AP Physics 1 Sample Syllabus 4

Similar documents
Teaching a Laboratory Section

PHYSICS 40S - COURSE OUTLINE AND REQUIREMENTS Welcome to Physics 40S for !! Mr. Bryan Doiron

Application of Virtual Instruments (VIs) for an enhanced learning environment

Physics XL 6B Reg# # Units: 5. Office Hour: Tuesday 5 pm to 7:30 pm; Wednesday 5 pm to 6:15 pm

Mathematics Success Grade 7

Physics 270: Experimental Physics

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED MECHANICS MET 2025

Course outline. Code: PHY202 Title: Electronics and Electromagnetism

Math 96: Intermediate Algebra in Context

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED STATICS MET 1040

Mathematics subject curriculum

AC : TEACHING COLLEGE PHYSICS

EGRHS Course Fair. Science & Math AP & IB Courses

Instructional Approach(s): The teacher should introduce the essential question and the standard that aligns to the essential question

UNIV 101E The Student in the University

TOPICS LEARNING OUTCOMES ACTIVITES ASSESSMENT Numbers and the number system

Timeline. Recommendations

Paper 2. Mathematics test. Calculator allowed. First name. Last name. School KEY STAGE TIER

Sugar And Salt Solutions Phet Simulation Packet

Lesson plan for Maze Game 1: Using vector representations to move through a maze Time for activity: homework for 20 minutes

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified

Improving Conceptual Understanding of Physics with Technology

Introduction. Chem 110: Chemical Principles 1 Sections 40-52

DIDACTIC MODEL BRIDGING A CONCEPT WITH PHENOMENA

Catchy Title for Machine

CEE 2050: Introduction to Green Engineering

This Performance Standards include four major components. They are

D Road Maps 6. A Guide to Learning System Dynamics. System Dynamics in Education Project

5.1 Sound & Light Unit Overview

Summer Workshops STEM EDUCATION // PK-12

Reinventing College Physics for Biologists: Explicating an Epistemological Curriculum

Kindergarten SAMPLE MATERIAL INSIDE

MGSE: MGSE4.MD.1; MGSE4.MD.2; MGSE4.MD.3; MGSE4.MD.8; MGSE4.MD.4; MGSE4.MD.5; MGSE4.MD.6; MGSE4.MD.7

Edexcel GCSE. Statistics 1389 Paper 1H. June Mark Scheme. Statistics Edexcel GCSE

Learning Disability Functional Capacity Evaluation. Dear Doctor,

Grade 6: Correlated to AGS Basic Math Skills

Mathematics process categories

UNIT ONE Tools of Algebra

Bittinger, M. L., Ellenbogen, D. J., & Johnson, B. L. (2012). Prealgebra (6th ed.). Boston, MA: Addison-Wesley.

MinE 382 Mine Power Systems Fall Semester, 2014

Helping Your Children Learn in the Middle School Years MATH

PART C: ENERGIZERS & TEAM-BUILDING ACTIVITIES TO SUPPORT YOUTH-ADULT PARTNERSHIPS

Introductory Astronomy. Physics 134K. Fall 2016

Fourth Grade. Reporting Student Progress. Libertyville School District 70. Fourth Grade

Classroom Connections Examining the Intersection of the Standards for Mathematical Content and the Standards for Mathematical Practice

Dublin City Schools Mathematics Graded Course of Study GRADE 4

How People Learn Physics

S T A T 251 C o u r s e S y l l a b u s I n t r o d u c t i o n t o p r o b a b i l i t y

INSTRUCTIONAL FOCUS DOCUMENT Grade 5/Science

All Systems Go! Using a Systems Approach in Elementary Science

A Study of Interface Design for Engagement and Learning with Educational Simulations.

Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 1 (Non-Calculator) Foundation Tier. Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes

CHEM6600/8600 Physical Inorganic Chemistry

AP Statistics Summer Assignment 17-18

If we want to measure the amount of cereal inside the box, what tool would we use: string, square tiles, or cubes?

Taylor & Francis, Ltd. is collaborating with JSTOR to digitize, preserve and extend access to Cognition and Instruction.

KeyTrain Level 7. For. Level 7. Published by SAI Interactive, Inc., 340 Frazier Avenue, Chattanooga, TN

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

Unit 3 Ratios and Rates Math 6

PHYS 2426: UNIVERSITY PHYSICS II COURSE SYLLABUS: SPRING 2013

Pearson Baccalaureate Higher Level Mathematics Worked Solutions

STA 225: Introductory Statistics (CT)

Cal s Dinner Card Deals

Montana Content Standards for Mathematics Grade 3. Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011

Hardhatting in a Geo-World

Ab Calculus Clue Problem Set Answers

ENVR 205 Engineering Tools for Environmental Problem Solving Spring 2017

Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatic problems

Focus of the Unit: Much of this unit focuses on extending previous skills of multiplication and division to multi-digit whole numbers.

Pre-Algebra A. Syllabus. Course Overview. Course Goals. General Skills. Credit Value

Page 1 of 8 REQUIRED MATERIALS:

Unit 1: Scientific Investigation-Asking Questions

Laboratory Notebook Title: Date: Partner: Objective: Data: Observations:

Foothill College Summer 2016

TABE 9&10. Revised 8/2013- with reference to College and Career Readiness Standards

MADERA SCIENCE FAIR 2013 Grades 4 th 6 th Project due date: Tuesday, April 9, 8:15 am Parent Night: Tuesday, April 16, 6:00 8:00 pm

Creating Coherent Inquiry Projects to Support Student Cognition and Collaboration in Physics

Electrical Testing Equipment Performance Rubrics

For information only, correct responses are listed in the chart below. Question Number. Correct Response

GCSE Mathematics B (Linear) Mark Scheme for November Component J567/04: Mathematics Paper 4 (Higher) General Certificate of Secondary Education

Introduction to Forensics: Preventing Fires in the First Place. A Distance Learning Program Presented by the FASNY Museum of Firefighting

STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point.

Spring 2015 Natural Science I: Quarks to Cosmos CORE-UA 209. SYLLABUS and COURSE INFORMATION.

Investigations for Chapter 1. How do we measure and describe the world around us?

Characteristics of Functions

Common Core Exemplar for English Language Arts and Social Studies: GRADE 1

Mathematics Success Level E

Rendezvous with Comet Halley Next Generation of Science Standards

Faculty of Health and Behavioural Sciences School of Health Sciences Subject Outline SHS222 Foundations of Biomechanics - AUTUMN 2013

Modern Chemistry Holt Rinehart And Winston

Quantitative Evaluation of an Intuitive Teaching Method for Industrial Robot Using a Force / Moment Direction Sensor

Inquiry Space: Using Graphs as a Tool to Understand Experiments

Spring 2012 MECH 3313 THERMO-FLUIDS LABORATORY

Lesson M4. page 1 of 2

Problem of the Month: Movin n Groovin

Livermore Valley Joint Unified School District. B or better in Algebra I, or consent of instructor

Game-based formative assessment: Newton s Playground. Valerie Shute, Matthew Ventura, & Yoon Jeon Kim (Florida State University), NCME, April 30, 2013

The Indices Investigations Teacher s Notes

George Mason University Graduate School of Education Program: Special Education

Transcription:

Curricular Requirements CR CRa CRb CRc CRd CRe CRf CRg CRh CRi CRj CR3 CR4 CR5 CR6a CR6b CR7 Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format. principles of kinematics in the context of the big principles of dynamics in the context of the big principles of circular motion and gravitation in the context of the big curriculum framework. principles of simple harmonic motion in the context of the big curriculum framework. principles of linear momentum in the context of the big principle of energy in the context of the big principles of rotational motion in the context of the big principles of electrostatics in the context of the big principles of electric circuits in the context of the big principles of mechanical waves in the context of the big Students have opportunities to apply AP Physics learning objectives connecting across enduring understandings as described in the These opportunities must occur in addition to those within laboratory investigations. The course provides students with opportunities to apply their knowledge of physics principles to real world questions or scenarios (including societal issues or technological innovations) to help them become scientifically literate citizens. Students are provided with the opportunity to spend a minimum of 5 percent of instructional time engaging in hands-on laboratory work with an emphasis on inquiry-based investigations. The laboratory work includes investigations that support the foundational AP Physics principles. The laboratory work includes guided-inquiry laboratory investigations allowing students to apply The course their communication skills by recording evidence of their research of literature or scientific investigations through verbal, written, and graphic presentations. Page(s) 6 7 3 3, 4, 5, 6 CR8 The course written and oral scientific argumentation skills. 6, 7

Course Introduction Textbook: Cutnell, John and Kenneth Johnson. Physics. 9th Edition. ew ork: John Wiley & Sons, Inc., 0. [CR] About this course: The AP Physics course will meet for 4 minutes every day. Lab work is integral to the concepts in this course. The AP Physics course has been designed by the College Board as a course equivalent to the algebra-based college-level physics class. At the end of the course, students will take the AP Physics Exam, which will test their knowledge of both the concepts taught in the classroom and their use of the correct formulas. CR Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format. The content for the course is based on six big ideas: Big Idea Objects and systems have properties such as mass and charge. Systems may have internal structure. Big Idea Fields existing in space can be used to explain interactions. Big Idea 3 The interactions of an object with other objects can be described by forces. Big Idea 4 Interactions between systems can result in changes in those systems. Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws. Big Idea 6 Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the description of other phenomena. Evaluation: Students will get grades on homework, quizzes, laboratory work, projects, and exams. Exams are typically worth 00 points and will consist of questions similar to ones students will see on the AP Exam. Homework assignments and quizzes will consist of problems from the textbook, supplements, and old AP Exams. Projects are long-term, and typically will involve groups of students developing a plan, collecting data and/or research, and presenting conclusions in a meaningful way. Laboratory work is student centered and inquiry based and is discussed below. Grades will be determined by taking the number of points a student has earned and dividing it by the total number of points that the student could have achieved. This decimal is multiplied by 00, and that will be the student s grade. Topics Covered:. Kinematics (Big Ideas 3 and 4) [CRa] a. Vectors/Scalars b. One-Dimensional Motion (including graphing position, velocity, and acceleration) c. Two-Dimensional Motion. Dynamics (Big Ideas,, 3, and 4) [CRb] CRa The course design of kinematics in the context of the big ideas that organize the CRb The course design of dynamics in the context of the big ideas that organize the

a. ewton s Laws of Motion and Forces 3. Universal Law of Gravitation (Big Ideas,, 3, and 4) [CRc] a. Circular Motion 4. Simple Harmonic Motion (Big Ideas 3 and 5) [CRd] a. Simple Pendulums b. Mass-Spring Oscillators 5. Momentum (Big Ideas 3, 4, and 5) [CRe] a. Impulse and Momentum b. The Law of Conservation of Momentum 6. Energy (Big Ideas 3, 4, and 5) [CRf] a. Work b. Energy c. Conservation of Energy d. Power 7. Rotation (Big Ideas 3, 4, and 5) [CRg] a. Rotational Kinematics b. Rotational Energy c. Torque and Rotational Dynamics d. Angular Momentum e. Conservation of Angular Momentum 8. Electrostatics (Big Ideas, 3, and 5) [CRh] a. Electric Charge b. The Law of Conservation of Electric Charge c. Electrostatic Forces 9. Circuits (Big Ideas and 5) [CRi] a. Ohm s Law b. Kirchhoff s Laws c. Simple DC Circuits 0. Mechanical Waves and Sound (Big Idea 6) [CRj] Laboratory Activities: Students will spend 5 percent of the course engaged in hands-on laboratory work. [CR5] Labs may take several in-class days to finish, and students may have to do work outside of class as well. Students are expected to keep a lab notebook where they will maintain a record of their laboratory work. Lab reports will consist of the following components: [CR7] - Title - Objective/Problem - Design (if applicable): If the lab has no set procedure, what is to be done? Why are you doing it this way? - Data: All data gathered in the lab will go here - Calculations/Graphs: Calculations are done here. Any graphs that need to be made go here. - Conclusion: Data analysis occurs here, and a statement can be made about what was learned in the lab. Error analysis also occurs here. Evaluation of the lab occurs here as well. CRc The course design of circular motion and gravitation in the context of the big ideas that organize the curriculum framework. CRd The course design of simple harmonic motion in the context of the big CRe The course design of linear momentum in the context of the big CRf The course design foundational principle of energy in the context of the big CRg The course design of rotational motion in the context of the big CRh The course design of electrostatics in the context of the big ideas that organize the curriculum framework. CRi The course design of electric circuits in the context of the big

Every major unit will have an inquiry-based lab, and inquiry-based labs will make up no less than half of the laboratory work. Collectively, laboratory work will engage students in Laboratory activities and simulations in this class are included the following table. [CR6a] The inquiry-based labs are noted in the second column. ame Open- Inquiry or Guided- Inquiry? [CR6b] Short Description # Speed Lab Students will design an experiment to determine the range of speeds of a variable speed cart. Three Cars Racing Simulation A computer simulation of three cars with different accelerations racing. # Rocket Lab Students will design an experiment to determine the initial velocity of an air-powered rocket. Science Practices.,., 4., 4., 4.3.4,., 4.3, 6..,.4,.,., 4., 4., 4.3 CRj The course design of mechanical waves in the context of the big CR5 Students are provided with the opportunity to spend a minimum of 5 percent of instructional time engaging in hands-on laboratory work with an emphasis on inquiry-based investigations. CR7 The course provides opportunities for students to develop their communication skills by recording evidence of their research of literature or scientific investigations through verbal, written, and graphic presentations. #3 Marble in Cup Lab Students will determine where a paper cup needs to be placed on the floor so that a marble rolled off of the edge of a table will land in it..4,.,.,.3, 4.3 CR6a The laboratory work includes investigations that support the foundational AP Physics principles. #4 Projectile Motion Challenges Using a projectile launcher, students will be given a series of challenges such as placing a ring stand at the maximum height, or placing a cup at the point where the marble will land..4,.,., 4., 4., 4.3 CR6b The laboratory work includes guided-inquiry laboratory investigations allowing students to apply #5 ewton s nd Law Lab What is the relationship between the mass of a system and the acceleration of the system? 6., 6., 6.4 3

ame Forces on a Crate Simulation Open- Inquiry or Guided- Inquiry? [CR6b] Short Description Using a simulation, analyze the motion of a crate. Students can vary the force on the crate, the direction of that force, the initial velocity of the crate, and the coefficient of kinetic friction. Science Practices.,.4,., 4.3, 6. CR6b The laboratory work includes guided-inquiry laboratory investigations allowing students to apply Jupiter s Moons Students will do research on Jupiter and four of its moons. Based on this research, students will mathematically come up with the mass of Jupiter. They will compare this information to the accepted value. #6 Pendulum Lab What factor(s) control the period of a simple pendulum? 6., 6., 6.4, 7. 6., 6., 6.4 #7 Mass-Spring Oscillator Lab Students must determine both the spring constant k of a spring and the mass of three unknown masses. Students must also investigate the conservation of mechanical energy of the system. Materials given: spring with unknown spring constant, known masses, unknown masses. 6., 6., 6.4 #8 Conservation of Linear Momentum Lab Using a track and collision carts, students will observe seven different collisions and make conclusions about momentum conservation in real-life situations. 6., 6., 6.4, 7. 4

ame A Two-Car Collision Simulation Open- Inquiry or Guided- Inquiry? [CR6b] Short Description Students will observe a simulation of two identical cars crashing. The elasticity of the collision can be varied. Science Practices.,.4,., 4.3, 6. CR6b The laboratory work includes guided-inquiry laboratory investigations allowing students to apply #9 Introductory Circular Motion Lab When velocity is kept constant, what is the relationship between the radius of circular motion and the period of circular motion? The speed? The acceleration? 6., 6., 6.4 #0 Centripetal Force Lab Using a spinning rubber stopper to lift masses, students will determine the relationship between the acceleration of the stopper and the centripetal force. 6., 6., 6.4 # Conservation of Angular Momentum Lab What is the relationship between the moment of inertia of a system and the angular momentum of a system? 6., 6., 6.4 Torque Simulation Students will use a computer simulation to study rotational equilibrium..,.4,., 4.3, 6. # Coulomb s Law Lab What is the charge stored on a pair of charged balloons that are repelling each other? 6., 6., 6.4 Electrostatics Simulation Using a computer simulation involving two positive charges, explore the electrostatic force of repulsion between the charges, the accelerations of the charges, and how the force and acceleration changes with distance. 6., 6., 6.4 5

ame #3 Series and Parallel Lab Open- Inquiry or Guided- Inquiry? [CR6b] Short Description Using a number of resistors, explore current and voltage in resistors hooked up to a power supply when resistors are wired in series with one another and when they are wired in parallel with one another. Science Practices 6., 6., 6.4 CR6b The laboratory work includes guided-inquiry laboratory investigations allowing students to apply #4 Standing Waves on a Wire Lab Students will vary wavelength, frequency, and the tension in a wire while looking at standing waves formed on a wire. Students will vary the frequency of sound coming out of a speaker to create standing waves in a tube to determine the speed of sound in the classroom. 6., 6., 6.4 #5 Standing Sound Waves in a Tube Lab 3.3, 4., 4.4, 5., 6., 6., 6.4 Outside the Classroom Lab Experience: [CR3] In addition to labs, students will be required to do one exercise outside of the laboratory experience. Students may pick one of the following at the end of our rotation unit (end of mechanics): - Students will use a video analysis program (Videopoint) to analyze the motion of a toy as it moves (either in a straight line or in a circle). Students will provide the toy and do their own videotaping. They will then present a description of the analysis both quantitatively and qualitatively, including graphs. Their presentation will be peer critiqued and/or questioned, and they will answer the questions with supporting evidence. [CR8] (3.A.., 3.A..3,.C..) - Using an accelerometer app for their smart phone (SPARKvue is one), students will analyze accelerations they experience every day. They can take the data while moving down the hall between classes, while on the school bus, on an amusement park ride, or anything else they want (within reason safety first!). Students will present a description of the motion they experienced (not only acceleration, but velocity and displacement, too), both qualitatively and quantitatively, including graphs. Their presentation will be peer critiqued and/or questioned, and they will answer the questions with supporting evidence. [CR8] (3.A.., 3.A..3,.C..) - Students will take two pictures one of an object in translational equilibrium and one of an object in rotational equilibrium. The objects also must have more than three forces acting on them. They will then construct free-body diagrams for each object, CR3 Students have opportunities to apply AP Physics learning objectives connecting across enduring understandings as described in the curriculum framework. These opportunities must occur in addition to those within laboratory investigations. CR8 The course provides opportunities for students to develop written and oral scientific argumentation skills. 6

and determine the magnitude of each force acting on each object. For the object in rotational equilibrium, students will also find the magnitude of each torque acting on the object. Students will present their work in class. Their presentation will be peer critiqued and/or questioned, and they will answer the questions with supporting evidence. [CR8] (3.B..3, 3.B.., 3.F.., 3.F.., 3.F..5) Real-World Physics Solutions: In order for students to become scientifically literate citizens, students are required to use their knowledge of physics while looking at a real-world problem. [CR4] Students may pick one of the following solutions: - Students will pick a Hollywood movie and will point out three (or more) instances of bad physics. They will present this information to the class, describing the inaccuracies both qualitatively and quantitatively. - Students will research a thrill ride at an amusement park. They will present information to the class on the safety features of the ride, and why they are in place. - Students will present information to the class on noise pollution, and its danger to both human and animal life. They will also propose solutions to noise pollution problems. - Students will go to the insurance institute of highway safety website (iihs.org) and will look at the safest cars in a crash. They will present information as to why these cars are safer and how the safety features keep people safe. CR8 The course provides opportunities for students to develop written and oral scientific argumentation skills. CR4 The course provides students with opportunities to apply their knowledge of physics principles to real world questions or scenarios (including societal issues or technological innovations) to help them become scientifically literate citizens. 7