Chapter 14. Problem Solving

Similar documents
Understanding and Supporting Dyslexia Godstone Village School. January 2017

Developing an Assessment Plan to Learn About Student Learning

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

How to Judge the Quality of an Objective Classroom Test

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC

Objectives. Chapter 2: The Representation of Knowledge. Expert Systems: Principles and Programming, Fourth Edition

Special Educational Needs & Disabilities (SEND) Policy

I N T E R P R E T H O G A N D E V E L O P HOGAN BUSINESS REASONING INVENTORY. Report for: Martina Mustermann ID: HC Date: May 02, 2017

Merbouh Zouaoui. Melouk Mohamed. Journal of Educational and Social Research MCSER Publishing, Rome-Italy. 1. Introduction

The Impact of Positive and Negative Feedback in Insight Problem Solving

9.85 Cognition in Infancy and Early Childhood. Lecture 7: Number

1 3-5 = Subtraction - a binary operation

Activities, Exercises, Assignments Copyright 2009 Cem Kaner 1

ECE-492 SENIOR ADVANCED DESIGN PROJECT

San José State University Department of Psychology PSYC , Human Learning, Spring 2017

University of Groningen. Systemen, planning, netwerken Bosman, Aart

Number of students enrolled in the program in Fall, 2011: 20. Faculty member completing template: Molly Dugan (Date: 1/26/2012)

Rule-based Expert Systems

Success Factors for Creativity Workshops in RE

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus

10.2. Behavior models

Notes on The Sciences of the Artificial Adapted from a shorter document written for course (Deciding What to Design) 1

Software Maintenance

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand

Enduring Understandings: Students will understand that

CROSS COUNTRY CERTIFICATION STANDARDS

Just in Time to Flip Your Classroom Nathaniel Lasry, Michael Dugdale & Elizabeth Charles

PUBLIC SPEAKING: Some Thoughts

AP PSYCHOLOGY VACATION WORK PACKET UNIT 7A: MEMORY

WHY SOLVE PROBLEMS? INTERVIEWING COLLEGE FACULTY ABOUT THE LEARNING AND TEACHING OF PROBLEM SOLVING

Concept Acquisition Without Representation William Dylan Sabo

Study Group Handbook

Myers-Briggs Type Indicator Team Report

Using Team-based learning for the Career Research Project. Francine White. LaGuardia Community College

Lecture 1: Machine Learning Basics

A Minimalist Approach to Code-Switching. In the field of linguistics, the topic of bilingualism is a broad one. There are many

AGENDA LEARNING THEORIES LEARNING THEORIES. Advanced Learning Theories 2/22/2016

Lecturing Module

A Study of Metacognitive Awareness of Non-English Majors in L2 Listening

Strategic Practice: Career Practitioner Case Study

THE INFLUENCE OF ENGLISH SONG TOWARD STUDENTS VOCABULARY MASTERY AND STUDENTS MOTIVATION

Stages of Literacy Ros Lugg

Accelerated Learning Course Outline

Modern Fantasy CTY Course Syllabus

Language Acquisition Chart

What is PDE? Research Report. Paul Nichols

Evidence-based Practice: A Workshop for Training Adult Basic Education, TANF and One Stop Practitioners and Program Administrators

Use the Syllabus to tick off the things you know, and highlight the areas you are less clear on. Use BBC Bitesize Lessons, revision activities and

Planning a Webcast. Steps You Need to Master When

Positive turning points for girls in mathematics classrooms: Do they stand the test of time?

SCU Graduation Occasional Address. Rear Admiral John Lord AM (Rtd) Chairman, Huawei Technologies Australia

Entrepreneurial Discovery and the Demmert/Klein Experiment: Additional Evidence from Germany

Introduction to Questionnaire Design

GETTING THE MOST OF OUT OF BRAINSTORMING GROUPS

Rover Races Grades: 3-5 Prep Time: ~45 Minutes Lesson Time: ~105 minutes

SIMPLY THE BEST! AND MINDSETS. (Growth or fixed?)

What s in Your Communication Toolbox? COMMUNICATION TOOLBOX. verse clinical scenarios to bolster clinical outcomes: 1

PUBLIC CASE REPORT Use of the GeoGebra software at upper secondary school

Welcome to the session on ACCUPLACER Policy Development. This session will touch upon common policy decisions an institution may encounter during the

University of Waterloo School of Accountancy. AFM 102: Introductory Management Accounting. Fall Term 2004: Section 4

Backwards Numbers: A Study of Place Value. Catherine Perez

Full text of O L O W Science As Inquiry conference. Science as Inquiry

Monitoring Metacognitive abilities in children: A comparison of children between the ages of 5 to 7 years and 8 to 11 years

Law Professor's Proposal for Reporting Sexual Violence Funded in Virginia, The Hatchet

Classifying combinations: Do students distinguish between different types of combination problems?

Science Olympiad Competition Model This! Event Guidelines

Kelli Allen. Vicki Nieter. Jeanna Scheve. Foreword by Gregory J. Kaiser

Growth of empowerment in career science teachers: Implications for professional development

Reinforcement Learning by Comparing Immediate Reward

Seminar - Organic Computing

Reducing Spoon-Feeding to Promote Independent Thinking

Teaching Architecture Metamodel-First

DEVELOPING A PROTOTYPE OF SUPPLEMENTARY MATERIAL FOR VOCABULARY FOR THE THIRD GRADERS OF ELEMENTARY SCHOOLS

Probability estimates in a scenario tree

CAFE ESSENTIAL ELEMENTS O S E P P C E A. 1 Framework 2 CAFE Menu. 3 Classroom Design 4 Materials 5 Record Keeping

Major Milestones, Team Activities, and Individual Deliverables

Analysis of Students Incorrect Answer on Two- Dimensional Shape Lesson Unit of the Third- Grade of a Primary School

CHALLENGES FACING DEVELOPMENT OF STRATEGIC PLANS IN PUBLIC SECONDARY SCHOOLS IN MWINGI CENTRAL DISTRICT, KENYA

Following the Freshman Year

UF-CPET SSI & STARTS Lesson Plan

Simulation in Maritime Education and Training

Urban Analysis Exercise: GIS, Residential Development and Service Availability in Hillsborough County, Florida

Contact: For more information on Breakthrough visit or contact Carmel Crévola at Resources:

Program Assessment and Alignment

The NH Parent Partner Program

Mastering Team Skills and Interpersonal Communication. Copyright 2012 Pearson Education, Inc. publishing as Prentice Hall.

Extending Place Value with Whole Numbers to 1,000,000

Introduction to Simulation

MGT/MGP/MGB 261: Investment Analysis

Accelerated Learning Online. Course Outline

Getting Started with Deliberate Practice

Maximizing Learning Through Course Alignment and Experience with Different Types of Knowledge

EL RODEO SCHOOL VOLUNTEER HANDBOOK

b) Allegation means information in any form forwarded to a Dean relating to possible Misconduct in Scholarly Activity.

General study plan for third-cycle programmes in Sociology

Strategy Study on Primary School English Game Teaching

PHILOSOPHY & CULTURE Syllabus

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATHEMATICS ASSESSING THE EFFECTIVENESS OF MULTIPLE CHOICE MATH TESTS

Usability Design Strategies for Children: Developing Children Learning and Knowledge in Decreasing Children Dental Anxiety

Transcription:

Chapter 14 Problem Solving Problem solving is a purposeful, goal- directed action. It is a process that involves finding, analyzing, and solving those problems. Problem solving has the ultimate goal of overcoming any obstacles, and finding out a solution to the problem that resolves the issue in the best possible way. A problem can be anything, right from trying to remember the name of your favorite restaurant, to a difficult numerical problem. How a problem is solved, however, depends on the unique situation it exists in. In some cases, one might take the help of carefully learnt factual information to solve a problem, while in some other situation, creative solutions might be the best way to go. In order to solve a problem correctly, it is important to follow a few steps, which have also been referred to as the Problem-Solving Cycle. This cycle includes some basic steps that can be followed in order to solve a problem. But this is only in the ideal situation scenario; in reality, many times people often skip some steps, or even go back to earlier steps a number of times until the desired goal is reached. The Problem-Solving Cycle includes the following steps Problem Identification Problem Definition and Representation Strategy Formulation Organization of Information Resource Allocation Monitoring Evaluation Steps in the Problem Solving cycle Problem Identification Problem identification is the first step in problem solving, and requires the identification of the problem. It may sound as a simple task, but is not always so. One may identify the wrong problem to begin with, which then may make all further attempts in problem solving as futile and useless. Problem Definition and Representation After the problem has been identified, the next step is to appropriately and fully define the problem so that it can be solved. Strategy Formulation The next step in the problem solving cycle is to develop a strategy in order to solve the problem. The approach used here may vary according to the situation and also according to the person s preferences. Organization of Information The information that is available needs to be organized, before one can come up with a solution to a problem. The more the information that is available, the better prepared a person is to come up with an accurate solution. Resource Allocation Before problem solving begins, it is important to decide how high in the priority list the problem is, so that appropriate amount of resources can be allocated to it. If the problem is judged to be very important, then more resources can be allocated to finding its solution. Monitoring Monitoring is also an important process in solving a problem. Monitoring the progress while working towards a solution is important, as the strategies and approaches employed presently can be reevaluated if a good progress is not being made in the problem solving process. Evaluation The last step in problem solving is evaluation. After the solution of the problem has been found, it is important to evaluate the results in order to find whether or not the best possible solution to the problem has been reached. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Types of Problems Problem solving is basically a process that involves a state of desire for reaching a goal from a condition that is far from it. Generally, problems can be classified into two types; one that are well defined, and one that are not. Ill-Defined problems Ill- defined problems, as the name suggests, are those problems which are not defined properly. These are the problems that do not have any clear goals, or information, or solution paths, or any clear expected solutions. In ill-defined problems, it is not clear what information one should start from. It is also not clear when the solution has been reached, or what rules apply in finding out that solution. Well-Defined problems Well- defined problems, in contrast, are those in which all the aspects of the problem are clearly laid out. These problems have specific goals, clearly defined solution paths, and clear expected solutions. Well defined problems generally present with a small set of information from where one can start, and often come with a set of rules or guidelines to abide by while working towards a goal. Gestalt Approach to Problem Solving A school of thought emerged from Germany in the early 20th century, known as the Gestalt psychology, and was concerned with entities/experience as a whole rather than consisting of parts.

The gestalt approach of problem solving was proposed by a number of German psychologists in 1920 s and 30 s. They criticized previous experiments involving arbitrary rules for problem solving (E.g. - Thorndike s hungry cats). They drew a distinction between reproductive thinking, involving re-use of previous experience; and productive thinking involving a novel restructuring of the problem. The Gestalt psychologists argued that problem solving was a productive process. In particular, in the process of thinking about a problem individuals sometimes restructured their representation of the problem, leading to a flash of insight that enabled them to reach a solution. Insight was first observed by Wolfgang Köhler while conducting studies on apes, and he found the animals to demonstrate insight in problem solving situations. Insight occurs during productive thinking when the problem is suddenly restructured and the solution becomes clear. Gestalt psychologists claimed that insight involves unique processes. Matcalfe and Weibe (1987) recorded that the participants feeling of warmth as they tried to solve a problem. The non-insight problems had steadily increasing feelings of warmth, whereas, the insight problems were characterized by a sudden burst of warmth upon solution. These findings that the insight problems were characterized by a sudden burst of warmth upon solution raised a few questions regarding the nature of this phenomenon. Questions regarding its meaning, about whether it follows an all-or-nothing principle started being raised. It was also argued whether it was possible to work towards insight. In a study conducted by Novick and Sherman in 2003, the difference between subjective experience and the underlying process was studied and highlighted. In a series of experiments, expert and non-expert anagram solvers were presented with a series of anagrams. In the results that were obtained, the researchers observed that when rating the experience of solving anagrams both groups often reported pop out solutions; the solution came suddenly, seemingly out of nowhere. However, in another experiment the participants were asked to indicate if the word was an anagram or not, after a brief exposure to that word. The results obtained here showed that the performance of both the groups was better than chance. Jung-Beeman et al (2004) in an fmri study, found evidence of different brain activation for problem solving that involved insight. The anterior superior temporal gyrus was associated with self reported insight. Furthermore, the Gestalt psychologists described and explained several aspects of thought that acted as barriers to successful problem solving. One of these was commonly referred to as mental set. This occurs when a problem solver becomes fixated on applying a strategy that has previously worked, but is less helpful for the current problem.

Another barrier to problem solving is functional fixedness, whereby individuals fail to recognize that objects can be used for a purpose other than that they were designed for. In other words, it is a Gestalt term referring to when learning or past experience impedes problem solving. In a classic experiment demonstrating functional fixedness, Duncker (1945) gave participants a candle, a box of thumbtacks, and a book of matches, and asked them to attach the candle to the wall so that it did not drip onto the table below. Duncker found that participants tried to attach the candle directly to the wall with the thumbtacks, or to glue it to the wall by melting it. Very few of them thought of using the inside of the box as a candle-holder and tacking this to the wall. In Duncker s terms the participants were fixated on the box s normal function of holding thumbtacks and could not re-conceptualize it in a manner that allowed them to solve the problem. He further suggested that the participants were more likely to solve the problem if the box was emptied before it was presented. However, even though functional fixedness is considered as a barrier to solving problems, it is not always a bad thing. In many cases, it can act as a mental shortcut allowing us to quickly and efficiently determine a practical use for an object. Representational Change Theory Representational change theory is an attempt to incorporate some Gestalt ideas into a working theory (Ohlsson, 1992). This theory suggests that because a problem solver has all the required knowledge at hand, their failure to find a solution is due to the way they are mentally representing the problem. If the problem is not represented in such a way as to accommodate retrieval of the necessary knowledge, the solver will reach a block or impasse that will prevent further progress. It further suggests that insight occurs when the solver s mental representation changes to allow retrieval of the required knowledge. It is based on the following assumptions: A problem is represented in a certain way in the person s mind and this serves as a probe for information from long-term memory. The retrieval process spreads activation over relevant long term memory items. A block occurs if the way a problem is represented does not lead to a helpful memory search The way the problem is represented changes and the memory search is extended, making new information available Representational change can occur due to elaboration (addition of new information) constraint relaxation (rules are reinterpreted) or re-encoding (functional fixedness is removed) Insight occurs when a block is broken and retrieved knowledge results in solution Progress Monitoring Theory The Progress monitoring Theory was put forth by MacGregor et al (2001). There are two main features: Maximization heuristic: Here, each move or decision is an attempt to make as much headway as possible towards the goal. This means that the solver will attempt to move themselves as closely as possible to the goal (or current sub-goal) on each move. Progress monitoring: The rate of progress is assessed constantly, and if it is deemed to be slow and inefficient criterion failure occurs. An alternative strategy is then sought. This means

that the solver will make a note of their progress, and criterion failure occurs if it is found to be unsatisfactory in any way. MacGregor et al., in their version of the nine dot problem, stated that problem solvers will seek to maximize the number of dots they cross out with each successive line that they draw. The minimum amount of dots that must be crossed out is just over two on average (nine dots to cross out using four lines). As it is quite easy to cross out three dots with the first line, and two with the next two lines, then for the first three moves, there is never a large difference between the current state of the problem (in terms of how many uncrossed dots exist) and the number of moves remaining (in terms of how many lines have yet to be drawn). Criterion failure is only encountered on the fourth and final move. The poor performance on the nine dot problem is therefore explained by criterion failure being reached too late, rather than because the problem solver imposes an unnecessary constraint of keeping lines within the bounds of the square. Only when problem solvers have the capacity to look several moves ahead of themselves will they reach criterion failure sooner, at which point they may realize alternative solutions where some of the lines end outside of the nine-dot square. Transfer of Training Transfer of training basically refers to how our experience of past problems influences our ability to solve new ones. Essentially, there are three types of transfer of training: Positive Transfer This is when prior learning or training facilitates acquiring a new skill or reaching the solution to a new problem. In this situation the individual performs better than he would have without the prior training. Negative Transfer This is when prior learning or training hinders acquiring a new skill or reaching the solution to a new problem. In this situation the individual performs worse than that he would have, if he had not been exposed to the prior training. Zero Transfer In this situation, past experience or training neither enhances nor hinders acquiring a new skill or reaching the solution of a new problem. Far and Near Transfer Far transfer is much more challenging in that it requires the learner to abstract the new situation and engage in reflection and meta-cognition to help construct a way to solve the problem. Far transfer refers to transfer to a dissimilar context. For example, learning about experimental method in science class (control groups, confounding variables etc.) and using the same principles in real world settings (deciding how to make the nicest biscuits) Near transfer refers to transfer to a similar context. Lab studies often limited to near transfer. Near transfer occurs when the scenario in which original learning had occurred is similar to the new problem scenario so that the learner can successfully apply preconceived problem-solving processes. Expertise In general terms, expertise refers to the mechanisms underlying the superior achievement of an expert, i.e. one who has acquired special skill in or knowledge of a particular subject through professional training and practical experience. People can acquire knowledge about a specific topic over several years. These people approach solving a problem by using -

Superior knowledge/experience Quicker decisions Automaticity More confidence This factor which helps some people approach, and solves problems in a different and efficient way is known as Expertise. This is a knowledge-rich type of problem solving which is less researched, but possibly more relevant. One commonly studied group of experts are chess players. They are found to have very detailed information about pieces stored in long term memory. They are much better than novices at chunking. It has been observed that Chess masters are significantly better than novices at remembering the location of pieces from a game. However, in a study by Chase and Simon (1973), it was seen that this effect disappears when the pieces are placed randomly on the board. However, it is wrong to assume that superior memory is the only characteristic of the people with expertise. Holding & Reynolds (1982) argue that experts also possess superior strategic processing skills to novices. A number of theories have been put forth in the context of Expertise in problem solving. Template theory Template theory suggests that the experts organize chunks into meaningful complex structures known as templates. The chess players might remember the chess pieces as being in a strong, weak or neutral position as a whole. Templates can hold larger amounts of information than simple chunks, and can be direct thinking strategically. Most of the research surrounding this theory has taken place in the domain of chess. According to template theory, chunks of chess pieces are contained in LTM, and the role of STM is to contain pointers to this information. When a chess expert sees an array of pieces and positions, the activity in his memory systems will depend on the novelty of the arrangement. As a player gains more experience with specific moves or arrangements, these chunks become templates. Templates contain not only chunks but also slots to accommodate variable features. A template is a useful and practical way to represent expertise in the domain of chess, as the slots of a node allow for access to and from several different paths. This theory assumes a much more dynamic role for the short-term store, incorporating new information into the template. In a study conducted by Charnes et al. (2001), chess boards were presented to experts and novices, and their eye movements were recorded for the first second after presentation. Even in this short time experts were more likely than novices to fixate on tactically relevant pieces (80% v 64%). Global structures of game patterns seem to be stored by experts. Another experiment which was conducted by McGregor & Holmes (2002) involved showing chess boards to experts and novices. The participants had to indicate if they had seen a particular board before or not. The results showed that the experts were better at realizing that they had not seen a particular board if one important piece was shifted than if the whole board was translated one space over. However, the template theory has its limitations. It is not clear from template theory what the precise information is that is being stored. Attack/defense relations are more memorable than piece location, but this does not help in deciphering what the contents of memory are. Anderson s ACT Theory Adaptive Control of Thought theory or the ACT theory proposes three connected systems at work in experts - Declarative memory (semantic network) Procedural memory (simplifying decision making) Working memory

According to this theory, as the novice becomes an expert, there is knowledge compilation, resulting in a shift from declarative to procedural memory. Proceduralisation is where production rules are drawn up to make decisions and take action more quickly. The is the Composition which improves performance by reducing a repeated sequence of actions to a single action. Zbrodoff, in 1995, conducted a study in which the participants had to answer questions about the alphabet. For example, they were asked to solve the following; S + 4 =? The Answer to this problem was W. It was observed that initially, the participants were quicker to answer S + 2 than S + 4. This is because initially participants were running through the alphabet in their head. However, after practice, the times became equal as participants began to rely automatically on past experience. Studies have shown that there is good evidence of a shift from declarative to procedural memory as people become well practiced at a particular task. However, though this model deals well with unvarying procedures (touch typing), it does not say much about creative/adaptive expertise (like that seen in scientific theory).