Corpora and Statistical Methods Lecture 11. Albert Gatt

Size: px
Start display at page:

Download "Corpora and Statistical Methods Lecture 11. Albert Gatt"

Transcription

1 Corpora and Statistical Methods Lecture 11 Albert Gatt

2 Part 2 Statistical parsing

3 Preliminary issues How parsers are evaluated

4 Evaluation The issue: what objective criterion are we trying to maximise? i.e. under what objective function can I say that my parser does well (and how well?) need a gold standard Possibilities: strict match of candidate parse against gold standard match of components of candidate parse against gold standard components

5 Evaluation A classic evaluation metric is the PARSEVAL one initiative to compare parsers on the same data not initially concerned with stochastic parsers evaluate parser output piece by piece Main components: compares gold standard tree to parser tree typically, gold standard is the tree in a treebank computes: precision recall crossing brackets

6 PARSEVAL: labeled recall #correct nodes in candidate parse # nodes in treebank parse Correct node = node in candidate parse which: has same node label originally omitted from PARSEVAL to avoid theoretical conflict spans the same words

7 PARSEVAL: labeled precision #correct nodes in candidate parse # nodes in candidate parse The proportion of correctly labelled and correctly spanning nodes in the candidate.

8 Combining Precision and Recall As usual, Precision and recall can be combined into a single F-measure: 1 F 1 1 (1 ) P R

9 PARSEVAL: crossed brackets number of brackets in the candidate parse which cross brackets in the treebank parse e.g. treebank has ((X Y) Z) and candidate has (X (Y Z)) Unlike precision/recall, this is an objective function to minimise

10 Current performance Current parsers achieve: ca. 90% precision >90% recall 1% cross-bracketed constituents

11 Some issues with PARSEVAL 1. These measures evaluate parses at the level of individual decisions (nodes). ignore the difficulty of getting a globally correct solution by carrying out a correct sequence of decisions 2. Success on crossing brackets depends on the kind of parse trees used Penn Treebank has very flat trees (not much embedding), therefore likelihood of crossed brackets decreases. 3. In PARSEVAL, if a constituent is attached lower in a tree than the gold standard, all its daughters are counted wrong.

12 Probabilistic parsing with PCFGs The basic algorithm

13 The basic PCFG parsing algorithm Many statistical parsers use a version of the CYK algorithm. Assumptions: CFG productions are in Chomsky Normal Form. A BC A a Use indices between words: Book the flight through Houston (0) Book (1) the (2) flight (3) through (4) Houston (5) Procedure (bottom-up): Traverse input sentence left-to-right Use a chart to store constituents and their span + their probability.

14 Probabilistic CYK: example PCFG S NP VP [.80] NP Det N [.30] VP V NP [.20] V includes [.05] Det the [.4] Det a [.4] N meal [.01] N flight [.02]

15 Probabilistic CYK: initialisation The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} //syntactic lookup for i = j-2 to 0 do: chart ij := {} for k = i+1 to j-1 do: for each A -> BC do: if B in chart ik & C in chart kj : chart ij := chart ij U {A}

16 Probabilistic CYK: lexical step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} Det (.4)

17 Probabilistic CYK: lexical step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} Det (.4) 1 N

18 Probabilistic CYK: syntactic step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} //syntactic lookup for i = j-2 to 0 do: chart ij := {} for k = i+1 to j-1 do: for each A -> BC do: if B in chart ik & C in chart kj : chart ij := chart ij U {A} Det (.4) NP N

19 Probabilistic CYK: lexical step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} Det (.4) NP N.02 2 V

20 Probabilistic CYK: lexical step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} Det (.4) NP N.02 2 V.05 3 Det.4 4 5

21 Probabilistic CYK: syntactic step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} Det (.4) NP N.02 2 V.05 3 Det.4 4 N.01

22 Probabilistic CYK: syntactic step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} //syntactic lookup for i = j-2 to 0 do: chart ij := {} for k = i+1 to j-1 do: for each A -> BC do: if B in chart ik & C in chart kj : chart ij := chart ij U {A} Det (.4) NP N.02 2 V.05 3 Det.4 NP N.01

23 Probabilistic CYK: syntactic step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} //syntactic lookup for i = j-2 to 0 do: chart ij := {} for k = i+1 to j-1 do: for each A -> BC do: if B in chart ik & C in chart kj : chart ij := chart ij U {A} Det (.4) NP N.02 2 V.05 VP Det.4 NP N.01

24 Probabilistic CYK: syntactic step The flight includes a meal. //Lexical lookup: for j = 1 to length(string) do: chart j-1,j := {X : X->word in G} //syntactic lookup for i = j-2 to 0 do: chart ij := {} for k = i+1 to j-1 do: for each A -> BC do: if B in chart ik & C in chart kj : chart ij := chart ij U {A} 0 Det (.4) NP 1 N V.05 3 Det.4 4 N S VP NP

25 Probabilistic CYK: summary Cells in chart hold probabilities Bottom-up procedure computes probability of a parse incrementally. To obtain parse trees, cells need to be augmented with backpointers.

26 Probabilistic parsing with lexicalised PCFGs Main approaches (focus on Collins (1997,1999)) see also: Charniak (1997)

27 Unlexicalised PCFG Estimation Charniak (1996) used Penn Treebank POS and phrasal categories to induce a maximum likelihood PCFG only used relative frequency of local trees as the estimates for rule probabilities did not apply smoothing or any other techniques Works surprisingly well: 80.4% recall; 78.8% precision (crossed brackets not estimated) Suggests that most parsing decisions are mundane and can be handled well by unlexicalized PCFG

28 Probabilistic lexicalised PCFGs Standard format of lexicalised rules: associate head word with non-terminal e.g. dumped sacks into VP(dumped) VBD(dumped) NP(sacks) PP(into) associate head tag with non-terminal VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN) Types of rules: lexical rules expand pre-terminals to words: e.g. NNS(sacks,NNS) sacks probability is always 1 internal rules expand non-terminals e.g. VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN)

29 Estimating probabilities Non-generative model: take an MLE estimate of the probability of an entire rule Count( VP(dumped, VBD) VBD(dumped, VBD) NP(sacks, NNS) PP(into,IN)) Count( VP(dumped, VBD)) non-generative models suffer from serious data sparseness problems Generative model: estimate the probability of a rule by breaking it up into sub-rules.

30 Collins Model 1 Main idea: represent CFG rules as expansions into Head + left modifiers + right modifiers LHS STOP Ln Ln 1... L1 H R1... Rn 1Rn STOP L i /R i is of the form L/R(word,tag); e.g. NP(sacks,NNS) STOP: special symbol indicating left/right boundary. Parsing: Given the LHS, generate the head of the rule, then the left modifiers (until STOP) and right modifiers (until STOP) inside-out. Each step has a probability.

31 Collins Model 1: example VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN) 1. Head H(hw,ht): ( H( hw, ht) Parent, hw, ht) P H P( VBD(dumped, VBD) VP(dumped, VBD))

32 Collins Model 1: example VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN) 1. Head H(hw,ht): P H ( H( hw, ht) Parent, hw, ht) 2. Left modifiers: n 1 i 1 P ( L L i ( lw i, lw t ) Parent, H, hw, ht) P( STOP VP(dumped, VBD), VBD(dumped, VBD))

33 Collins Model 1: example VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN) 1. Head H(hw,ht): P H ( H( hw, ht) Parent, hw, ht) 2. Left modifiers: 3. Right modifiers: P P P R R R n 1 i 1 n 1 i 1 P R P ( L L ( R i i ( rw ( lw i i, lw, rw t t ) Parent, H, hw, ht) ) Parent, H, hw, ht) ( NP(sacks, NNS) VP(dumped, VBD), VBD(dumped, VBD)) ( PP(into,IN) VP(dumped, VBD), VBD(dumped, VBD)) (STOP VP(dumped, VBD), VBD(dumped, VBD))

34 Collins Model 1: example VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN) 1. Head H(hw,ht): 2. Left modifiers: 3. Right modifiers: n 1 i 1 P H ( H( hw, ht) Parent, hw, ht) n 1 i 1 P ( R R P ( L i L i ( rw i ( lw i, rw, lw t t ) Parent, H, hw, ht) ) Parent, H, hw, ht) 4. Total probability: multiplication of (1) (3)

35 Variations on Model 1: distance Collins proposed to extend rules by conditioning on distance of modifiers from the head: P L ( L ( lw, lw ) P, H, hw, ht,distance ( i 1)) i i t PR ( Ri ( rwi, rwt ) P, H, hw, ht,distance R( i 1)) a function of the yield of modifiers seen. L Distance for R 2 probability = words under R 1

36 Using a distance function Simplest kind of distance function is a tuple of binary features: Is the string of length 0? Does the string contain a verb? Example uses: if the string has length 0, P R should be higher: English is right-branching & most right modifiers are adjacent to the head verb if string contains a verb, P R should be higher: accounts for preference to attach dependencies to main verb

37 Further additions Collins Model 2: subcategorisation preferences distinction between complements and adjuncts. Model 3 augmented to deal with long-distance (WH) dependencies.

38 Smoothing and backoff Rules may condition on words that never occur in training data. Collins used 3-level backoff model. Combined using linear interpolation. 1. use head word P ( R ( rw, rw ) Parent, H, hw, ht) R 2. use head tag i i t P ( R ( rw, rw ) Parent, H, ht) R 3. parent only i i t P R ( R ( rw, rw ) Parent ) i i t

39 Other parsing approaches

40 Data-oriented parsing Alternative to grammar-based models does not attempt to derive a grammar from a treebank treebank data is stored as fragments of trees parser uses whichever trees seem to be useful

41 Data-oriented parsing Suppose we want to parse Sue heard Jim. Corpus contains the following potentially useful fragments: Parser can combine these to give a parse

42 Data-oriented Parsing Multiple fundamentally distinct derivations of a single tree. Parse using Monte Carlo simulation methods: randomly produce a large sample of derivations use these to find the most probable parse disadvantage: needs very large samples to make parses accurate, therefore potentially slow

43 Data-oriented parsing vs. PCFGs Possible advantages: using partial trees directly accounts for lexical dependencies also accounts for multi-word expressions and idioms (e.g. take advantage of) while PCFG rules only represent trees of depth 1, DOP fragments can represent trees of arbitrary length Similarities to PCFG: tree fragments could be equivalent to PCFG rules probabilities estimated for grammar rules are exactly the same as for tree fragments

44 History Based Grammars (HBG) General idea: any derivational step can be influenced by any earlier derivational step (Black et al. 1993) the probability of expansion of the current node conditioned on all previous nodes along the path from the root

45 History Based Grammars (HBG) Black et al lexicalise their grammar. every phrasal node inherits 2 words: its lexical head H 1 a secondary head H 2, deemed to be useful e.g. the PP in the bank might have H1=in and H2=bank Every non-terminal is also assigned: a syntactic category (Syn) e.g. PP a semantic category (Sem) e.g with-data Use the index I that indicates what number child of the parent node is being expanded

46 HBG Example (Black et al 1993)

47 History Based Grammars (HBG) Estimation of the probability of a rule R: P( Syn, Sem, R, H, H2 Syn p, Sem p, Rp, I, H1, H2 1 p p ) probability of: the current rule R to be applied its Syn and Sem category its heads H1 and H2 conditioned on: Syn and Sem of parent node the rule that gave rise to the parent the index of this child relative to the parent the heads H1 and H2 of the parent

48 Summary This concludes our overview of statistical parsing We ve looked at three important models Also considered basic search techniques and algorithms

11/29/2010. Statistical Parsing. Statistical Parsing. Simple PCFG for ATIS English. Syntactic Disambiguation

11/29/2010. Statistical Parsing. Statistical Parsing. Simple PCFG for ATIS English. Syntactic Disambiguation tatistical Parsing (Following slides are modified from Prof. Raymond Mooney s slides.) tatistical Parsing tatistical parsing uses a probabilistic model of syntax in order to assign probabilities to each

More information

Basic Parsing with Context-Free Grammars. Some slides adapted from Julia Hirschberg and Dan Jurafsky 1

Basic Parsing with Context-Free Grammars. Some slides adapted from Julia Hirschberg and Dan Jurafsky 1 Basic Parsing with Context-Free Grammars Some slides adapted from Julia Hirschberg and Dan Jurafsky 1 Announcements HW 2 to go out today. Next Tuesday most important for background to assignment Sign up

More information

Grammars & Parsing, Part 1:

Grammars & Parsing, Part 1: Grammars & Parsing, Part 1: Rules, representations, and transformations- oh my! Sentence VP The teacher Verb gave the lecture 2015-02-12 CS 562/662: Natural Language Processing Game plan for today: Review

More information

Chinese Language Parsing with Maximum-Entropy-Inspired Parser

Chinese Language Parsing with Maximum-Entropy-Inspired Parser Chinese Language Parsing with Maximum-Entropy-Inspired Parser Heng Lian Brown University Abstract The Chinese language has many special characteristics that make parsing difficult. The performance of state-of-the-art

More information

Modeling Attachment Decisions with a Probabilistic Parser: The Case of Head Final Structures

Modeling Attachment Decisions with a Probabilistic Parser: The Case of Head Final Structures Modeling Attachment Decisions with a Probabilistic Parser: The Case of Head Final Structures Ulrike Baldewein (ulrike@coli.uni-sb.de) Computational Psycholinguistics, Saarland University D-66041 Saarbrücken,

More information

Syntax Parsing 1. Grammars and parsing 2. Top-down and bottom-up parsing 3. Chart parsers 4. Bottom-up chart parsing 5. The Earley Algorithm

Syntax Parsing 1. Grammars and parsing 2. Top-down and bottom-up parsing 3. Chart parsers 4. Bottom-up chart parsing 5. The Earley Algorithm Syntax Parsing 1. Grammars and parsing 2. Top-down and bottom-up parsing 3. Chart parsers 4. Bottom-up chart parsing 5. The Earley Algorithm syntax: from the Greek syntaxis, meaning setting out together

More information

Prediction of Maximal Projection for Semantic Role Labeling

Prediction of Maximal Projection for Semantic Role Labeling Prediction of Maximal Projection for Semantic Role Labeling Weiwei Sun, Zhifang Sui Institute of Computational Linguistics Peking University Beijing, 100871, China {ws, szf}@pku.edu.cn Haifeng Wang Toshiba

More information

An Efficient Implementation of a New POP Model

An Efficient Implementation of a New POP Model An Efficient Implementation of a New POP Model Rens Bod ILLC, University of Amsterdam School of Computing, University of Leeds Nieuwe Achtergracht 166, NL-1018 WV Amsterdam rens@science.uva.n1 Abstract

More information

Chunk Parsing for Base Noun Phrases using Regular Expressions. Let s first let the variable s0 be the sentence tree of the first sentence.

Chunk Parsing for Base Noun Phrases using Regular Expressions. Let s first let the variable s0 be the sentence tree of the first sentence. NLP Lab Session Week 8 October 15, 2014 Noun Phrase Chunking and WordNet in NLTK Getting Started In this lab session, we will work together through a series of small examples using the IDLE window and

More information

Natural Language Processing. George Konidaris

Natural Language Processing. George Konidaris Natural Language Processing George Konidaris gdk@cs.brown.edu Fall 2017 Natural Language Processing Understanding spoken/written sentences in a natural language. Major area of research in AI. Why? Humans

More information

Context Free Grammars. Many slides from Michael Collins

Context Free Grammars. Many slides from Michael Collins Context Free Grammars Many slides from Michael Collins Overview I An introduction to the parsing problem I Context free grammars I A brief(!) sketch of the syntax of English I Examples of ambiguous structures

More information

Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities

Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities Yoav Goldberg Reut Tsarfaty Meni Adler Michael Elhadad Ben Gurion

More information

Introduction to Simulation

Introduction to Simulation Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

More information

Developing a TT-MCTAG for German with an RCG-based Parser

Developing a TT-MCTAG for German with an RCG-based Parser Developing a TT-MCTAG for German with an RCG-based Parser Laura Kallmeyer, Timm Lichte, Wolfgang Maier, Yannick Parmentier, Johannes Dellert University of Tübingen, Germany CNRS-LORIA, France LREC 2008,

More information

Informatics 2A: Language Complexity and the. Inf2A: Chomsky Hierarchy

Informatics 2A: Language Complexity and the. Inf2A: Chomsky Hierarchy Informatics 2A: Language Complexity and the Chomsky Hierarchy September 28, 2010 Starter 1 Is there a finite state machine that recognises all those strings s from the alphabet {a, b} where the difference

More information

The stages of event extraction

The stages of event extraction The stages of event extraction David Ahn Intelligent Systems Lab Amsterdam University of Amsterdam ahn@science.uva.nl Abstract Event detection and recognition is a complex task consisting of multiple sub-tasks

More information

Towards a MWE-driven A* parsing with LTAGs [WG2,WG3]

Towards a MWE-driven A* parsing with LTAGs [WG2,WG3] Towards a MWE-driven A* parsing with LTAGs [WG2,WG3] Jakub Waszczuk, Agata Savary To cite this version: Jakub Waszczuk, Agata Savary. Towards a MWE-driven A* parsing with LTAGs [WG2,WG3]. PARSEME 6th general

More information

Accurate Unlexicalized Parsing for Modern Hebrew

Accurate Unlexicalized Parsing for Modern Hebrew Accurate Unlexicalized Parsing for Modern Hebrew Reut Tsarfaty and Khalil Sima an Institute for Logic, Language and Computation, University of Amsterdam Plantage Muidergracht 24, 1018TV Amsterdam, The

More information

Parsing with Treebank Grammars: Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank

Parsing with Treebank Grammars: Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank Parsing with Treebank Grammars: Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank Dan Klein and Christopher D. Manning Computer Science Department Stanford University Stanford,

More information

Analysis of Probabilistic Parsing in NLP

Analysis of Probabilistic Parsing in NLP Analysis of Probabilistic Parsing in NLP Krishna Karoo, Dr.Girish Katkar Research Scholar, Department of Electronics & Computer Science, R.T.M. Nagpur University, Nagpur, India Head of Department, Department

More information

UNIVERSITY OF OSLO Department of Informatics. Dialog Act Recognition using Dependency Features. Master s thesis. Sindre Wetjen

UNIVERSITY OF OSLO Department of Informatics. Dialog Act Recognition using Dependency Features. Master s thesis. Sindre Wetjen UNIVERSITY OF OSLO Department of Informatics Dialog Act Recognition using Dependency Features Master s thesis Sindre Wetjen November 15, 2013 Acknowledgments First I want to thank my supervisors Lilja

More information

Proof Theory for Syntacticians

Proof Theory for Syntacticians Department of Linguistics Ohio State University Syntax 2 (Linguistics 602.02) January 5, 2012 Logics for Linguistics Many different kinds of logic are directly applicable to formalizing theories in syntax

More information

SEMAFOR: Frame Argument Resolution with Log-Linear Models

SEMAFOR: Frame Argument Resolution with Log-Linear Models SEMAFOR: Frame Argument Resolution with Log-Linear Models Desai Chen or, The Case of the Missing Arguments Nathan Schneider SemEval July 16, 2010 Dipanjan Das School of Computer Science Carnegie Mellon

More information

LTAG-spinal and the Treebank

LTAG-spinal and the Treebank LTAG-spinal and the Treebank a new resource for incremental, dependency and semantic parsing Libin Shen (lshen@bbn.com) BBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA Lucas Champollion (champoll@ling.upenn.edu)

More information

Adapting Stochastic Output for Rule-Based Semantics

Adapting Stochastic Output for Rule-Based Semantics Adapting Stochastic Output for Rule-Based Semantics Wissenschaftliche Arbeit zur Erlangung des Grades eines Diplom-Handelslehrers im Fachbereich Wirtschaftswissenschaften der Universität Konstanz Februar

More information

Chapter 4: Valence & Agreement CSLI Publications

Chapter 4: Valence & Agreement CSLI Publications Chapter 4: Valence & Agreement Reminder: Where We Are Simple CFG doesn t allow us to cross-classify categories, e.g., verbs can be grouped by transitivity (deny vs. disappear) or by number (deny vs. denies).

More information

Towards a Machine-Learning Architecture for Lexical Functional Grammar Parsing. Grzegorz Chrupa la

Towards a Machine-Learning Architecture for Lexical Functional Grammar Parsing. Grzegorz Chrupa la Towards a Machine-Learning Architecture for Lexical Functional Grammar Parsing Grzegorz Chrupa la A dissertation submitted in fulfilment of the requirements for the award of Doctor of Philosophy (Ph.D.)

More information

Three New Probabilistic Models. Jason M. Eisner. CIS Department, University of Pennsylvania. 200 S. 33rd St., Philadelphia, PA , USA

Three New Probabilistic Models. Jason M. Eisner. CIS Department, University of Pennsylvania. 200 S. 33rd St., Philadelphia, PA , USA Three New Probabilistic Models for Dependency Parsing: An Exploration Jason M. Eisner CIS Department, University of Pennsylvania 200 S. 33rd St., Philadelphia, PA 19104-6389, USA jeisner@linc.cis.upenn.edu

More information

Some Principles of Automated Natural Language Information Extraction

Some Principles of Automated Natural Language Information Extraction Some Principles of Automated Natural Language Information Extraction Gregers Koch Department of Computer Science, Copenhagen University DIKU, Universitetsparken 1, DK-2100 Copenhagen, Denmark Abstract

More information

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases POS Tagging Problem Part-of-Speech Tagging L545 Spring 203 Given a sentence W Wn and a tagset of lexical categories, find the most likely tag T..Tn for each word in the sentence Example Secretariat/P is/vbz

More information

Parsing of part-of-speech tagged Assamese Texts

Parsing of part-of-speech tagged Assamese Texts IJCSI International Journal of Computer Science Issues, Vol. 6, No. 1, 2009 ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 28 Parsing of part-of-speech tagged Assamese Texts Mirzanur Rahman 1, Sufal

More information

The Internet as a Normative Corpus: Grammar Checking with a Search Engine

The Internet as a Normative Corpus: Grammar Checking with a Search Engine The Internet as a Normative Corpus: Grammar Checking with a Search Engine Jonas Sjöbergh KTH Nada SE-100 44 Stockholm, Sweden jsh@nada.kth.se Abstract In this paper some methods using the Internet as a

More information

CS 598 Natural Language Processing

CS 598 Natural Language Processing CS 598 Natural Language Processing Natural language is everywhere Natural language is everywhere Natural language is everywhere Natural language is everywhere!"#$%&'&()*+,-./012 34*5665756638/9:;< =>?@ABCDEFGHIJ5KL@

More information

RANKING AND UNRANKING LEFT SZILARD LANGUAGES. Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A ER E P S I M S

RANKING AND UNRANKING LEFT SZILARD LANGUAGES. Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A ER E P S I M S N S ER E P S I M TA S UN A I S I T VER RANKING AND UNRANKING LEFT SZILARD LANGUAGES Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A-1997-2 UNIVERSITY OF TAMPERE DEPARTMENT OF

More information

The presence of interpretable but ungrammatical sentences corresponds to mismatches between interpretive and productive parsing.

The presence of interpretable but ungrammatical sentences corresponds to mismatches between interpretive and productive parsing. Lecture 4: OT Syntax Sources: Kager 1999, Section 8; Legendre et al. 1998; Grimshaw 1997; Barbosa et al. 1998, Introduction; Bresnan 1998; Fanselow et al. 1999; Gibson & Broihier 1998. OT is not a theory

More information

Domain Adaptation for Parsing

Domain Adaptation for Parsing Domain Adaptation for Parsing Barbara Plank CLCG The work presented here was carried out under the auspices of the Center for Language and Cognition Groningen (CLCG) at the Faculty of Arts of the University

More information

ESSLLI 2010: Resource-light Morpho-syntactic Analysis of Highly

ESSLLI 2010: Resource-light Morpho-syntactic Analysis of Highly ESSLLI 2010: Resource-light Morpho-syntactic Analysis of Highly Inflected Languages Classical Approaches to Tagging The slides are posted on the web. The url is http://chss.montclair.edu/~feldmana/esslli10/.

More information

Linking Task: Identifying authors and book titles in verbose queries

Linking Task: Identifying authors and book titles in verbose queries Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

More information

The Discourse Anaphoric Properties of Connectives

The Discourse Anaphoric Properties of Connectives The Discourse Anaphoric Properties of Connectives Cassandre Creswell, Kate Forbes, Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi Λ, Bonnie Webber y Λ University of Pennsylvania 3401 Walnut Street Philadelphia,

More information

Compositional Semantics

Compositional Semantics Compositional Semantics CMSC 723 / LING 723 / INST 725 MARINE CARPUAT marine@cs.umd.edu Words, bag of words Sequences Trees Meaning Representing Meaning An important goal of NLP/AI: convert natural language

More information

A Graph Based Authorship Identification Approach

A Graph Based Authorship Identification Approach A Graph Based Authorship Identification Approach Notebook for PAN at CLEF 2015 Helena Gómez-Adorno 1, Grigori Sidorov 1, David Pinto 2, and Ilia Markov 1 1 Center for Computing Research, Instituto Politécnico

More information

BANGLA TO ENGLISH TEXT CONVERSION USING OPENNLP TOOLS

BANGLA TO ENGLISH TEXT CONVERSION USING OPENNLP TOOLS Daffodil International University Institutional Repository DIU Journal of Science and Technology Volume 8, Issue 1, January 2013 2013-01 BANGLA TO ENGLISH TEXT CONVERSION USING OPENNLP TOOLS Uddin, Sk.

More information

Learning Computational Grammars

Learning Computational Grammars Learning Computational Grammars John Nerbonne, Anja Belz, Nicola Cancedda, Hervé Déjean, James Hammerton, Rob Koeling, Stasinos Konstantopoulos, Miles Osborne, Franck Thollard and Erik Tjong Kim Sang Abstract

More information

The Interface between Phrasal and Functional Constraints

The Interface between Phrasal and Functional Constraints The Interface between Phrasal and Functional Constraints John T. Maxwell III* Xerox Palo Alto Research Center Ronald M. Kaplan t Xerox Palo Alto Research Center Many modern grammatical formalisms divide

More information

"f TOPIC =T COMP COMP... OBJ

f TOPIC =T COMP COMP... OBJ TREATMENT OF LONG DISTANCE DEPENDENCIES IN LFG AND TAG: FUNCTIONAL UNCERTAINTY IN LFG IS A COROLLARY IN TAG" Aravind K. Joshi Dept. of Computer & Information Science University of Pennsylvania Philadelphia,

More information

A Computational Evaluation of Case-Assignment Algorithms

A Computational Evaluation of Case-Assignment Algorithms A Computational Evaluation of Case-Assignment Algorithms Miles Calabresi Advisors: Bob Frank and Jim Wood Submitted to the faculty of the Department of Linguistics in partial fulfillment of the requirements

More information

Can Human Verb Associations help identify Salient Features for Semantic Verb Classification?

Can Human Verb Associations help identify Salient Features for Semantic Verb Classification? Can Human Verb Associations help identify Salient Features for Semantic Verb Classification? Sabine Schulte im Walde Institut für Maschinelle Sprachverarbeitung Universität Stuttgart Seminar für Sprachwissenschaft,

More information

Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data

Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data Ebba Gustavii Department of Linguistics and Philology, Uppsala University, Sweden ebbag@stp.ling.uu.se

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

LNGT0101 Introduction to Linguistics

LNGT0101 Introduction to Linguistics LNGT0101 Introduction to Linguistics Lecture #11 Oct 15 th, 2014 Announcements HW3 is now posted. It s due Wed Oct 22 by 5pm. Today is a sociolinguistics talk by Toni Cook at 4:30 at Hillcrest 103. Extra

More information

Using dialogue context to improve parsing performance in dialogue systems

Using dialogue context to improve parsing performance in dialogue systems Using dialogue context to improve parsing performance in dialogue systems Ivan Meza-Ruiz and Oliver Lemon School of Informatics, Edinburgh University 2 Buccleuch Place, Edinburgh I.V.Meza-Ruiz@sms.ed.ac.uk,

More information

A Version Space Approach to Learning Context-free Grammars

A Version Space Approach to Learning Context-free Grammars Machine Learning 2: 39~74, 1987 1987 Kluwer Academic Publishers, Boston - Manufactured in The Netherlands A Version Space Approach to Learning Context-free Grammars KURT VANLEHN (VANLEHN@A.PSY.CMU.EDU)

More information

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words,

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words, A Language-Independent, Data-Oriented Architecture for Grapheme-to-Phoneme Conversion Walter Daelemans and Antal van den Bosch Proceedings ESCA-IEEE speech synthesis conference, New York, September 1994

More information

Inleiding Taalkunde. Docent: Paola Monachesi. Blok 4, 2001/ Syntax 2. 2 Phrases and constituent structure 2. 3 A minigrammar of Italian 3

Inleiding Taalkunde. Docent: Paola Monachesi. Blok 4, 2001/ Syntax 2. 2 Phrases and constituent structure 2. 3 A minigrammar of Italian 3 Inleiding Taalkunde Docent: Paola Monachesi Blok 4, 2001/2002 Contents 1 Syntax 2 2 Phrases and constituent structure 2 3 A minigrammar of Italian 3 4 Trees 3 5 Developing an Italian lexicon 4 6 S(emantic)-selection

More information

Control and Boundedness

Control and Boundedness Control and Boundedness Having eliminated rules, we would expect constructions to follow from the lexical categories (of heads and specifiers of syntactic constructions) alone. Combinatory syntax simply

More information

Ensemble Technique Utilization for Indonesian Dependency Parser

Ensemble Technique Utilization for Indonesian Dependency Parser Ensemble Technique Utilization for Indonesian Dependency Parser Arief Rahman Institut Teknologi Bandung Indonesia 23516008@std.stei.itb.ac.id Ayu Purwarianti Institut Teknologi Bandung Indonesia ayu@stei.itb.ac.id

More information

COMPUTATIONAL COMPLEXITY OF LEFT-ASSOCIATIVE GRAMMAR

COMPUTATIONAL COMPLEXITY OF LEFT-ASSOCIATIVE GRAMMAR COMPUTATIONAL COMPLEXITY OF LEFT-ASSOCIATIVE GRAMMAR ROLAND HAUSSER Institut für Deutsche Philologie Ludwig-Maximilians Universität München München, West Germany 1. CHOICE OF A PRIMITIVE OPERATION The

More information

Memory-based grammatical error correction

Memory-based grammatical error correction Memory-based grammatical error correction Antal van den Bosch Peter Berck Radboud University Nijmegen Tilburg University P.O. Box 9103 P.O. Box 90153 NL-6500 HD Nijmegen, The Netherlands NL-5000 LE Tilburg,

More information

An Interactive Intelligent Language Tutor Over The Internet

An Interactive Intelligent Language Tutor Over The Internet An Interactive Intelligent Language Tutor Over The Internet Trude Heift Linguistics Department and Language Learning Centre Simon Fraser University, B.C. Canada V5A1S6 E-mail: heift@sfu.ca Abstract: This

More information

Constraining X-Bar: Theta Theory

Constraining X-Bar: Theta Theory Constraining X-Bar: Theta Theory Carnie, 2013, chapter 8 Kofi K. Saah 1 Learning objectives Distinguish between thematic relation and theta role. Identify the thematic relations agent, theme, goal, source,

More information

Argument structure and theta roles

Argument structure and theta roles Argument structure and theta roles Introduction to Syntax, EGG Summer School 2017 András Bárány ab155@soas.ac.uk 26 July 2017 Overview Where we left off Arguments and theta roles Some consequences of theta

More information

Beyond the Pipeline: Discrete Optimization in NLP

Beyond the Pipeline: Discrete Optimization in NLP Beyond the Pipeline: Discrete Optimization in NLP Tomasz Marciniak and Michael Strube EML Research ggmbh Schloss-Wolfsbrunnenweg 33 69118 Heidelberg, Germany http://www.eml-research.de/nlp Abstract We

More information

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics Machine Learning from Garden Path Sentences: The Application of Computational Linguistics http://dx.doi.org/10.3991/ijet.v9i6.4109 J.L. Du 1, P.F. Yu 1 and M.L. Li 2 1 Guangdong University of Foreign Studies,

More information

Refining the Design of a Contracting Finite-State Dependency Parser

Refining the Design of a Contracting Finite-State Dependency Parser Refining the Design of a Contracting Finite-State Dependency Parser Anssi Yli-Jyrä and Jussi Piitulainen and Atro Voutilainen The Department of Modern Languages PO Box 3 00014 University of Helsinki {anssi.yli-jyra,jussi.piitulainen,atro.voutilainen}@helsinki.fi

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

Planning with External Events

Planning with External Events 94 Planning with External Events Jim Blythe School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 blythe@cs.cmu.edu Abstract I describe a planning methodology for domains with uncertainty

More information

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Nuanwan Soonthornphisaj 1 and Boonserm Kijsirikul 2 Machine Intelligence and Knowledge Discovery Laboratory Department of Computer

More information

Basic Syntax. Doug Arnold We review some basic grammatical ideas and terminology, and look at some common constructions in English.

Basic Syntax. Doug Arnold We review some basic grammatical ideas and terminology, and look at some common constructions in English. Basic Syntax Doug Arnold doug@essex.ac.uk We review some basic grammatical ideas and terminology, and look at some common constructions in English. 1 Categories 1.1 Word level (lexical and functional)

More information

Fragment Analysis and Test Case Generation using F- Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing

Fragment Analysis and Test Case Generation using F- Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing Fragment Analysis and Test Case Generation using F- Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing D. Indhumathi Research Scholar Department of Information Technology

More information

Hyperedge Replacement and Nonprojective Dependency Structures

Hyperedge Replacement and Nonprojective Dependency Structures Hyperedge Replacement and Nonprojective Dependency Structures Daniel Bauer and Owen Rambow Columbia University New York, NY 10027, USA {bauer,rambow}@cs.columbia.edu Abstract Synchronous Hyperedge Replacement

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

Approaches to control phenomena handout Obligatory control and morphological case: Icelandic and Basque

Approaches to control phenomena handout Obligatory control and morphological case: Icelandic and Basque Approaches to control phenomena handout 6 5.4 Obligatory control and morphological case: Icelandic and Basque Icelandinc quirky case (displaying properties of both structural and inherent case: lexically

More information

EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar

EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar Chung-Chi Huang Mei-Hua Chen Shih-Ting Huang Jason S. Chang Institute of Information Systems and Applications, National Tsing Hua University,

More information

arxiv: v1 [math.at] 10 Jan 2016

arxiv: v1 [math.at] 10 Jan 2016 THE ALGEBRAIC ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE OF REAL PROJECTIVE SPECTRA arxiv:1601.02185v1 [math.at] 10 Jan 2016 GUOZHEN WANG AND ZHOULI XU Abstract. In this note, we use Curtis s algorithm and the

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Construction Grammar. University of Jena.

Construction Grammar. University of Jena. Construction Grammar Holger Diessel University of Jena holger.diessel@uni-jena.de http://www.holger-diessel.de/ Words seem to have a prototype structure; but language does not only consist of words. What

More information

The Smart/Empire TIPSTER IR System

The Smart/Empire TIPSTER IR System The Smart/Empire TIPSTER IR System Chris Buckley, Janet Walz Sabir Research, Gaithersburg, MD chrisb,walz@sabir.com Claire Cardie, Scott Mardis, Mandar Mitra, David Pierce, Kiri Wagstaff Department of

More information

What Can Neural Networks Teach us about Language? Graham Neubig a2-dlearn 11/18/2017

What Can Neural Networks Teach us about Language? Graham Neubig a2-dlearn 11/18/2017 What Can Neural Networks Teach us about Language? Graham Neubig a2-dlearn 11/18/2017 Supervised Training of Neural Networks for Language Training Data Training Model this is an example the cat went to

More information

Cross Language Information Retrieval

Cross Language Information Retrieval Cross Language Information Retrieval RAFFAELLA BERNARDI UNIVERSITÀ DEGLI STUDI DI TRENTO P.ZZA VENEZIA, ROOM: 2.05, E-MAIL: BERNARDI@DISI.UNITN.IT Contents 1 Acknowledgment.............................................

More information

AQUA: An Ontology-Driven Question Answering System

AQUA: An Ontology-Driven Question Answering System AQUA: An Ontology-Driven Question Answering System Maria Vargas-Vera, Enrico Motta and John Domingue Knowledge Media Institute (KMI) The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom.

More information

Annotation Projection for Discourse Connectives

Annotation Projection for Discourse Connectives SFB 833 / Univ. Tübingen Penn Discourse Treebank Workshop Annotation projection Basic idea: Given a bitext E/F and annotation for F, how would the annotation look for E? Examples: Word Sense Disambiguation

More information

A Minimalist Approach to Code-Switching. In the field of linguistics, the topic of bilingualism is a broad one. There are many

A Minimalist Approach to Code-Switching. In the field of linguistics, the topic of bilingualism is a broad one. There are many Schmidt 1 Eric Schmidt Prof. Suzanne Flynn Linguistic Study of Bilingualism December 13, 2013 A Minimalist Approach to Code-Switching In the field of linguistics, the topic of bilingualism is a broad one.

More information

Case government vs Case agreement: modelling Modern Greek case attraction phenomena in LFG

Case government vs Case agreement: modelling Modern Greek case attraction phenomena in LFG Case government vs Case agreement: modelling Modern Greek case attraction phenomena in LFG Dr. Kakia Chatsiou, University of Essex achats at essex.ac.uk Explorations in Syntactic Government and Subcategorisation,

More information

POS tagging of Chinese Buddhist texts using Recurrent Neural Networks

POS tagging of Chinese Buddhist texts using Recurrent Neural Networks POS tagging of Chinese Buddhist texts using Recurrent Neural Networks Longlu Qin Department of East Asian Languages and Cultures longlu@stanford.edu Abstract Chinese POS tagging, as one of the most important

More information

Organizational Knowledge Distribution: An Experimental Evaluation

Organizational Knowledge Distribution: An Experimental Evaluation Association for Information Systems AIS Electronic Library (AISeL) AMCIS 24 Proceedings Americas Conference on Information Systems (AMCIS) 12-31-24 : An Experimental Evaluation Surendra Sarnikar University

More information

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT PRACTICAL APPLICATIONS OF RANDOM SAMPLING IN ediscovery By Matthew Verga, J.D. INTRODUCTION Anyone who spends ample time working

More information

Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments

Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments Cristina Vertan, Walther v. Hahn University of Hamburg, Natural Language Systems Division Hamburg,

More information

Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

More information

Second Exam: Natural Language Parsing with Neural Networks

Second Exam: Natural Language Parsing with Neural Networks Second Exam: Natural Language Parsing with Neural Networks James Cross May 21, 2015 Abstract With the advent of deep learning, there has been a recent resurgence of interest in the use of artificial neural

More information

A deep architecture for non-projective dependency parsing

A deep architecture for non-projective dependency parsing Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Ciências de Computação - ICMC/SCC Comunicações em Eventos - ICMC/SCC 2015-06 A deep architecture for non-projective

More information

A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

More information

Formulaic Language and Fluency: ESL Teaching Applications

Formulaic Language and Fluency: ESL Teaching Applications Formulaic Language and Fluency: ESL Teaching Applications Formulaic Language Terminology Formulaic sequence One such item Formulaic language Non-count noun referring to these items Phraseology The study

More information

Character Stream Parsing of Mixed-lingual Text

Character Stream Parsing of Mixed-lingual Text Character Stream Parsing of Mixed-lingual Text Harald Romsdorfer and Beat Pfister Speech Processing Group Computer Engineering and Networks Laboratory ETH Zurich {romsdorfer,pfister}@tik.ee.ethz.ch Abstract

More information

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17.

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17. Semi-supervised methods of text processing, and an application to medical concept extraction Yacine Jernite Text-as-Data series September 17. 2015 What do we want from text? 1. Extract information 2. Link

More information

Discriminative Learning of Beam-Search Heuristics for Planning

Discriminative Learning of Beam-Search Heuristics for Planning Discriminative Learning of Beam-Search Heuristics for Planning Yuehua Xu School of EECS Oregon State University Corvallis,OR 97331 xuyu@eecs.oregonstate.edu Alan Fern School of EECS Oregon State University

More information

Universiteit Leiden ICT in Business

Universiteit Leiden ICT in Business Universiteit Leiden ICT in Business Ranking of Multi-Word Terms Name: Ricardo R.M. Blikman Student-no: s1184164 Internal report number: 2012-11 Date: 07/03/2013 1st supervisor: Prof. Dr. J.N. Kok 2nd supervisor:

More information

CS 1103 Computer Science I Honors. Fall Instructor Muller. Syllabus

CS 1103 Computer Science I Honors. Fall Instructor Muller. Syllabus CS 1103 Computer Science I Honors Fall 2016 Instructor Muller Syllabus Welcome to CS1103. This course is an introduction to the art and science of computer programming and to some of the fundamental concepts

More information

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study Purdue Data Summit 2017 Communication of Big Data Analytics New SAT Predictive Validity Case Study Paul M. Johnson, Ed.D. Associate Vice President for Enrollment Management, Research & Enrollment Information

More information

Introduction to Causal Inference. Problem Set 1. Required Problems

Introduction to Causal Inference. Problem Set 1. Required Problems Introduction to Causal Inference Problem Set 1 Professor: Teppei Yamamoto Due Friday, July 15 (at beginning of class) Only the required problems are due on the above date. The optional problems will not

More information