 Examples (cont d) perception/ai view: it is a complex world, I cannot model everything in detail rely on probabilistic models that explicitly account for the variability use the laws of probability to make inferences, e.g. what is P( burglar alarm, no earthquake) is high P( burglar alarm, earthquake) is low a whole field that studies perception as Bayesian inference perception really just confirms what you already know priors + observations = robust inference 11
12 Examples (cont d) communications view: detection problems: X channel Y I see Y, and know something about the statistics of the channel. What was X? this is the canonic detection problem that appears all over learning. for example, face detection in computer vision: I see pixel array Y. Is it a face? 12
13 Statistical learning goal: given a function x f (.) y = f (x ) and a collection of example datapoints, learn what the function f(.) is. this is called training. two major types of learning: unsupervised: only X is known, usually referred to as clustering; supervised: both are known during training, only X known at test time, usually referred to as classification or regression. 13
14 Supervised learning X can be anything, but the type of Y dictates the type of supervised learning problem Y in {0,1} referred to as detection Y in {0,..., M1} referred to as classification Y real referred to as regression theory is quite similar, algorithms similar most of the time we will emphasize classification, but will talk about regression when particularly insightful 14
15 Example classifying fish: fish roll down a conveyer belt camera takes a picture goal: is this a salmon or a seabass? Q: what is X? What features do I use to distinguish between the two fish? this is somewhat of an artform. Frequently, the best is to ask experts. e.g. obvious! use length and scale width! 15
16 Classification/detection two major types of classifiers: discriminant: directly recover the decision boundary that best separates the classes; generative: fit a probability model to each class and then analyze the models to find the border. a lot more on this later! focus will be on generative learning. discriminant will be covered by 271B. 16
17 Caution how do we know learning worked? we care about generalization, i.e. accuracy outside training set models that are too powerful can lead to overfitting: e.g. in regression I can always fit exactly n pts with polynomial of order n1. is this good? how likely is the error to be small outside the training set? similar problem for classification fundamental LAW: only test set results matter!!! 17
18 Generalization good generalization requires controlling the tradeoff between training and test error training error large, test error large training error smaller, test error smaller training error smallest, test error largest this tradeoff is known by many names in the generative classification world it is usually due to the biasvariance tradeoff of the class models will look at this in detail 18
19 Classmodeling each class is characterized by a probability density function (class conditional density) a model is adopted, e.g. a Gaussian training data used to estimate model parameters overall the process is referred to as density estimation the simplest example would be to use histograms 19
20 Density estimation there are, however, much better models usually, problem has two components: selecting a model estimating model parameters models: we will cover the whole gamut from the exponential family (e.g. Gaussian) to kernelbased density estimates including mixture models and nonparametric approaches (nearest neighbors, histograms, etc.) 20
21 Parameter estimation two main camps: maximum likelihood Bayesian estimates ML will devote most attention to the quality of estimates the bias variance/tradeoff a lot more emphasis on Bayes: subjective probability what is really a prior? mechanics: predictive distribution, MAP estimates, etc. priors: conjugate, noninformative, improper why is the exponential family special? 21
22 Decision rules given class models, Bayesian decision theory provides us with optimal rules for classification optimal here means minimum probability of error, for example we will study BDT in detail, establish connections to other decision principles (e.g. linear discriminants) show that Bayesian decisions are usually intuitive derive optimal rules for a range of classifiers 22
23 Reasons to take the course statistical learning tremendous amount of theory but things invariably go wrong too little data, noise, too many dimensions, training sets that do not reflect all possible variability, etc. good learning solutions require: knowledge of the domain (e.g. these are the features to use ) knowledge of the available techniques, their limitations, etc. (e.g. here a Gaussian is enough for AB&C, but there I need a mixture) in the absence of either of these you will fail! we will cover the basics, but will talk about quite advanced concepts. easier scenario in which to understand them 24
24 Reasons to take the course theory together with handson experience will cover all theory, every week 56 problems handson component: one computational problem per week this will center around cheetah segmentation allows evaluation of the benefits of more advance techniques as they are introduced forces you to deal with real, noisy, data exposes you to working on a new domain 25
25 26
26 Cheetah day last class, we will have Cheetah Day what: 5 teams each team will write a report on the 5 cheetah problems each team will give a presentation on one of the problems why: to make sure that we get the big picture out of all this work presenting is always good practice 27
27 Cheetah Day how much: 10% of the final grade (5% report, 5% presentation) what to talk about: report: comparative analysis of all solutions of the problem as if you were writing a conference paper presentation: will be on one single problem review what solution was what did this problem taught us about learning? what tricks did we learn solving it? how well did this solution do compared to others? will talk about this in due time 28
Pattern Classification and Clustering Spring 2006
Pattern Classification and Clustering Time: Spring 2006 Room: Instructor: Yingen Xiong Office: 621 McBryde Office Hours: Phone: 2314212 Email: yxiong@cs.vt.edu URL: http://www.cs.vt.edu/~yxiong/pcc/ Detailed
More informationProgramming Social Robots for Human Interaction. Lecture 4: Machine Learning and Pattern Recognition
Programming Social Robots for Human Interaction Lecture 4: Machine Learning and Pattern Recognition ZhengHua Tan Dept. of Electronic Systems, Aalborg Univ., Denmark zt@es.aau.dk, http://kom.aau.dk/~zt
More informationCSCI 5521: Pattern Recognition. Prof. Paul Schrater
CSCI 5521: Pattern Recognition Prof. Paul Schrater Business Check to make sure you received the test email. If not, you are not officially registered. Course web page: http://gandalf.psych.umn.edu/~schrater/schrater_lab/courses/pattre
More information36350: Data Mining. Fall Lectures: Monday, Wednesday and Friday, 10:30 11:20, Porter Hall 226B
36350: Data Mining Fall 2009 Instructor: Cosma Shalizi, Statistics Dept., Baker Hall 229C, cshalizi@stat.cmu.edu Teaching Assistant: Joseph Richards, jwrichar@stat.cmu.edu Lectures: Monday, Wednesday
More informationIntroduction to Machine Learning Reykjavík University Spring Instructor: Dan Lizotte
Introduction to Machine Learning Reykjavík University Spring 2007 Instructor: Dan Lizotte Logistics To contact Dan: dlizotte@cs.ualberta.ca http://www.cs.ualberta.ca/~dlizotte/teaching/ Books: Introduction
More informationCSC 411 MACHINE LEARNING and DATA MINING
CSC 411 MACHINE LEARNING and DATA MINING Lectures: Monday, Wednesday 121 (section 1), 34 (section 2) Lecture Room: MP 134 (section 1); Bahen 1200 (section 2) Instructor (section 1): Richard Zemel Instructor
More informationCS534 Machine Learning
CS534 Machine Learning Spring 2013 Lecture 1: Introduction to ML Course logistics Reading: The discipline of Machine learning by Tom Mitchell Course Information Instructor: Dr. Xiaoli Fern Kec 3073, xfern@eecs.oregonstate.edu
More informationIntroduction. Industrial AI Lab.
Introduction Industrial AI Lab. 2018  present: POSTECH Industrial AI Lab. Introduction 20132017: UNIST isystems Design Lab. 2010, Ph.D. from the University of Michigan, Ann Arbor S. M. Wu Manufacturing
More informationIntroduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University)
More informationMachine Learning for Computer Vision
Prof. Daniel Cremers Machine Learning for Computer PD Dr. Rudolph Triebel Lecturers PD Dr. Rudolph Triebel rudolph.triebel@in.tum.de Room number 02.09.059 (Fridays) Main lecture MSc. Ioannis John Chiotellis
More informationStatistical Learning Classification STAT 441/ 841, CM 764
Statistical Learning Classification STAT 441/ 841, CM 764 Ali Ghodsi Department of Statistics and Actuarial Science University of Waterloo aghodsib@uwaterloo.ca Two Paradigms Classical Statistics Infer
More informationMachine Learning for Computer Vision
Prof. Daniel Cremers Machine Learning for Computer PD Dr. Rudolph Triebel Lecturers PD Dr. Rudolph Triebel rudolph.triebel@in.tum.de Room number 02.09.058 (Fridays) Main lecture MSc. Ioannis John Chiotellis
More information10702: Statistical Machine Learning
10702: Statistical Machine Learning Syllabus, Spring 2010 http://www.cs.cmu.edu/~10702 Statistical Machine Learning is a second graduate level course in machine learning, assuming students have taken
More information10701: Intro to Machine Learning. Instructors: Pradeep Ravikumar, Manuela Veloso, Teaching Assistants:
10701: Intro to Machine Instructors: Pradeep Ravikumar, pradeepr@cs.cmu.edu Manuela Veloso, mmv@cs.cmu.edu Teaching Assistants: Shaojie Bai shaojieb@andrew.cmu.edu Adarsh Prasad adarshp@andrew.cmu.edu
More informationOverview COEN 296 Topics in Computer Engineering Introduction to Pattern Recognition and Data Mining Course Goals Syllabus
Overview COEN 296 Topics in Computer Engineering to Pattern Recognition and Data Mining Instructor: Dr. Giovanni Seni G.Seni@ieee.org Department of Computer Engineering Santa Clara University Course Goals
More informationMachine Learning for Computer Vision
Computer Group Prof. Daniel Cremers Machine Learning for Computer PD Dr. Rudolph Triebel Lecturers PD Dr. Rudolph Triebel rudolph.triebel@in.tum.de Room number 02.09.059 Main lecture MSc. Ioannis John
More informationMachine Learning and Applications in Finance
Machine Learning and Applications in Finance Christian Hesse 1,2,* 1 Autobahn Equity Europe, Global Markets Equity, Deutsche Bank AG, London, UK christiana.hesse@db.com 2 Department of Computer Science,
More informationStatistical Parameter Estimation
Statistical Parameter Estimation ECE 275AB Syllabus AY 20172018 Ken KreutzDelgado ECE Department, UC San Diego Ken KreutzDelgado (UC San Diego) ECE 275AB Syllabus Version 1.1c Fall 2016 1 / 9 Contact
More informationM. R. Ahmadzadeh Isfahan University of Technology. M. R. Ahmadzadeh Isfahan University of Technology
1 2 M. R. Ahmadzadeh Isfahan University of Technology Ahmadzadeh@cc.iut.ac.ir M. R. Ahmadzadeh Isfahan University of Technology Textbooks 3 Introduction to Machine Learning  Ethem Alpaydin Pattern Recognition
More informationLecture 1: Machine Learning Basics
1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3
More informationSession 1: Gesture Recognition & Machine Learning Fundamentals
IAP Gesture Recognition Workshop Session 1: Gesture Recognition & Machine Learning Fundamentals Nicholas Gillian Responsive Environments, MIT Media Lab Tuesday 8th January, 2013 My Research My Research
More informationL1: Course introduction
Introduction Course organization Grading policy Outline What is pattern recognition? Definitions from the literature Related fields and applications L1: Course introduction Components of a pattern recognition
More informationAn Introduction to Machine Learning
MindLAB Research Group  Universidad Nacional de Colombia Introducción a los Sistemas Inteligentes Outline 1 2 What s machine learning History Supervised learning Nonsupervised learning 3 Observation
More informationW4240 Data Mining. Frank Wood. September 6, 2010
W4240 Data Mining Frank Wood September 6, 2010 Introduction Data mining is the search for patterns in large collections of data Learning models Applying models to large quantities of data Pattern recognition
More informationUnsupervised Learning: Clustering
Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning
More informationINTRODUCTION TO MACHINE LEARNING SOME CONTENT COURTESY OF PROFESSOR ANDREW NG OF STANFORD UNIVERSITY
INTRODUCTION TO MACHINE LEARNING SOME CONTENT COURTESY OF PROFESSOR ANDREW NG OF STANFORD UNIVERSITY IQS2: Spring 2013 Machine Learning Definition 2 Arthur Samuel (1959). Machine Learning: Field of study
More informationA Review on Classification Techniques in Machine Learning
A Review on Classification Techniques in Machine Learning R. Vijaya Kumar Reddy 1, Dr. U. Ravi Babu 2 1 Research Scholar, Dept. of. CSE, Acharya Nagarjuna University, Guntur, (India) 2 Principal, DRK College
More informationGovernment of Russian Federation. Federal State Autonomous Educational Institution of High Professional Education
Government of Russian Federation Federal State Autonomous Educational Institution of High Professional Education National Research University Higher School of Economics Syllabus for the course Advanced
More informationCS545 Machine Learning
Machine learning and related fields CS545 Machine Learning Course Introduction Machine learning: the construction and study of systems that learn from data. Pattern recognition: the same field, different
More informationSTA 414/2104 Statistical Methods for Machine Learning and Data Mining
STA 414/2104 Statistical Methods for Machine Learning and Data Mining Radford M. Neal, University of Toronto, 2014 Week 1 What are Machine Learning and Data Mining? Typical Machine Learning and Data Mining
More informationCourse Guide Year GENERAL INFORMATION Course information Name. Machine Learning Code
Course Guide Year 20172018 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA GENERAL INFORMATION Course information Name Machine Learning Code DOIMIC515 Degree MIC, MII, MIT Year Semester Spring ECTS credits 6
More informationA Brief Introduction to Generative Models
Theoretical Neuroscience and Computer Vision A Brief Introduction to Generative Models FIAS, GoetheUniversität Frankfurt, Germany FIAS Summer School Frankfurt, August 2008 Contents Introduction Please
More informationMachine Learning L, T, P, J, C 2,0,2,4,4
Subject Code: Objective Expected Outcomes Machine Learning L, T, P, J, C 2,0,2,4,4 It introduces theoretical foundations, algorithms, methodologies, and applications of Machine Learning and also provide
More informationMachine Learning Lecture 1: Introduction
Welcome to CSCE 478/878! Please check off your name on the roster, or write your name if you're not listed Indicate if you wish to register or sit in Policy on sitins: You may sit in on the course without
More informationCPSC 340: Machine Learning and Data Mining. Course Review/Preview Fall 2015
CPSC 340: Machine Learning and Data Mining Course Review/Preview Fall 2015 Admin Assignment 6 due now. We will have office hours as usual next week. Final exam details: December 15: 8:3011 (WESB 100).
More informationCOMS 4771 Introduction to Machine Learning. Nakul Verma
COMS 4771 Introduction to Machine Learning Nakul Verma Machine learning: what? Study of making machines learn a concept without having to explicitly program it. Constructing algorithms that can: learn
More informationLecture 1: Introduc4on
CSC2515 Spring 2014 Introduc4on to Machine Learning Lecture 1: Introduc4on All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html
More informationCOLLEGE OF SCIENCE. School of Mathematical Sciences. NEW (or REVISED) COURSE: COSSTAT747 Principles of Statistical Data Mining.
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences NEW (or REVISED) COURSE: COSSTAT747 Principles of Statistical Data Mining 1.0 Course Designations
More informationTheodoridis, S. and K. Koutroumbas, Pattern recognition. 4th ed. 2009, San Diego, CA: Academic Press.
Pattern Recognition Winter 2013 Andrew Cohen acohen@coe.drexel.edu What is this course about? This course will study stateoftheart techniques for analyzing data. The goal is to extract meaningful information
More informationECE Pattern Recognition Syllabus Fall 2014
ECE 5258  Pattern Recognition Syllabus Fall 2014 Dr. Georgios C. Anagnostopoulos August 11, 2014 (ver. 1.0) 1. Contents 2 Course Description 2 2.1 Objectives & Outcomes...................................
More informationCSE 546 Machine Learning
CSE 546 Machine Learning Instructor: Luke Zettlemoyer TA: Lydia Chilton Slides adapted from Pedro Domingos and Carlos Guestrin Logistics Instructor: Luke Zettlemoyer Email: lsz@cs Office: CSE 658 Office
More informationMachine Learning: Summary
Machine Learning: Summary Greg Grudic CSCI4830 Machine Learning 1 What is Machine Learning? The goal of machine learning is to build computer systems that can adapt and learn from their experience. Tom
More informationService courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
More informationMaster of Science in ECE  Machine Learning & Data Science Focus
Master of Science in ECE  Machine Learning & Data Science Focus Core Coursework (16 units) ECE269: Linear Algebra ECE271A: Statistical Learning I ECE 225A: Probability and Statistics for Data Science
More informationMachine Learning with MATLAB Antti Löytynoja Application Engineer
Machine Learning with MATLAB Antti Löytynoja Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB MATLAB as an interactive
More informationCS340 Machine learning Lecture 1 Introduction
CS340 Machine learning Lecture 1 Introduction Administrivia Class web page (check regularly!): www.cs.ubc.ca/~murphyk/teaching/cs340fall07 TAs: Hoyt Koepke Erik Zawadzki hoytak@cs.ubc.ca epz@cs.ubc.ca
More informationCOMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.
COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551
More informationINTRODUCTION TO PATTERN RECOGNITION SYSTEM 1.1 Overview
CHAPTER 1 INTRODUCTION TO PATTERN RECOGNITION SYSTEM 1.1 Overview One of the most important capabilities of mankind is learning by experience, by our endeavors, by our faults. By the time we attain an
More informationMachine Learning Overview. Lars SchmidtThieme
Machine Learning 2 0. Overview Lars SchmidtThieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany 1 / 6 Outline 1. Lecture Overview
More informationStatistics and Machine Learning, Master s Programme
DNR LIU201702005 1(9) Statistics and Machine Learning, Master s Programme 120 credits Statistics and Machine Learning, Master s Programme F7MSL Valid from: 2018 Autumn semester Determined by Board of
More informationLinear Models Continued: Perceptron & Logistic Regression
Linear Models Continued: Perceptron & Logistic Regression CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Linear Models for Classification Feature function
More informationUnsupervised Learning
09s1: COMP9417 Machine Learning and Data Mining Unsupervised Learning June 3, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGrawHill, 1997 http://www2.cs.cmu.edu/~tom/mlbook.html
More informationDepartment of Biostatistics
The University of Kansas 1 Department of Biostatistics The mission of the Department of Biostatistics is to provide an infrastructure of biostatistical and informatics expertise to support and enhance
More informationECE 5424: Introduction to Machine Learning
ECE 5424: Introduction to Machine Learning Topics: Classification: Naïve Bayes Readings: Barber 10.110.3 Stefan Lee Virginia Tech Administrativia HW2 Due: Friday 09/28, 10/3, 11:55pm Implement linear
More informationIntroduction to Foundations of Graphical Models
Introduction to Foundations of Graphical Models David M. Blei Columbia University September 2, 2015 Probabilistic modeling is a mainstay of modern machine learning and statistics research, providing essential
More informationDisclaimer. Copyright. Machine Learning Mastery With Weka
i Disclaimer The information contained within this ebook is strictly for educational purposes. If you wish to apply ideas contained in this ebook, you are taking full responsibility for your actions. The
More informationEvaluation and Comparison of Performance of different Classifiers
Evaluation and Comparison of Performance of different Classifiers Bhavana Kumari 1, Vishal Shrivastava 2 ACE&IT, Jaipur Abstract: Many companies like insurance, credit card, bank, retail industry require
More informationMachine Learning. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395
Machine Learning Introduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1 / 15 Table of contents 1 What is machine learning?
More informationlearn from the accelerometer data? A close look into privacy Member: Devu Manikantan Shila
What can we learn from the accelerometer data? A close look into privacy Team Member: Devu Manikantan Shila Abstract: A handful of research efforts nowadays focus on gathering and analyzing the data from
More informationCOMP 551 Applied Machine Learning Lecture 11: Ensemble learning
COMP 551 Applied Machine Learning Lecture 11: Ensemble learning Instructor: Herke van Hoof (herke.vanhoof@mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp551
More informationCOMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.
COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise
More informationAppliancespecific power usage classification and disaggregation
Appliancespecific power usage classification and disaggregation Srinikaeth Thirugnana Sambandam, Jason Hu, EJ Baik Department of Energy Resources Engineering Department, Stanford Univesrity 367 Panama
More informationCSC 411: Lecture 01: Introduction
CSC 411: Lecture 01: Introduction Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 01Introduction 1 / 44 Today Administration details Why is
More informationDeep (Structured) Learning
Deep (Structured) Learning Yasmine Badr 06/23/2015 NanoCAD Lab UCLA What is Deep Learning? [1] A wide class of machine learning techniques and architectures Using many layers of nonlinear information
More informationE9 205 Machine Learning for Signal Processing
E9 205 Machine Learning for Signal Processing Introduction to Machine Learning of Sensory Signals 14082017 Instructor  Sriram Ganapathy (sriram@ee.iisc.ernet.in) Teaching Assistant  Aravind Illa (aravindece77@gmail.com).
More informationHierarchical Bayesian Methods for Reinforcement Learning
Hierarchical Bayesian Methods for Reinforcement Learning David Wingate wingated@mit.edu Joint work with Noah Goodman, Dan Roy, Leslie Kaelbling and Joshua Tenenbaum My Research: Agents Rich sensory data
More informationIntroduction to Machine Learning
Introduction to Machine Learning D. De Cao R. Basili Corso di Web Mining e Retrieval a.a. 20089 April 7, 2009 Outline Outline Introduction to Machine Learning Decision Tree Naive Bayes Knearest neighbor
More informationIntroduction to Machine Learning
Introduction to Machine Learning D. De Cao R. Basili Corso di Web Mining e Retrieval a.a. 20089 April 6, 2009 Outline Outline Introduction to Machine Learning Outline Outline Introduction to Machine Learning
More informationCS 510: Lecture 8. Deep Learning, Fairness, and Bias
CS 510: Lecture 8 Deep Learning, Fairness, and Bias Next Week All Presentations, all the time Upload your presentation before class if using slides Sign up for a timeslot google doc, if you haven t already
More informationECE521 Lecture1. Introduction
ECE521 Lecture1 Introduction Outline History of machine learning Types of machine learning problems What is machine learning? A scientific field is best defined by the central question it studies. The
More informationCS540 Machine learning Lecture 1 Introduction
CS540 Machine learning Lecture 1 Introduction Administrivia Overview Supervised learning Unsupervised learning Other kinds of learning Outline Administrivia Class web page www.cs.ubc.ca/~murphyk/teaching/cs540fall08
More information(Sub)Gradient Descent
(Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include
More informationBig Data Analytics Clustering and Classification
E6893 Big Data Analytics Lecture 4: Big Data Analytics Clustering and Classification ChingYung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science September 28th, 2017 1
More information Introduzione al Corso  (a.a )
Short Course on Machine Learning for Web Mining  Introduzione al Corso  (a.a. 20092010) Roberto Basili (University of Roma, Tor Vergata) 1 Overview MLxWM: Motivations and perspectives A temptative syllabus
More informationLecture 1. Introduction Bastian Leibe Visual Computing Institute RWTH Aachen University
Advanced Machine Learning Lecture 1 Introduction 20.10.2015 Bastian Leibe Visual Computing Institute RWTH Aachen University http://www.vision.rwthaachen.de/ leibe@vision.rwthaachen.de Organization Lecturer
More informationLecture 16 Speaker Recognition
Lecture 16 Speaker Recognition Information College, Shandong University @ Weihai Definition Method of recognizing a Person form his/her voice. Depends on Speaker Specific Characteristics To determine whether
More informationIntroduction to Machine Learning NPFL 054
Introduction to Machine Learning NPFL 054 http://ufal.mff.cuni.cz/course/npfl054 Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz Charles University, Faculty of Mathematics and
More informationA PROBABILISTIC MODEL FOR SPELLING CORRECTION. Lucian SASU 1
Bulletin of the Transilvania University of Braşov Vol 4(53), No. 22011 Series III: Mathematics, Informatics, Physics, 141146 A PROBABILISTIC MODEL FOR SPELLING CORRECTION Lucian SASU 1 Abstract Spelling
More informationLecture 7: Distributed Representations
Lecture 7: Distributed Representations Roger Grosse 1 Introduction We ll take a break from derivatives and optimization, and look at a particular example of a neural net that we can train using backprop:
More informationBioinformatics II Theoretical Bioinformatics and Machine Learning Part 1. Sepp Hochreiter
Bioinformatics II Theoretical Bioinformatics and Machine Learning Part 1 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Course 6 ECTS 4 SWS VO (class) 3 ECTS 2 SWS UE (exercise)
More information10701/15781 Machine Learning, Spring 2005: Homework 1
10701/15781 Machine Learning, Spring 2005: Homework 1 Due: Monday, February 6, beginning of the class 1 [15 Points] Probability and Regression [Stano] 1 1.1 [10 Points] The Matrix Strikes Back The Matrix
More informationIntroduction to Machine Learning
Introduction to Machine Learning Hamed Pirsiavash CMSC 678 http://www.csee.umbc.edu/~hpirsiav/courses/ml_fall17 The slides are closely adapted from Subhransu Maji s slides Course background What is the
More informationMACHINE LEARNING AND PATTERN RECOGNITION Spring 2004, Lecture 1: Introduction and Basic Concepts Yann LeCun
Y. LeCun: Machine Learning and Pattern Recognition p. 1/3 MACHINE LEARNING AND PATTERN RECOGNITION Spring 2004, Lecture 1: Introduction and Basic Concepts Yann LeCun The Courant Institute, New York University
More informationCSE 258 Lecture 3. Web Mining and Recommender Systems. Supervised learning Classification
CSE 258 Lecture 3 Web Mining and Recommender Systems Supervised learning Classification Last week Last week we started looking at supervised learning problems Last week We studied linear regression, in
More informationWelcome to CMPS 142 and 242: Machine Learning
Welcome to CMPS 142 and 242: Machine Learning Instructor: David Helmbold, dph@soe.ucsc.edu Office hours: Monday 1:302:30, Thursday 4:155:00 TA: Aaron Michelony, amichelo@soe.ucsc.edu Web page: www.soe.ucsc.edu/classes/cmps242/fall13/01
More information36217: Probability Theory and Random Processes Fall 1997 MWF 3:30 4:20 DH 2210 Course Policies and Syllabus
Vital Information 36217: Probability Theory and Random Processes Fall 1997 MWF 3:30 4:20 DH 2210 Course Policies and Syllabus Instructor: Pantelis Vlachos, Statistics 232K Baker Hall 2681883 vlachos@stat.cmu.edu
More informationCOMP150 DR Final Project Proposal
COMP150 DR Final Project Proposal Ari Brown and Julie Jiang October 26, 2017 Abstract The problem of sound classification has been studied in depth and has multiple applications related to identity discrimination,
More informationData Analysis for Business and Industry
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 240  ETSEIB  Barcelona School of Industrial Engineering 715  EIO  Department of Statistics and Operations Research BACHELOR'S
More informationCS4780/ Machine Learning
CS4780/5780  Machine Learning Fall 2012 Thorsten Joachims Cornell University Department of Computer Science Outline of Today Who we are? Prof: Thorsten Joachims TAs: Joshua Moore, Igor Labutov, Moontae
More informationL16: Speaker recognition
L16: Speaker recognition Introduction Measurement of speaker characteristics Construction of speaker models Decision and performance Applications [This lecture is based on Rosenberg et al., 2008, in Benesty
More informationELEC9723 Speech Processing
ELEC9723 Speech Processing COURSE INTRODUCTION Session 1, 2013 s Course Staff Course conveners: Dr. Vidhyasaharan Sethu, v.sethu@unsw.edu.au (EE304) Laboratory demonstrator: Nicholas Cummins, n.p.cummins@unsw.edu.au
More informationHAMLET JERRY ZHU UNIVERSITY OF WISCONSIN
HAMLET JERRY ZHU UNIVERSITY OF WISCONSIN Collaborators: Rui Castro, Michael Coen, Ricki Colman, Charles Kalish, Joseph Kemnitz, Robert Nowak, Ruichen Qian, Shelley Prudom, Timothy Rogers Somewhere, something
More informationBGS Training Requirement in Statistics
BGS Training Requirement in Statistics All BGS students are required to have an understanding of statistical methods and their application to biomedical research. Most students take BIOM611, Statistical
More informationEasyDSP: ProblemBased Learning in Digital Signal Processing
EasyDSP: ProblemBased Learning in Digital Signal Processing Kaveh Malakuti and Alexandra Branzan Albu Department of Electrical and Computer Engineering University of Victoria (BC) Canada malakuti@ece.uvic.ca,
More informationSanjoy Dasgupta Professor, Computer Science and Engineering FacultyAffiliate, Calit2
Sanjoy Dasgupta Professor, Computer Science and Engineering FacultyAffiliate, Calit2 Prior to joining the UCSD Jacobs School in 2002, Sanjoy Dasgupta was a senior member of the technical staff at AT&T
More informationCS 6140: Machine Learning Spring 2017
CS 6140: Machine Learning Spring 2017 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Time and Loca@on
More informationLecture 0: Machine Learning
Lecture 0: Machine Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech 2017 Fall Questions Course Logistics Why Machine Learning? What is a welldefined learning problem? What questions should we ask
More informationMachine Learning. Introduction. Marc Toussaint. Duy NguyenTuong. Summer University of Stuttgart. Bosch Center for Artificial Intelligence
Machine Learning Introduction Marc Toussaint University of Stuttgart Duy NguyenTuong Bosch Center for Artificial Intelligence Summer 2017 What is Machine Learning? 1) A long list of methods/algorithms
More informationMachine Learning. Professor Sridhar Mahadevan
Machine Learning Professor Sridhar Mahadevan mahadeva@cs.umass.edu Lecture 1 Home page:wwwedlab.cs.umass.edu/cs689 Quizzes, miniprojects: moodle.umass.edu Discussion forum:piazza.com CMPSCI 689 p. 1/35
More information