ECE 538/BENG 538: Medical Imaging Fall Credits 3 Tuesdays, 4:30 pm 7:10 pm, Room: Robinson, B442

Similar documents
ACADEMIC POLICIES AND PROCEDURES

EECS 700: Computer Modeling, Simulation, and Visualization Fall 2014

CS 100: Principles of Computing

Physics Experimental Physics II: Electricity and Magnetism Prof. Eno Spring 2017

CHEM6600/8600 Physical Inorganic Chemistry

Spring 2015 Natural Science I: Quarks to Cosmos CORE-UA 209. SYLLABUS and COURSE INFORMATION.

Cleveland State University Introduction to University Life Course Syllabus Fall ASC 101 Section:

Course Content Concepts

Introduction to Forensic Drug Chemistry

Shank, Matthew D. (2009). Sports marketing: A strategic perspective (4th ed.). Upper Saddle River, NJ: Pearson/Prentice Hall.

HIST 3300 HISTORIOGRAPHY & METHODS Kristine Wirts

ECON492 Senior Capstone Seminar: Cost-Benefit and Local Economic Policy Analysis Fall 2017 Instructor: Dr. Anita Alves Pena

MGMT 479 (Hybrid) Strategic Management

Name: Giovanni Liberatore NYUHome Address: Office Hours: by appointment Villa Ulivi Office Extension: 312

MAR Environmental Problems & Solutions. Stony Brook University School of Marine & Atmospheric Sciences (SoMAS)

Class Meeting Time and Place: Section 3: MTWF10:00-10:50 TILT 221

Psychology 101(3cr): Introduction to Psychology (Summer 2016) Monday - Thursday 4:00-5:50pm - Gruening 413

BIOH : Principles of Medical Physiology

Scottsdale Community College Spring 2016 CIS190 Intro to LANs CIS105 or permission of Instructor

Course Syllabus p. 1. Introduction to Web Design AVT 217 Spring 2017 TTh 10:30-1:10, 1:30-4:10 Instructor: Shanshan Cui

CRITICAL THINKING AND WRITING: ENG 200H-D01 - Spring 2017 TR 10:45-12:15 p.m., HH 205

Theory of Probability

PHO 1110 Basic Photography for Photographers. Instructor Information: Materials:

Business Finance 3400 Introduction to Real Estate Autumn Semester, 2017

BSM 2801, Sport Marketing Course Syllabus. Course Description. Course Textbook. Course Learning Outcomes. Credits.

General Physics I Class Syllabus

CALIFORNIA STATE UNIVERSITY, SAN MARCOS SCHOOL OF EDUCATION

MTH 215: Introduction to Linear Algebra

Required Materials: The Elements of Design, Third Edition; Poppy Evans & Mark A. Thomas; ISBN GB+ flash/jump drive

SYLLABUS. EC 322 Intermediate Macroeconomics Fall 2012

Introduction to Information System

ACVR Residency Training Program Application

SOUTHERN MAINE COMMUNITY COLLEGE South Portland, Maine 04106

Chemistry 106 Chemistry for Health Professions Online Fall 2015

Introduction to Sociology SOCI 1101 (CRN 30025) Spring 2015

GEOG 473/573: Intermediate Geographic Information Systems Department of Geography Minnesota State University, Mankato

Phys4051: Methods of Experimental Physics I

Be aware there will be a makeup date for missed class time on the Thanksgiving holiday. This will be discussed in class. Course Description

CHMB16H3 TECHNIQUES IN ANALYTICAL CHEMISTRY

PBHL HEALTH ECONOMICS I COURSE SYLLABUS Winter Quarter Fridays, 11:00 am - 1:50 pm Pearlstein 308

9:30AM- 1:00PM JOHN PASSMORE L116

ENG 111 Achievement Requirements Fall Semester 2007 MWF 10:30-11: OLSC

BIOL 2402 Anatomy & Physiology II Course Syllabus:

Introduction to Forensic Anthropology ASM 275, Section 1737, Glendale Community College, Fall 2008

TCH_LRN 531 Frameworks for Research in Mathematics and Science Education (3 Credits)

COMM370, Social Media Advertising Fall 2017

SYLLABUS: RURAL SOCIOLOGY 1500 INTRODUCTION TO RURAL SOCIOLOGY SPRING 2017

Philosophy in Literature: Italo Calvino (Phil. 331) Fall 2014, M and W 12:00-13:50 p.m.; 103 PETR. Professor Alejandro A. Vallega.

ACADEMIC EXCELLENCE REDEFINED American University of Ras Al Khaimah. Syllabus for IBFN 302 Room No: Course Class Timings:

INTERMEDIATE ALGEBRA Course Syllabus

Texas A&M University-Central Texas CISK Comprehensive Networking C_SK Computer Networks Monday/Wednesday 5.

Neuroscience I. BIOS/PHIL/PSCH 484 MWF 1:00-1:50 Lecture Center F6. Fall credit hours

Course Syllabus Chem 482: Chemistry Seminar

Office Hours: Day Time Location TR 12:00pm - 2:00pm Main Campus Carl DeSantis Building 5136

BUS 4040, Communication Skills for Leaders Course Syllabus. Course Description. Course Textbook. Course Learning Outcomes. Credits. Academic Integrity

MinE 382 Mine Power Systems Fall Semester, 2014

GEORGE MASON UNIVERSITY College of Education & Human Development Graduate School of Education

Social Media Marketing BUS COURSE OUTLINE

UNDERGRADUATE SEMINAR

ASTRONOMY 2801A: Stars, Galaxies & Cosmology : Fall term

Class Tuesdays & Thursdays 12:30-1:45 pm Friday 107. Office Tuesdays 9:30 am - 10:30 am, Friday 352-B (3 rd floor) or by appointment

Ruggiero, V. R. (2015). The art of thinking: A guide to critical and creative thought (11th ed.). New York, NY: Longman.

SY 6200 Behavioral Assessment, Analysis, and Intervention Spring 2016, 3 Credits

Spring 2015 IET4451 Systems Simulation Course Syllabus for Traditional, Hybrid, and Online Classes

CHEM 6487: Problem Seminar in Inorganic Chemistry Spring 2010

MBA 5652, Research Methods Course Syllabus. Course Description. Course Material(s) Course Learning Outcomes. Credits.

EEAS 101 BASIC WIRING AND CIRCUIT DESIGN. Electrical Principles and Practices Text 3 nd Edition, Glen Mazur & Peter Zurlis

EDIT 576 DL1 (2 credits) Mobile Learning and Applications Fall Semester 2014 August 25 October 12, 2014 Fully Online Course

George Mason University Graduate School of Education Education Leadership Program. Course Syllabus Spring 2006

George Mason University Graduate School of Education Program: Special Education

TEACHING SECOND LANGUAGE COMPOSITION LING 5331 (3 credits) Course Syllabus

COURSE DESCRIPTION PREREQUISITE COURSE PURPOSE

Foothill College Summer 2016

AGN 331 Soil Science Lecture & Laboratory Face to Face Version, Spring, 2012 Syllabus

Texas A&M University - Central Texas PSYK EDUCATIONAL PSYCHOLOGY INSTRUCTOR AND CONTACT INFORMATION

Required Texts: Intermediate Accounting by Spiceland, Sepe and Nelson, 8E Course notes are available on UNM Learn.

GEB 6930 Doing Business in Asia Hough Graduate School Warrington College of Business Administration University of Florida

MGMT 3362 Human Resource Management Course Syllabus Spring 2016 (Interactive Video) Business Administration 222D (Edinburg Campus)

EECS 571 PRINCIPLES OF REAL-TIME COMPUTING Fall 10. Instructor: Kang G. Shin, 4605 CSE, ;

Psychology 102- Understanding Human Behavior Fall 2011 MWF am 105 Chambliss

Georgetown University School of Continuing Studies Master of Professional Studies in Human Resources Management Course Syllabus Summer 2014

95723 Managing Disruptive Technologies

Spring 2016 Stony Brook University Instructor: Dr. Paul Fodor

The Policymaking Process Course Syllabus

MTH 141 Calculus 1 Syllabus Spring 2017

San José State University

IDS 240 Interdisciplinary Research Methods

MKT ADVERTISING. Fall 2016

Aerospace Engineering

INTRODUCTION TO HEALTH PROFESSIONS HHS CREDITS FALL 2012 SYLLABUS

PSYCHOLOGY 353: SOCIAL AND PERSONALITY DEVELOPMENT IN CHILDREN SPRING 2006

Coding II: Server side web development, databases and analytics ACAD 276 (4 Units)

MAE Flight Simulation for Aircraft Safety

COURSE SYLLABUS for PTHA 2250 Current Concepts in Physical Therapy

Class Mondays & Wednesdays 11:00 am - 12:15 pm Rowe 161. Office Mondays 9:30 am - 10:30 am, Friday 352-B (3 rd floor) or by appointment

Accounting 312: Fundamentals of Managerial Accounting Syllabus Spring Brown

Course Guide and Syllabus for Zero Textbook Cost FRN 210

EDIT 576 (2 credits) Mobile Learning and Applications Fall Semester 2015 August 31 October 18, 2015 Fully Online Course

Syllabus Foundations of Finance Summer 2014 FINC-UB

PSCH 312: Social Psychology

Transcription:

ECE 538/BENG 538: Medical Imaging Fall 2011 Credits 3 Tuesdays, 4:30 pm 7:10 pm, Room: Robinson, B442 Instructor: Siddhartha Sikdar, PhD Assistant Professor Department of Electrical and Computer Engineering Office: Engineering, Room 3908 Email: ssikdar@gmu.edu Phone: 703-993-1539 Office hours: Mondays and Tuesdays 3:00-4:00 pm and by appointment Course description: This course will provide an introduction to the physical, mathematical and engineering foundations of modern medical imaging instruments and imaging physics principles that enable us to see inside the human body to diagnose disease, monitor treatment and perform minimally-invasive interventions. The emphasis will be on diagnostic ultrasound and MRI imaging methods, although several other modalities will also be discussed. The course will also provide an overview of recent developments in the field of medical imaging and discuss some of the challenges and controversies. The students will get hands on experience in applying the methods learnt in class to real-world problems and imaging data. There will be broad scope to individually and collaboratively explore current problems in medical imaging. Students will be expected to do a course project demonstrating in-depth understanding and critical assessment of methods from recent research literature and would be required to submit a written project report formatted as an IEEE conference paper. Learning objectives: At the end of the course the student should be able to: 1. Demonstrate a strong grasp of the basic physical principles underlying several medical imaging modalities. 2. Demonstrate a solid understanding of the concepts of medical image acquisition, image formation, image quality and display methods. 3. Apply the concepts learnt in class to solve real-world problems in medical image reconstruction, image processing and analysis. 4. Demonstrate an appreciation for the strengths and weaknesses of various imaging modalities and what kind of anatomical and physiological information can be obtained from them. Prerequisites: 1. University physics (PHYS 262 or equivalent). 2. Familiarity with a programming language (C/C++ or MATLAB) 3. Discrete time signal processing (ECE 410 or equivalent) or permission of instructor.

Resources: Course home page: The course material distribution, assignments grading, announcements and discussion boards will be managed using BlackBoard. To access the course home page, log in using your email ID and password on http://courses.gmu.edu. If you have difficulties using this system, please speak with the instructor and appropriate accommodations will be considered. Required readings: Textbook: Fundamentals of Medical Imaging Paul Suetens. Cambridge University Press; 2009. The lecture slides will be available through the course website. Additional reading and reference material wherever appropriate will be distributed to students periodically. Students are expected to read the assigned material prior to class. Recommended references: 1. Medical Image Analysis Atam Dhawan. Wiley-IEEE Press; 2003. Available at Fenwick: http://magik.gmu.edu/cgi-bin/pwebrecon.cgi?bbid=1559656 2. Medical Imaging Physics William R. Hendee, E. Russel Ritenour. Wiley-Liss Inc; 4 th Edition, 2002. Available at Fenwick: http://magik.gmu.edu/cgi-bin/pwebrecon.cgi?bbid=1559655 3. Diagnostic Ultrasound Imaging: Inside Out Thomas Szabo. Elsevier Academic Press; 2004. Electronic resource available through GMU Libraries: http://magik.gmu.edu/cgi-bin/pwebrecon.cgi?bbid=1312573 4. Handbook of Medical Imaging: Processing and Analysis Isaac N. Bankman. Academic Press; 2000. Available at Fenwick: http://magik.gmu.edu/cgi-bin/pwebrecon.cgi?bbid=882057 Course structure: The course will consist of weekly lectures, homework assignments, two exams and a course project (details below). Grade: Midterm exam 25% Final exam 25% Homework 25% Course project 25% Course Project: The course will involve a research project. At the end of the semester, all students will be expected to make a 15-min presentation (with slides) on a particular topic in medical imaging. Students should select a topic, discuss with the instructor, and get approval within the first five weeks of class. Students with similar interests can choose to work together and present a joint in-depth project (the contribution of each student should be clearly noted). A list of literature sources should be submitted to the instructor for approval by the ninth week of class. Students are expected to submit a written report on their project topic in addition to the presentation. Your classmates will grade the final presentation. The report

should follow the guidelines for an IEEE conference paper, with sections for Introduction, Materials and Methods, Results, Discussion and Conclusion. Grades will be based on: knowledge of the subject and quality of background research, depth of critical analysis, clarity of explanation, and presentation style. For the project, students can select one of the following approaches: 1) Review a specific algorithm or technology for medical image formation, processing or analysis, demonstrate its uses, compare against alternative approaches, discuss the strengths and weaknesses, and suggest avenues for improvement. 2) Explore medical imaging applications for a specific organ or disease by identifying the clinical need, comparing the applicability of various imaging methods, and critically reviewing the latest research directions. 3) Review an emerging medical imaging modality, discuss the physics, instrumentation and image processing involved, describe potential applications, and discuss the strengths and weaknesses compared to existing imaging modalities. Homework: There will be assigned homework throughout the semester and will involve processing and analysis of real medical image data, and will involve some programming in C/C++ or MATLAB (depending on the student s preference). Homework submitted late will be penalized. No homework will be accepted after two weeks. 5 points of the homework grade is reserved for class participation. One student will be assigned each week on a rotating basis to take the lead on compiling a summary of the discussions in class and post it on the class home page. These summaries should be used as a supplement to the lecture slides in preparing for examinations and will be graded as class participation. Students are expected to read the assigned material prior to class. Exams: The mid term exam will be a take home exam. The mid term will test the students ability to analyze and interpret real imaging data, and perform relevant calculations. The final exam will be closed book and notes. It will consist of essay-type and multiple-choice questions and numerical problems. Absence from the final exam must be notified ahead of time and alternative arrangements made with the instructor.

Syllabus Wk Date Topics Comments 1 8/30/11 Introduction: what is medical imaging? Different imaging modalities. Anatomical and functional imaging modalities. Radiology workflow, image informatics. 2 9/6/11 Basic imaging concepts: point spread function, spatial and temporal resolution, contrast, filtering, interpolation, Fourier transforms. 3 9/13/11 Basic imaging concepts (contd): Image acquisition and reconstruction, resampling, manipulation, visualization; signal to noise; Patient safety considerations. 4 9/20/11 Principles of magnetic resonance imaging: spin physics 5 9/27/11 MRI signal, data acquisition, image contrast. Image Project proposal due formation and k-space. 6 10/04/11 MRI imaging sequences Take home mid term exam assigned 7 10/11/11 Columbus day; No class 8 10/18/11 Principles of ultrasound imaging: acoustic waves, transmission, reflection, attenuation, image formation. 9 10/25/11 Ultrasound transducers and instrumentation: steering, focusing. Ultrasound signal and image processing. 2D, 3D and 4D imaging. 10 11/01/11 Principles of Doppler ultrasound. Live demonstration. 11 11/08/11 Principles of X-ray and nuclear imaging: radiation, attenuation, scattering, detection 12 11/15/11 Computed Tomography image reconstruction. Fourier slice theorem, filtered backprojection. 2D, 3D and 4D imaging. Take home mid term exam due List of literature sources due Project introduction due 13 11/22/11 Principles of nuclear imaging methods: positron emission tomography (PET), single photon emission computed tomography (SPECT); Principles of optical imaging methods: near infrared spectroscopy (NIRS) and optical computed tomography (OCT) 14 11/29/11 Introduction to medical image analysis: enhancement, manual and automated image analysis; segmentation; multimodality imaging, image registration, computeraided detection. Course wrap up 15 12/06/11 Final Presentations. 16 12/13/11 Final Exam. Final Project report due. Academic Honesty and Collaboration: The integrity of the University community is affected by the individual choices made by each of us. GMU has an Honor Code with clear guidelines regarding academic

integrity. Three fundamental and rather simple principles to follow at all times are that: (1) all work submitted be your own; (2) when using the work or ideas of others, including fellow students, give full credit through accurate citations; and (3) if you are uncertain about the ground rules on a particular assignment, ask for clarification. No grade is important enough to justify academic misconduct. With collaborative work, names of all the participants should appear on the work. Collaborative projects may be divided up so that individual group members complete portions of the whole, provided that group members take sufficient steps to ensure that the pieces conceptually fit together in the end product. Other projects are designed to be undertaken independently. In the latter case, you may discuss your ideas with others and conference with peers; however, it is not appropriate to give your work to someone else to review. You are responsible for making certain that there is no question that the work you hand in is your own. If only your name appears on an assignment, your professor has the right to expect that you have done the work yourself, fully and independently. Plagiarism means using the exact words, opinions, or factual information from another person without giving the person credit. Writers give credit through accepted documentation styles, such as parenthetical citation, footnotes, or endnotes. Paraphrased material must also be properly cited. A simple listing of books or articles is not sufficient. Plagiarism is the equivalent of intellectual robbery and cannot be tolerated in the academic setting. If you have any doubts about what constitutes plagiarism, please see the instructor. Relevant Campus and Academic Resources Disability Services Any student with documented learning disabilities or other conditions that may affect academic performance should: 1) make sure this documentation is on file with the Office of Disability Services (SUB I, Rm. 222; 993-2474; www.gmu.edu/student/drc) to determine the accommodations you might need; and 2) talk with the instructor to discuss reasonable accommodations. Office of Diversity Programs and Services SUB 1, Rm. 345; 993-2700; www.gmu.edu/student/msaf/index.html Writing Center Robinson A116; 993-1200; writingcenter.gmu.edu.