ROCHESTER INSTITUTE OF TECHNOLOGY

Similar documents
Math 181, Calculus I

AP Calculus AB. Nevada Academic Standards that are assessable at the local level only.

Course Name: Elementary Calculus Course Number: Math 2103 Semester: Fall Phone:

Penn State University - University Park MATH 140 Instructor Syllabus, Calculus with Analytic Geometry I Fall 2010

Math Techniques of Calculus I Penn State University Summer Session 2017

Mathematics. Mathematics

MTH 141 Calculus 1 Syllabus Spring 2017

AU MATH Calculus I 2017 Spring SYLLABUS

Syllabus ENGR 190 Introductory Calculus (QR)

SOUTHERN MAINE COMMUNITY COLLEGE South Portland, Maine 04106

Instructor: Matthew Wickes Kilgore Office: ES 310

Honors Mathematics. Introduction and Definition of Honors Mathematics


Mathematics Assessment Plan

Mathematics subject curriculum

LOUISIANA HIGH SCHOOL RALLY ASSOCIATION

Mathematics Program Assessment Plan

Answers To Hawkes Learning Systems Intermediate Algebra

Math 098 Intermediate Algebra Spring 2018

Statewide Framework Document for:

Math 96: Intermediate Algebra in Context

TABLE OF CONTENTS Credit for Prior Learning... 74

EGRHS Course Fair. Science & Math AP & IB Courses

CAAP. Content Analysis Report. Sample College. Institution Code: 9011 Institution Type: 4-Year Subgroup: none Test Date: Spring 2011

Timeline. Recommendations

Self Study Report Computer Science

PROGRAM REVIEW CALCULUS TRACK MATH COURSES (MATH 170, 180, 190, 191, 210, 220, 270) May 1st, 2012

B.S/M.A in Mathematics

Learning Disability Functional Capacity Evaluation. Dear Doctor,

Julia Smith. Effective Classroom Approaches to.

Exploring Derivative Functions using HP Prime

Fashion Design Program Articulation

EDINA SENIOR HIGH SCHOOL Registration Class of 2020

MTH 215: Introduction to Linear Algebra

Undergraduate Program Guide. Bachelor of Science. Computer Science DEPARTMENT OF COMPUTER SCIENCE and ENGINEERING

Grading Policy/Evaluation: The grades will be counted in the following way: Quizzes 30% Tests 40% Final Exam: 30%

Class Meeting Time and Place: Section 3: MTWF10:00-10:50 TILT 221

ADVANCED PLACEMENT STUDENTS IN COLLEGE: AN INVESTIGATION OF COURSE GRADES AT 21 COLLEGES. Rick Morgan Len Ramist

STA 225: Introductory Statistics (CT)

Foothill College Summer 2016

Introduction and Motivation

Idaho Public Schools

Math 22. Fall 2016 TROUT

Cal s Dinner Card Deals

Ab Calculus Clue Problem Set Answers

What Do Croatian Pre-Service Teachers Remember from Their Calculus Course?

Bittinger, M. L., Ellenbogen, D. J., & Johnson, B. L. (2012). Prealgebra (6th ed.). Boston, MA: Addison-Wesley.

SAT MATH PREP:

Economics 201 Principles of Microeconomics Fall 2010 MWF 10:00 10:50am 160 Bryan Building

ARTICULATION AGREEMENT

ICTCM 28th International Conference on Technology in Collegiate Mathematics

This Performance Standards include four major components. They are

Characterizing Mathematical Digital Literacy: A Preliminary Investigation. Todd Abel Appalachian State University

OFFICE SUPPORT SPECIALIST Technical Diploma

GUIDE TO THE CUNY ASSESSMENT TESTS

Revised on Common Course Number Data Sheet 221 Course Identification. Campus Course Attribute. Prerequisite Text Min.

Firms and Markets Saturdays Summer I 2014

MATH 1A: Calculus I Sec 01 Winter 2017 Room E31 MTWThF 8:30-9:20AM

MATH 108 Intermediate Algebra (online) 4 Credits Fall 2008

South Carolina English Language Arts

The Ohio State University. Colleges of the Arts and Sciences. Bachelor of Science Degree Requirements. The Aim of the Arts and Sciences

Janine Williams, Mary Rose Landon

Math Placement at Paci c Lutheran University

POLICIES and PROCEDURES

Page 1 of 8 REQUIRED MATERIALS:

CI at a Glance. ttp://

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C

Santiago Canyon College 8045 East Chapman Avenue, Orange, CA AGENDA CURRICULUM AND INSTRUCTION COUNCIL Monday, October 30, :30pm B-104

Livermore Valley Joint Unified School District. B or better in Algebra I, or consent of instructor

FIS Learning Management System Activities

All Professional Engineering Positions, 0800

Mathematics SPA Report Section I Context

The Creation and Significance of Study Resources intheformofvideos

Physics 270: Experimental Physics

Level 6. Higher Education Funding Council for England (HEFCE) Fee for 2017/18 is 9,250*

Pre-AP Geometry Course Syllabus Page 1

GRADUATE PROGRAM Department of Materials Science and Engineering, Drexel University Graduate Advisor: Prof. Caroline Schauer, Ph.D.

Answer Key Applied Calculus 4

Ascension Health LMS. SumTotal 8.2 SP3. SumTotal 8.2 Changes Guide. Ascension

Grade 6: Correlated to AGS Basic Math Skills

PHYSICS 40S - COURSE OUTLINE AND REQUIREMENTS Welcome to Physics 40S for !! Mr. Bryan Doiron

ADMISSION TO THE UNIVERSITY

Probability and Game Theory Course Syllabus

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

Undergraduate Admissions Standards for the Massachusetts State University System and the University of Massachusetts. Reference Guide April 2016

Teaching a Laboratory Section

HOLMER GREEN SENIOR SCHOOL CURRICULUM INFORMATION

Individual Interdisciplinary Doctoral Program Faculty/Student HANDBOOK

Oregon Institute of Technology Computer Systems Engineering Technology Department Embedded Systems Engineering Technology Program Assessment

M.S. in Environmental Science Graduate Program Handbook. Department of Biology, Geology, and Environmental Science

Course Selection for Premedical Students (revised June 2015, with College Curriculum updates)

Fairfield Methodist School (Secondary) Topics for End of Year Examination Term

GENERAL CHEMISTRY I, CHEM 1100 SPRING 2014

Evaluation of a College Freshman Diversity Research Program

CS/SE 3341 Spring 2012

DOCTOR OF PHILOSOPHY IN ARCHITECTURE

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

PH.D. IN COMPUTER SCIENCE PROGRAM (POST M.S.)

Chemistry Senior Seminar - Spring 2016

Afm Math Review Download or Read Online ebook afm math review in PDF Format From The Best User Guide Database

Transcription:

ROCHESTER INSTITUTE OF TECHNOLOGY COLLEGE OF SCIENCE SCHOOL OF MATHEMATICAL SCIENCES 1.0 Course Information COS-MATH-181A a) Catalog Listing (click HERE for credit hour assignment guidance) Course title (100 characters) Transcript title (30 Characters) Credit hours 4 Prerequisite(s)** grade of B- or better in COS-MATH-111, or grade of B- or better in (NTID-NMTH-275 and -220), or grade of B- or better in (NTID-NMTH-272 and -220), or grade of B- or better in (NTID-NMTH-260 and -220), or a score of at least 70% on the RIT Mathematics Placement Exam Co-requisite(s) b) Terms(s) offered (check at least one) X Fall X Spring Summer Other Offered biennially If Other is checked, explain: c) Instructional Modes (click HERE for credit hour assignment guidance) Contact hours Maximum students/section Classroom 4 35 Lab Studio Other (workshop) 2 35 2.0 Course Description (as it will appear in the bulletin) This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. The course includes the same topics as MATH-181, but the focus of the workshop component is different. Whereas workshops attached to 181 1

emphasize concept development and real-world applications, the workshops of MATH- 181A emphasize skill development and provide just-in-time review of precalculus material as needed. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. 3.0 Goal(s) of the Course 3.1 Develop the mathematical concept of linear approximation (local linearity), and its application to determining rates of change 3.2 Develop the mathematical concepts and elementary techniques appropriate to computing the aggregate total of a quantity that is distributed unevenly over an interval 3.3 Develop the mathematical concepts and elementary techniques appropriate to computing net change in a quantity when it varies at a non-constant rate 3.4 Learn the basic definitions, concepts, rules, vocabulary, and mathematical notation of calculus 3.5 Develop the skills required for solving problems with differential calculus 3.6 Impart appreciation of calculus as a tool in solving technical and applied physical problems 3.7 Provide a background in mathematics that can be used for the study of science and engineering 4.0 Intended course learning outcomes and associated assessment methods Include as many course-specific outcomes as appropriate, one outcome and assessment method per row. Click HERE for guidance on developing course learning outcomes and associated assessment techniques. Course Learning Outcome 4.1 Define the basic vocabulary of calculus and demonstrate correct use of its notation 4.2 Explain elementary concepts of differential calculus (especially pertaining to linearization and optimization) 4.3 Demonstrate the skills necessary to solve problems with differential calculus 4.4 Differentiate compositions and algebraic combinations of functions 4.5 Explain elementary concepts of integral calculus (esp. Riemann sums and the definite integral) 4.6 Determine antiderivatives and indefinite integrals of simple functions (including use of the substitution Assessment Method Course outline form last revised 3/25/16 2

technique) 4.7 Apply elementary techniques (including substitution) to evaluate definite integrals 4.8 Rephrase English-language descriptions of situations as mathematical equations 4.9 Apply differential and integral calculus to real-world problems and interpret the answer in context Topics (should be in an enumerated list or outline format) Instructors will cover the topics listed below in the order they feel is most beneficial to students. Topics marked with an asterisk are at the instructor s discretion. 5.1 Review of functions and their graphs 5.1.1 Algebra of functions, including shifting and scaling, and composition 5.1.2 Exponential functions, and hyperbolic trigonometric functions 5.1.3 Trigonometric functions 5.1.1 Inverse functions (incl. logarithms and inverse trigonometric functions) 5.2 Limits 5.2.1 Rates of change and tangent lines 5.2.2 Properties of limits 5.2.3 One-sided limits 5.2.4 Continuity and types of discontinuities 5.2.5 Intermediate Value Theorem 5.2.6 Extreme Value Theorem 5.2.7 Limits at infinity, infinite limits and asymptotes 5.3 Differentiation 5.3.1 Tangent lines and the derivative at a point 5.3.2 The derivative as a function 5.3.3 Differentiation rules for elementary functions 5.3.4 The Product Rule and Quotient Rule 5.3.5 The Chain Rule 5.3.6 Implicit differentiation 5.3.7 Derivatives of inverse functions (incl. logarithms and inverse trig functions) 5.3.8 Linear approximations and differentials 5.4 Applications of differentiation 5.4.1 Rate of change 5.4.2 Related rates 5.4.3 Critical points and Fermat's Theorem 5.4.4 Rolle's Theorem and Mean Value Theorem 5.4.5 Monotonicity, and the First Derivative Test 5.4.6 Concavity, and the Second Derivative Test 5.4.7 Curve sketching (synthesis of derivative information) 5.4.8 Indeterminate forms and L Hôpital s Rule 5.4.9 Optimization Course outline form last revised 3/25/16 3

5.4.10 Newton s Method 5.5 Integration 5.5.1 Estimating area 5.5.2 Sigma notation and Riemann sums 5.5.3 Antiderivatives 5.5.4 The definite integral, area, and net change 5.5.5 Fundamental Theorem of Calculus 5.5.6 Indefinite integrals 5.5.7 Substitution 6.0 Possible Resources (should be in an enumerated list or outline format) 6.1 Stewart, J., Calculus, Early Transcendentals, Cengage, Boston, MA 7.0 Program outcomes and/or goals supported by this course (if applicable, as an enumerated list) 8.0 Administrative Information a) Proposal and Approval Course proposed by Effective term School of Mathematical Sciences Fall, AY18-19 Required approval Approval granted date Academic Unit Curriculum Committee 04/08/10 [03/06/18, revision] Department Chair/Director/Head 04/08/10 [03/06/18, revision] College Curriculum Committee 11/01/10 College Dean 11/17/10 b) Special designations for undergraduate courses The appropriate Appendix (A, B and/or C) must be completed for each designation requested. IF YOU ARE NOT SEEKING SPECIAL COURSE DESIGNATION, DELETE THE ATTACHED APPENDICES BEFORE PROCEEDING WITH REVIEW AND APPROVAL PROCESSES. Check Optional Designations *** Approval date (by GEC, IWC or Honors) X General Education Quarter calendar, AY 11-12 Writing Intensive Honors c) This outline is for a New course X Revised course Deactivated course If revised course, check all that have changed Course outline form last revised 3/25/16 4

Course title Credit hour Prerequisites Contact hour Other (explain briefly): Mode of Delivery X Course Description Special Designation d) Additional course information (check all that apply) X Schedule Final Exam Repeatable for Credit How many times: Allow Multiple Enrollments in a Term Required course For which programs: The programs listed below require COS-MATH-181 Project-Based, which mirrors this course. X Applied Mathematics Applied Statistics and Actuarial Science Biomedical Engineering Biochemistry Chemical Engineering Chemistry Computational Mathematics Computer Engineering Computer Science Computing Security Electrical Engineering Imaging Science Industrial Engineering Mechanical Engineering Physics Software Engineering Program elective course For which programs: e) Other relevant scheduling information (e.g., special classroom, studio, or lab needs, special scheduling, media requirements) 9.0 Colleges may add additional information here if necessary (e.g., information required by accrediting bodies) Course outline form last revised 3/25/16 5

APPENDIX A: GENERAL EDUCATION Preliminary Notes: According to NYSED, The liberal arts and sciences comprise the disciplines of the humanities, natural sciences and mathematics, and social sciences. Although decisions about the general education status of RIT courses are guided by this categorization and the details provided at the NYSED web site (click HERE), RIT recognizes that a general education course might not fit neatly into any one of these categories. Course authors from all areas are encouraged to read not only the NYSED web site, but also the mission statement at RIT s General Education web site (click HERE). This appendix is meant to highlight those facets of a course that are directly relevant to its General Education status, and if applicable, to provide course authors with an opportunity to elaborate on aspects of the course that locate it in one or more of the Perspective categories. The course description, course goals, and course learning outcomes (sections 2, 3, and 4 of the course outline) should clearly reflect the content of this appendix. Information provided here will also be used to identify appropriate courses for inclusion in RIT s General Education Outcomes assessment cycle. I. Nature of the Course: After reviewing the NYSED web site (click HERE) and the RIT description of general education (click HERE) describe how this course fits the definition of general education. This is a mathematics course. II. General Education Essential Outcomes: The Academic Senate approved the following proposal at the meeting of 16 April, 2015. Communication and critical thinking are essential to the general education of every student at RIT. Going forward, every course designated as general education by GEC will provide learning experiences designed to achieve at least one student learning outcome from each of these domains (Communication and Critical Thinking). The approved student learning outcomes are listed below. a. Communication a.1 Check at least one of the following student learning outcomes: X Express oneself effectively in common college-level written forms using standard American English Revise and improve written products Express oneself effectively in presentations, either in American English or American Sign language Demonstrate comprehension of information and ideas accessed through reading Course outline form last revised 3/25/16 6

a.2 In the space below, explain which aspects of this course lend themselves to the Communication outcome(s) indicated above, and how student achievement will be assessed. Course learning outcomes include rephrasing English-language descriptions of problems in mathematical terms. This requires students to demonstrate reading comprehension. Student achievement will be assessed via homework and exams. b. Critical Thinking b.1 Check at least one of the following student learning outcomes: X Use relevant evidence gathered through accepted scholarly methods and properly acknowledge sources of information Analyze or construct arguments considering their premises, assumptions, contexts, and conclusions, and anticipating counterarguments Reach sound conclusions based on logical analysis of evidence Demonstrate creative and/or innovative approaches to assignments or projects b.2 In the space below, explain which aspects of this course lend themselves to the Critical Thinking outcome(s) indicated above, and how student achievement will be assessed. Learning outcomes require students to apply calculus to real-world problems, and to interpret their answer in context. In its application, the calculus is a shorthand method for quickly constructing a deductive logical argument to a situation, and arriving at a conclusion. Student achievement will be assessed via homework and exams. III. Additional Student Learning Outcomes Indicate which (if any) of the following student learning outcomes will be supported by and assessed in this course. (Check) Student Learning Outcomes Table A.1: Student Learning Outcomes 1. Interpret and evaluate artistic expression considering the cultural context in which it was created 2. Identify contemporary ethical questions and relevant positions 3. Examine connections among the world s populations 4. Analyze similarities and differences in human experiences and consequent perspectives 5. Demonstrate knowledge of basic principles and concepts of one of the natural sciences 6. Apply methods of scientific inquiry and problem solving to contemporary issues or scientific questions 7. Comprehend and evaluate mathematical or statistical information 8. Perform college-level mathematical operations or apply statistical techniques a. Explanation: In the space below, explain how this course supports the student learning outcomes indicated above. Course outline form last revised 3/25/16 7

b. Assessment: In the space below, explain how student achievement in the specified student learning outcomes will be assessed. IV. Perspectives Indicate which Perspectives (if any) this course is intended to fulfill. Keep in mind that perspectives courses are meant to be introductory in nature. Click HERE for descriptions of the General Education Perspectives and their associated student learning outcomes. Table A.2: Request for Perspective Status Required Outcomes Date Requested GE Perspectives (see Table A.1) Date Granted Artistic #1 Ethical #2 Global #3 Social #4 Natural Science Inquiry #5 and #6 Scientific Principles #5 or #6 AY 11-12 Mathematical #7 and #8 AY 11-12 Course outline form last revised 3/25/16 8