Monday 28 January 2013 Morning

Similar documents
Tuesday 13 May 2014 Afternoon

This document consists of 11 printed pages and 1 blank page.

Information for Private Candidates

GCSE Mathematics B (Linear) Mark Scheme for November Component J567/04: Mathematics Paper 4 (Higher) General Certificate of Secondary Education

English Language Arts Summative Assessment

University of Groningen. Systemen, planning, netwerken Bosman, Aart

Cambridge NATIONALS. Creative imedia Level 1/2. UNIT R081 - Pre-Production Skills DELIVERY GUIDE

Functional Skills Mathematics Level 2 sample assessment

Probability and Game Theory Course Syllabus

Mathematics process categories

Given a directed graph G =(N A), where N is a set of m nodes and A. destination node, implying a direction for ow to follow. Arcs have limitations

BEING ENTREPRENEURIAL. Being. Unit 1 - Pitching ideas to others Unit 2 - Identifying viable opportunities Unit 3 - Evaluating viable opportunities

Measurement. Time. Teaching for mastery in primary maths

WOODBRIDGE HIGH SCHOOL

Unit 7 Data analysis and design

Mathematics Success Level E

Unit 2. A whole-school approach to numeracy across the curriculum

Remainder Rules. 3. Ask students: How many carnations can you order and what size bunches do you make to take five carnations home?

EDEXCEL FUNCTIONAL SKILLS PILOT

Level 1 Mathematics and Statistics, 2015

Physics 270: Experimental Physics

MKTG 611- Marketing Management The Wharton School, University of Pennsylvania Fall 2016

Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 1 (Non-Calculator) Foundation Tier. Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes

Extraordinary Eggs (Life Cycle of Animals)

State University of New York at Buffalo INTRODUCTION TO STATISTICS PSC 408 Fall 2015 M,W,F 1-1:50 NSC 210

GCSE. Mathematics A. Mark Scheme for January General Certificate of Secondary Education Unit A503/01: Mathematics C (Foundation Tier)

Assessment Strategies Sight Word Assessments Running Records Daily Work Anecdotal Notes

Diagnostic Test. Middle School Mathematics

Office Hours: Mon & Fri 10:00-12:00. Course Description

AN EXAMPLE OF THE GOMORY CUTTING PLANE ALGORITHM. max z = 3x 1 + 4x 2. 3x 1 x x x x N 2

Mathematics (JUN14MS0401) General Certificate of Education Advanced Level Examination June Unit Statistics TOTAL.

Lesson 12. Lesson 12. Suggested Lesson Structure. Round to Different Place Values (6 minutes) Fluency Practice (12 minutes)

Talk About It. More Ideas. Formative Assessment. Have students try the following problem.

OCR LEVEL 3 CAMBRIDGE TECHNICAL

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

BAYLOR COLLEGE OF MEDICINE ACADEMY WEEKLY INSTRUCTIONAL AGENDA 8 th Grade 02/20/ /24/2017

GCE. Mathematics (MEI) Mark Scheme for June Advanced Subsidiary GCE Unit 4766: Statistics 1. Oxford Cambridge and RSA Examinations

MATH 1A: Calculus I Sec 01 Winter 2017 Room E31 MTWThF 8:30-9:20AM

Arizona s College and Career Ready Standards Mathematics

Introduction to Communication Essentials

Being BEING ENTREPRENEURIAL OCR LEVEL 2 AND 3 AWARDS IN BEING ENTREPRENEURIAL DELIVERY GUIDE

CS 1103 Computer Science I Honors. Fall Instructor Muller. Syllabus

BASIC ENGLISH. Book GRAMMAR

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

GCSE (9 1) History B (Schools History Project) J411/14 Crime and Punishment, c.1250 to present with The Norman Conquest,

Functional Skills Mathematics Level 2 assessment

Answers To Hawkes Learning Systems Intermediate Algebra

4.0 CAPACITY AND UTILIZATION

CLASSROOM USE AND UTILIZATION by Ira Fink, Ph.D., FAIA

4 th Grade Number and Operations in Base Ten. Set 3. Daily Practice Items And Answer Keys

LION KING, Jr. CREW PACKET

TCC Jim Bolen Math Competition Rules and Facts. Rules:

Mathematics Scoring Guide for Sample Test 2005

Upcoming Sport Dates: Principal s Report. August 22 nd 2017 Issue 12 MONBULK COLLEGE NEWS

POFI 1349 Spreadsheets ONLINE COURSE SYLLABUS

Graduate Calendar. Graduate Calendar. Fall Semester 2015

Characteristics of the Text Genre Informational Text Text Structure

Interpreting Graphs Middle School Science

Foothill College Summer 2016

THE UNIVERSITY OF TEXAS RIO GRANDE VALLEY GRAPHIC IDENTITY GUIDELINES

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C

THE UNIVERSITY OF SYDNEY Semester 2, Information Sheet for MATH2068/2988 Number Theory and Cryptography

Work Placement Programme. Learn English in the heart of Ireland. Shannon Academy of English.

Course Syllabus for Math

Science Olympiad Competition Model This! Event Guidelines

5 th September Dear Parent/Carer of Year 10 Students GCSE PE

PHY2048 Syllabus - Physics with Calculus 1 Fall 2014

Curriculum Design Project with Virtual Manipulatives. Gwenanne Salkind. George Mason University EDCI 856. Dr. Patricia Moyer-Packenham

Introduction to Causal Inference. Problem Set 1. Required Problems

Phys4051: Methods of Experimental Physics I

Dublin City Schools Mathematics Graded Course of Study GRADE 4

Math Grade 3 Assessment Anchors and Eligible Content

RIGHTSTART MATHEMATICS

The lab is designed to remind you how to work with scientific data (including dealing with uncertainty) and to review experimental design.

INTERVIEW FORM FOR DIRECT CARE POSITIONS. Interviewer(s) Name(s)

INTRODUCTION TO TEACHING GUIDE

Answer Key For The California Mathematics Standards Grade 1

(I couldn t find a Smartie Book) NEW Grade 5/6 Mathematics: (Number, Statistics and Probability) Title Smartie Mathematics

Shockwheat. Statistics 1, Activity 1

Sample Of Welcome Back Letter From Vacation

AP Proctor Training. Setting the Tone. Materials Needed for the Training. Proctor Duties. Proctor Training Instructions

BADM 641 (sec. 7D1) (on-line) Decision Analysis August 16 October 6, 2017 CRN: 83777

Standard 1: Number and Computation

Radius STEM Readiness TM

Functional Skills. Maths. OCR Report to Centres Level 1 Maths Oxford Cambridge and RSA Examinations

Evening and Weekend College. College on YOUR time!

Tears. Measurement - Capacity Make A Rhyme. Draw and Write. Life Science *Sign in. Notebooks OBJ: To introduce capacity, *Pledge of

ITSC 2321 Integrated Software Applications II COURSE SYLLABUS

GOING GLOBAL 2018 SUBMITTING A PROPOSAL

Artificial Neural Networks written examination

Functional Maths Skills Check E3/L x

Edexcel Gcse Maths 2013 Nov Resit

Lecture 10: Reinforcement Learning

"Be who you are and say what you feel, because those who mind don't matter and

Characteristics of the Text Genre Informational Text Text Structure

The Waldegrave Trust Waldegrave School, Fifth Cross Road, Twickenham, TW2 5LH TEL: , FAX:

ACTL5103 Stochastic Modelling For Actuaries. Course Outline Semester 2, 2014

Chapter 4 - Fractions

Grades. From Your Friends at The MAILBOX

Week 01. MS&E 273: Technology Venture Formation

Transcription:

Monday 28 January 2013 Morning A2 GCE MATHEMATICS 4737/01 Decision Mathematics 2 QUESTION PAPER * 4 7 3 3 9 3 0 1 1 3 * Candidates answer on the Printed Answer Book. OCR supplied materials: Printed Answer Book 4737/01 List of Formulae (MF1) Other materials required: Scientific or graphical calculator Duration: 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES These instructions are the same on the Printed Answer Book and the Question Paper. The Question Paper will be found in the centre of the Printed Answer Book. Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters. Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s). Use black ink. HB pencil may be used for graphs and diagrams only. Answer all the questions. Read each question carefully. Make sure you know what you have to do before starting your answer. Do not write in the bar codes. You are permitted to use a scientific or graphical calculator in this paper. Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate. INFORMATION FOR CANDIDATES This information is the same on the Printed Answer Book and the Question Paper. The number of marks is given in brackets [ ] at the end of each question or part question on the Question Paper. You are reminded of the need for clear presentation in your answers. The total number of marks for this paper is 72. The Printed Answer Book consists of 16 pages. The Question Paper consists of 8 pages. Any blank pages are indicated. INSTRUCTION TO EXAMS OFFICER / INVIGILATOR Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document. [Y/102/2709] DC (KN/SW) 64523/2 OCR is an exempt Charity Turn over

2 1 A TV soap opera has five main characters, Alice (A), Bob (B), Charlie (C), Dylan (D) and Etty (E). A different character is scheduled to play the lead in each of the next five episodes. Alice, Dylan and Etty are all in the episode about the fire (F), but Bob and Charlie are not. Alice and Bob are the only main characters in the episode about the gas leak (G). Alice, Charlie and Etty are the only main characters in the episode about the house break-in (H). The episode about the icy path (I) stars Alice and Charlie only. The episode about the jail break (J) does not star any of the main characters who were in the episodes about the fire or the house break-in. (i) Draw a bipartite graph to show which main characters (A, B, C, D, E) are in which of the next five episodes (F, G, H, I, J). [1] The writer initially decides to make Alice play the lead in the episode about the fire, Bob in the episode about the gas leak and Charlie in the episode about the house break-in. (ii) Write down the shortest possible alternating path starting from Dylan. Hence draw the improved, but still incomplete, matching that results. [2] (iii) From this incomplete matching, write down the shortest possible alternating path starting from the character who still has no leading part allocated. Hence draw the complete matching that results. [2] (iv) By starting with the episode about the jail break, explain how you know that this is the only possible complete matching between the characters and the episodes. [2]

3 2 A project is represented by this activity network. The weights (in brackets) on the arcs represent activity durations, in minutes. D(6) A(10) G(5) B(8) E(4) C(9) F(8) H(3) (i) Complete the table in the answer book to show the immediate predecessors for each activity. [2] (ii) Carry out a forward pass and a backward pass through the activity network, showing the early event time and the late event time at each vertex of your network. State the minimum project completion time and list the critical activities. [5] Suppose that the start of one activity is delayed by 2 minutes. (iii) List each activity which could be delayed by 2 minutes with no change to the minimum project completion time. [2] (iv) Without altering your diagram from part (ii), state the effect that a delay of 2 minutes on activity A would have on the minimum project completion time. Name another activity which could be delayed by 2 minutes, instead of A, and have the same effect on the minimum project completion time. [2] (v) Without altering your diagram from part (ii), state what effect a delay of 2 minutes on activity C would have on the minimum project completion time. [1] Turn over

4 3 Agatha Parrot is in her garden and overhears her neighbours talking about four new people who have moved into her village. Each of the new people has a different job, and Agatha s neighbours are guessing who has which job. Using the information she has overheard, Agatha counts how many times she heard it guessed that each person has each job. Nurse Police officer Radiographer Teacher Jill Jenkins 7 8 8 8 Kevin Keast 8 4 5 7 Liz Lomax 5 1 0 4 Mike Mitchell 8 3 4 4 Agatha wants to find the allocation of people to jobs that maximises the total number of correct guesses. She intends to use the Hungarian algorithm to do this. She starts by subtracting each value in the table from 10. (i) Write down the table which Agatha gets after she has subtracted each value from 10. Explain why she did a subtraction. [2] (ii) Apply the Hungarian algorithm, reducing rows first, to find which job Agatha concludes each person has. State how each table of working was calculated from the previous one. [8] Agatha later meets Liz Lomax and is surprised to find out that she is the radiographer. (iii) Using this additional information, but without formally using the Hungarian algorithm, find which job Agatha should now conclude each person has. Explain how you know that there is no better solution in which Liz is the radiographer. [2]

5 4 The diagram represents a system of pipes through which fluid can flow from two sources, S 1 and S 2, to a sink, T. Most of the pipes have valves which restrict the flow to one direction only. However, the flow in arc DE can be in either direction. The weights on the arcs show the lower capacities and the upper capacities of the pipes in litres per second. S 1 (5, 12) A (3, 10) D (0, 10) (8, 10) B (1, 8) (4, 5) T (2, 3) (5, 9) (10, 20) S 2 (0, 9) C (2, 15) E (i) Add a supersource, S, to the copy of the diagram in the answer book, and weight the arcs attached to it with appropriate lower and upper capacities. [2] (ii) The cut a partitions the vertices into the sets {S, S 1, S 2, A, C}, {B, D, E, T}. By considering the cut arcs only, calculate the maximum and minimum capacities of cut a. [3] (iii) Show that the maximum capacity of the cut {S, S 1, S 2, A, E}, {B, C, D, T} is 47 litres per second. [2] A flow is set up in which the arcs S 1 A, S 1 B, S 2 C, AE, CE and DT are all at their lower capacities. (iv) Show the flow in each arc on the diagram in the answer book, indicating the direction of the flow in arc DE. [2] (v) What is the maximum amount, in litres per second, by which the flow can be augmented using the routes S 1 ADT and S 2 CET? [1] (vi) Find the maximum possible flow through the system, explaining how you know both that this is feasible and that it cannot be exceeded. [2] Turn over

6 5 Rose and Colin are playing a game in which they each have four cards. Each player chooses a card from those in their hand, and simultaneously they show each other the cards they have chosen. The table below shows how many points Rose wins for each combination of cards. In each case the number of points that Colin wins is the negative of the entry in the table. Both Rose and Colin are trying to win as many points as possible. Colin s card Rose s card 2 4 2 6 3 3 5 5 4 4 2 5 1 5 1 3 (i) What is the greatest number of points that Colin can win when Rose chooses and which card does Colin need to choose to achieve this? [1] (ii) Explain why Rose should never choose and find the card that Colin should never choose. Hence reduce the game to a 3 3 pay-off matrix. [3] (iii) Find the play-safe strategy for each player on the reduced game and show whether or not the game is stable. [4] Rose makes a random choice between her cards, choosing with probability x, with probability y, and with probability z. She formulates the following LP problem to be solved using the Simplex algorithm: maximise M = m 6, subject to m G 4x + 10y, m G 9x + 3y + 11z, m G 2x + 10y + z, x + y + z G 1, and x H 0, y H 0, z H 0, m H 0. (You are not required to solve this problem.) (iv) Explain how 9x + 3y + 11z was obtained. [2] 7 27 14 The Simplex algorithm is used to solve the LP problem. The solution has x =, y =, z =. 48 48 48 (v) Calculate the optimal value of M. [2]

7 6 Simon makes playhouses which he sells through an agent. Each Sunday the agent orders the number of playhouses she will need Simon to deliver at the end of each day. The table below shows the order for the coming week. Day Monday Tuesday Wednesday Thursday Friday Number of playhouses 2 3 2 2 4 Simon can make up to 3 houses each day, except for Wednesday when he can make at most 2 houses. Because of limited storage space, Simon can store at most 2 houses overnight from one day to the next, although the number in store does not restrict how many houses Simon can make the next day. The process is modelled by letting the stages be the days and the states be the numbers of houses stored overnight. Simon starts the week, on Monday morning, with no houses in storage. This means that the start of Monday morning has (stage; state) label (0; 0). Simon wants to end the week on Friday afternoon with no houses in storage, so the start of Saturday morning will have (stage; state) label (5; 0). (i) Explain why the (stage; state) label (4; 0) is not needed. [2] Simon wants to draw up a production plan showing how many houses he needs to make each day. He prefers not to have to make several houses on the same day so he assigns a cost that is the square of the number of houses made that day, apart from Monday when the cost is the cube of the number of houses made. So, for example, if he makes 3 houses one day the cost is 9 units, unless it is Monday when the cost is 27 units. (ii) Complete the diagram in the answer book to show all the possible production plans and weight the arcs with the costs. [6] Simon wants to find a production plan that minimises the sum of the costs. (iii) Set up a dynamic programming tabulation, working backwards from (5; 0), to find a production plan that solves Simon s problem. [8] (iv) Write down the number of houses that he should make each day with this plan. [1]

8 THERE ARE NO QUESTIONS PRINTED ON THIS PAGE. Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.