Creating STEAM with Design Thinking: Beyond STEM and Arts Integration

Similar documents
2020 Strategic Plan for Diversity and Inclusive Excellence. Six Terrains

Inquiry Learning Methodologies and the Disposition to Energy Systems Problem Solving

Innovating Toward a Vibrant Learning Ecosystem:

Social Emotional Learning in High School: How Three Urban High Schools Engage, Educate, and Empower Youth

Scoring Guide for Candidates For retake candidates who began the Certification process in and earlier.

Executive Summary: Tutor-facilitated Digital Literacy Acquisition

LEARNER VARIABILITY AND UNIVERSAL DESIGN FOR LEARNING

Multidisciplinary Engineering Systems 2 nd and 3rd Year College-Wide Courses

DESIGN-BASED LEARNING IN INFORMATION SYSTEMS: THE ROLE OF KNOWLEDGE AND MOTIVATION ON LEARNING AND DESIGN OUTCOMES

University of Toronto Mississauga Degree Level Expectations. Preamble

Helping Graduate Students Join an Online Learning Community

Davidson College Library Strategic Plan

INNOWIZ: A GUIDING FRAMEWORK FOR PROJECTS IN INDUSTRIAL DESIGN EDUCATION

What does Quality Look Like?

MAINTAINING CURRICULUM CONSISTENCY OF TECHNICAL AND VOCATIONAL EDUCATIONAL PROGRAMS THROUGH TEACHER DESIGN TEAMS

PEDAGOGICAL LEARNING WALKS: MAKING THE THEORY; PRACTICE

10.2. Behavior models

Developing an Assessment Plan to Learn About Student Learning

Secondary English-Language Arts

Intensive Writing Class

Unit 3. Design Activity. Overview. Purpose. Profile

1. Locate and describe major physical features and analyze how they influenced cultures/civilizations studied.

International Variations in Divergent Creativity and the Impact on Teaching Entrepreneurship

evans_pt01.qxd 7/30/2003 3:57 PM Page 1 Putting the Domain Model to Work

Student-Centered Learning

Copyright Corwin 2014

Second Step Suite and the Whole School, Whole Community, Whole Child (WSCC) Model

Opening Essay. Darrell A. Hamlin, Ph.D. Fort Hays State University

Project-based learning... How does it work and where do I begin?

SPRING GROVE AREA SCHOOL DISTRICT

STUDENT LEARNING ASSESSMENT REPORT

UNIVERSITY OF THESSALY DEPARTMENT OF EARLY CHILDHOOD EDUCATION POSTGRADUATE STUDIES INFORMATION GUIDE

Your Guide to. Whole-School REFORM PIVOT PLAN. Strengthening Schools, Families & Communities

PSIWORLD ª University of Bucharest, Bd. M. Kogalniceanu 36-46, Sector 5, Bucharest, , Romania

University of Delaware Library STRATEGIC PLAN

Expanded Learning Time Expectations for Implementation

MANAGERIAL LEADERSHIP

Advancing the Discipline of Leadership Studies. What is an Academic Discipline?

Harvesting the Wisdom of Coalitions

Beyond PDF. Using Wordpress to create dynamic, multimedia library publications. Library Technology Conference, 2016 Kate McCready Shane Nackerud

Scoring Notes for Secondary Social Studies CBAs (Grades 6 12)

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses

MARKETING FOR THE BOP WORKSHOP

DIGITAL GAMING & INTERACTIVE MEDIA BACHELOR S DEGREE. Junior Year. Summer (Bridge Quarter) Fall Winter Spring GAME Credits.

Practitioner s Lexicon What is meant by key terminology.

COMPETENCY-BASED STATISTICS COURSES WITH FLEXIBLE LEARNING MATERIALS

Study Abroad Housing and Cultural Intelligence: Does Housing Influence the Gaining of Cultural Intelligence?

Self Study Report Computer Science

Implementing cross-disciplinary learning environment benefits and challenges in engineering education

IMPACTFUL, QUANTIFIABLE AND TRANSFORMATIONAL?

Systematic reviews in theory and practice for library and information studies

ENVR 205 Engineering Tools for Environmental Problem Solving Spring 2017

A Note on Structuring Employability Skills for Accounting Students

Procedia - Social and Behavioral Sciences 141 ( 2014 ) WCLTA 2013

PAGE(S) WHERE TAUGHT If sub mission ins not a book, cite appropriate location(s))

The Use of Metacognitive Strategies to Develop Research Skills among Postgraduate Students

SESSION 2: HELPING HAND

San Diego State University Division of Undergraduate Studies Sustainability Center Sustainability Center Assistant Position Description

ERDINGTON ACADEMY PROSPECTUS 2016/17

Using Virtual Manipulatives to Support Teaching and Learning Mathematics

Chapter 5: TEST THE PAPER PROTOTYPE

Priorities for CBHS Draft 8/22/17

Software Maintenance

Designing Propagation Plans to Promote Sustained Adoption of Educational Innovations

Children Make a Difference

Vision for Science Education A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas

Mapping the Assets of Your Community:

Assessment of Inquiry Skills in the SAILS Project

Designing Design Learning: A Case Study

Summer Enrichment Camp

Unit Lesson Plan: Native Americans 4th grade (SS and ELA)

Lincoln School Kathmandu, Nepal

Author: Justyna Kowalczys Stowarzyszenie Angielski w Medycynie (PL) Feb 2015

Lucy Calkins Units of Study 3-5 Heinemann Books Support Document. Designed to support the implementation of the Lucy Calkins Curriculum

The role of prior experiential knowledge of adult learners engaged in professionally oriented postgraduate study: an affordance or constraint?

Comparing models of first year mathematics transition and support

Community Rhythms. Purpose/Overview NOTES. To understand the stages of community life and the strategic implications for moving communities

GRAND CHALLENGES SCHOLARS PROGRAM

Interdisciplinary Research - Challenges and Opportunities for Actuarial Profession. Aldona Skučaitė, lecturer Vilnius university

Queensborough Public Library (Queens, NY) CCSS Guidance for TASC Professional Development Curriculum

User s Manual for Building Great Partnerships

CONQUERING THE CONTENT: STRATEGIES, TASKS AND TOOLS TO MOVE YOUR COURSE ONLINE. Robin M. Smith, Ph.D.

leading people through change

Indicators Teacher understands the active nature of student learning and attains information about levels of development for groups of students.

UNESCO Bangkok Asia-Pacific Programme of Education for All. Embracing Diversity: Toolkit for Creating Inclusive Learning-Friendly Environments

Final Teach For America Interim Certification Program

Grade 6: Module 4: Unit 1: Overview

Bold resourcefulness: redefining employability and entrepreneurial learning

The ELA/ELD Framework Companion: a guide to assist in navigating the Framework

Core Strategy #1: Prepare professionals for a technology-based, multicultural, complex world

Popular Music and Youth Culture DBQ

Learn & Grow. Lead & Show

Fall Classes At A Glance

Logical Soft Systems Methodology for Education Programme Development

A Framework for Articulating New Library Roles

Politics and Society Curriculum Specification

Successfully Flipping a Mathematics Classroom

Monitoring Metacognitive abilities in children: A comparison of children between the ages of 5 to 7 years and 8 to 11 years

Metadiscourse in Knowledge Building: A question about written or verbal metadiscourse

Curricular Reviews: Harvard, Yale & Princeton. DUE Meeting

Transcription:

The STEAM Journal Volume 3 Issue 1 Sediment Article 11 November 2017 Creating STEAM with Design Thinking: Beyond STEM and Arts Integration Danah Henriksen Arizona State University Follow this and additional works at: http://scholarship.claremont.edu/steam Part of the Curriculum and Instruction Commons, Educational Psychology Commons, Other Education Commons, and the Teacher Education and Professional Development Commons Recommended Citation Henriksen, Danah (2017) "Creating STEAM with Design Thinking: Beyond STEM and Arts Integration," The STEAM Journal: Vol. 3: Iss. 1, Article 11. DOI: 10.5642/steam.20170301.11 Available at: http://scholarship.claremont.edu/steam/vol3/iss1/11 November 2017 by the author(s). This open access article is distributed under a Creative Commons Attribution-NonCommerical-NoDerivatives License. STEAM is a bi-annual journal published by the Claremont Colleges Library ISSN 2327-2074 http://scholarship.claremont.edu/steam

Creating STEAM with Design Thinking: Beyond STEM and Arts Integration Abstract This article suggests the value in a broad view of STEAM beyond arts-integration, as well as the potential of design thinking for STEAM. Despite much interest in STEAM it is often challenging for many teachers to integrate into their teaching of school subject matter. I suggest that as an interdisciplinary crossroads, design thinking provides a natural bridge between the arts, sciences, and other subjects. In this it can offer guiding flexible structure and in-road for teachers to design STEAM-based lessons, and to incorporate as an integrated aspect of students STEAM learning. I discuss an example of an elementary Spanish teacher, who, as a student in a graduate-level design thinking and education course, used design thinking to design an interdisciplinary STEAM project for her students. This example illustrates how design thinking can guide teachers STEAM curriculum design, and be interwoven into elements of STEAM curricula, to open up more interdisciplinary, creative and project-based opportunities. Author/Artist Bio Dr. Danah Henriksen is an Assistant Professor of Educational Leadership and Innovation at Arizona State University. Her research interests focus on creativity, thinking skills and design thinking for education. Her work and research has been published in peer-reviewed educational journals such as Teachers College Record, Educational Technology, and Tech Trends, as well as practitioner venues such as Educational Leadership and Art Education Journal. She is Co-Chair of the Creativity SIG for the Society of Information Technology in Education. Danah teaches varied courses in the area of educational psychology, systems change and leadership, design thinking and creativity in educational settings. Keywords design thinking, STEAM, creativity, interdisciplinary teaching, teaching practices, real-world learning, projectbased learning Cover Page Footnote Acknowledgements Thank you to Dr. Punya Mishra for creating and sharing permissions for the design thinking illustrations in Figures 1 and 2. Also, thank you to the graduate students of the design thinking course described, for their enthusiasm in engaging their creativity and design thinking practices for teaching, and for sharing their work for ongoing learning. Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This article is available in The STEAM Journal: http://scholarship.claremont.edu/steam/vol3/iss1/11

Henriksen: Creating STEAM with Design Thinking Creating STEAM with Design Thinking: Beyond STEM and Arts Integration Danah Henriksen Introduction Recent years have seen intensive interest in the concept of STEAM (Jolly, 2014). Despite this, STEAM remains challenging for many teachers to integrate in school subject matter (Herro & Quigley, 2016; Mote, Strelecki, & Johnson, 2014). This may be due to the fact that popular discourse around STEAM has often viewed it narrowly, as simple arts-integration into the sciences. While readers and editors of this journal present STEAM in rich and dynamic terms, much popular commentary has been more limited. The acronym of STEAM itself may suggest to some that the approach is as simple as plugging the a into STEM (Piro, 2010). That is not to criticize the value of arts integration, which has immense benefits. But arts integration is one facet of STEAM. STEAM as a paradigm can go farther, to reflect a view of education with an emphasis on creative, interdisciplinary, real-world, and problem- or project-based teaching and learning (Kim & Park, 2014). Viewing STEAM as solely about arts integration is problematic, as many science teachers may not have artistic training, or may be uncertain about how to put the a into STEM. Arts instructors similarly may lack a lens to understand where or how to build STEM into the arts. What we need is a broader and more inclusive view of STEAM that spans disciplines, with entry points across contexts. This suggests a view of STEAM which, while it includes arts integration, focuses more broadly on several tenets: interdisciplinarity, creativity, authentic or real-world learning, and 1

The STEAM Journal, Vol. 3, Iss. 1 [2017], Art. 11 project-centered thinking. To apply STEAM in this way, we must give teachers support or structures for enacting messy creative practices within the already messy and challenging contexts of teaching. Design, or design thinking, may provide a guiding framework to support an expanded view of STEAM teaching. Design thinking provides structure for uncertain teachers to develop more creative and interdisciplinary practices as a framework to guide their thinking, and as a part of their students STEAM experiences. Design is a process for creating something (artifacts or knowledge), which is both an art and a science for human-centric problems (Buchanan, 2001). The term design thinking refers to thinking skills or practices designers use to create new ideas and solve problems (Cross, 2001, 2011). Recently, there has been heightening discussion about design thinking and its potential for teaching and learning (Norton & Hathaway, 2015). Scholars and practitioners stress the need for applications of design in learning (Kirschner, 2015). But this discussion has remained vague, with little specifics or clarity about how design and education connect in teaching I suggest one key way they connect, is in STEAM. Design and STEAM for practice Educational policy is often constraining and unsupportive of teacher creativity for STEAM lesson/curriculum design (Cohen, McCabe, Michelli, & Pickeral, 2009). Teachers, like many people, often feel uncertainty about their own individual creative potential (Cropley, 2016). This makes it difficult to identify and enact good STEAM solutions. Design offers guidance and structure to equally engage the analytical and intuitive, the artistic and scientific (see Figure 1). http://scholarship.claremont.edu/steam/vol3/iss1/11 2

Henriksen: Creating STEAM with Design Thinking Figure 1. Creativity, interdisciplinarity, real-world, and problem/project-driven emphases, are central to STEAM, and to design as well. Despite the open-ended nature of design, one reason the term design thinking has become popular, is due to the flexible model it provides. It highlights clear process phases and practices, that scaffold between creativity and analysis. A multitude of different design thinking models have arisen in recent years most with common fundamentals (Watson, 2015). For example, the Stanford d.school model (pictured in Figure 2) is one example that has popularized design thinking (Plattner, Meinel, & Leifer, 2010). 3

The STEAM Journal, Vol. 3, Iss. 1 [2017], Art. 11 Figure 2. There are numerous ways design could play out in teachers thinking or classroom practices. But within the confines of this article I offer one example, simply to provide a sense of how design thinking can work for STEAM. A case in point: Design in the creation of a STEAM class project In a graduate in-service teacher education course I designed and co-taught, teachers use design thinking models to address classroom problems of practice. In this course, we used the Stanford design thinking model, but I do not assert that the Stanford model is the only or best approach. There are dozens or more variations of freely-available design thinking models. But having a model is valuable as it provides educators with a guiding approach, as a way to intentionally work through getting stuck (Watson, 2015, p. 16). The students (who are also teachers) use design thinking to address a significant teaching problem of their choosing. Often, these problems involve the struggle of creating curricula that is engaging, creative, project-based, and inter-disciplinary in nature or, STEAM based curricula. http://scholarship.claremont.edu/steam/vol3/iss1/11 4

Henriksen: Creating STEAM with Design Thinking Not all are traditional science or arts teachers, but their work spans science, art, and more, showing the range in STEAM. For example, Katherine was an elementary Spanish teacher in the course, who felt her teaching becoming uninspired and subject-matter bounded. Her problem of practice focused on designing an in-depth STEAM project for students. Her subject matter was Spanish language, and Katherine extended her teaching to create a project about water crisis, a major community concern in some Spanish speaking countries. Through this, students analyzed the importance of clean and safe water usage. Her initial aim was to introduce her students to new Spanish words, with water as the emphasis of conversation. Through the design process, she identified interdisciplinary STEAM connections. This led her to create a project where students spanned disciplines creatively. In it, they conducted their own research on scientific and social dimensions of water usage, considered complex problems that occur across countries, learned the science of the water cycle, designed artistic posters, diagrams, and presentations to communicate their work, and found ways to teach others about the intersection of these issues. Katherine came up with more ongoing, interdisciplinary aspects to this project than could be described here. As one small example, her fourth graders did a poster session, where they researched the water science, to design visuals that communicated it with Spanish words. They learned the basic science and the Spanish vocabulary, but also had creative freedom to design their works. A few examples are shown in the Figures 3 and 4: 5

The STEAM Journal, Vol. 3, Iss. 1 [2017], Art. 11 Figure 3. Figure 4. http://scholarship.claremont.edu/steam/vol3/iss1/11 6

Henriksen: Creating STEAM with Design Thinking STEAM and design processes for teachers and students Through design thinking processes, Katherine integrated two different ways of redesigning her curriculum, having students engage their problem solving and creativity which harkens back to design processes as a creative/analytical mix. To develop this STEAM project, Katherine used the Stanford design model cycles of empathy, problem definition, ideation, prototyping, and testing. For empathy research, she did informal interviews, observations, and surveys of students to understand their motivations and interests. This helped her define the problem, around creating curricula that let kids spend in-depth time with issues to make connections between disciplinary ideas and their own lives. To ideate on possibilities, she kept an ideation journal to jot down ideas over a period of time, and used this to stimulate a brainstorm session with other teachers. All of this led her to prototype a first run of the project, then test it with students to observe, and iterate on improvements. Design processes supported her thinking, toward building a more STEAM-based lesson with multiple artistic, scientific, and social/humanities related project facets (a few described above). She also started weaving aspects of design thinking into the students work itself. For example, she found ways to use empathy to help students understand water crisis. She performed a hands-on water experiment where students were given a limited amount of clean water, and had to decide how to use this water. While students performed the experiment, she collected observations on their reactions, their choices, and their reactions to using dirty water for bathing, drinking, and cooking. As Katherine noted in her teacher-designer reflection: This gave insight about students reactions and emotions towards water issues in their own home and community they developed deep answers about solutions to changing water issues, including: drilling more wells to access clean water, using filters, stopping pollution 7

The STEAM Journal, Vol. 3, Iss. 1 [2017], Art. 11 of peoples water supply, routing more rivers towards civilization, and not using chemicals on food/plants that go into groundwater. In a social dimension, during the hands-on water experiment, my students started bargaining with each other for clean water tokens and started sharing them among the class to avoid anyone using the dirty water tokens. Activities like this, among others she did, allowed students to go beyond the confines of just learning the Spanish words, or the scientific or artistic or social dynamics of the project. They were able to see how different disciplines come together in real-world problems. As Katherine described it, her students were highly motivated to research, create and learn because of the connection to their own life. Students learned about where water comes from, how we use it every day, and the impact of living somewhere without clean water. Creative, interdisciplinary, research-based, artful, and real-world connections are at the core of STEAM, and at the core of design too. When Herbert Simon (1969) laid down the tenets of design as a field, he emphasized it as human-centered problem solving, and design as an interdisciplinary crossroads. Here, through design Katherine worked towards a more STEAM project-based approach, in her own and her students work. While the sciences were represented in students learning of the water cycle, they also were using the arts to visually represent ideas, as well as learning Spanish vocabulary, engaging with real-world social dilemmas and other dynamics in a complex interweaving of disciplines. http://scholarship.claremont.edu/steam/vol3/iss1/11 8

Henriksen: Creating STEAM with Design Thinking Conclusion I have noted the value in a broad view of STEAM beyond arts-integration, suggesting the potential of design thinking for STEAM, both as a guiding structure and in-road for teachers to design more STEAM-based lessons, and as an integrated aspect of students STEAM learning. Katherine s example is one of many, in which design thinking helps teachers create more STEAM-based curricula. It might be argued that teachers can do creative curricular work without such a process. And for some that may be true, depending on teacher backgrounds and skill sets, and their experience working across disciplines. Yet, making STEAM connections remains a challenge for many, and our disciplinary lenses can get in the way of seeing where disciplines or real-world contexts connect. Design, as an interdisciplinary crossroads and creative process of problem-solving, may help teachers through these barriers. This may be best summed up in Katherine s own words, as she reflected on the process of seeing herself as a teacher and designer of STEAM content: Learning about design thinking came at a great moment in my teaching career. It allowed me to feel like a designer. I believe this process of design is a motivating way to promote creative thinking, collaboration, and student ownership and responsibility of their learning. There were irregularities and problems that came up along the way for me, however I felt like I was developing problem-solving skills to tackle these issues I also think you could take many different paths through and modify this process as needed. Without it, I think I would have struggled creating this project for my students and would have been overwhelmed or frustrated. As a designer, it was exciting to see the development and changes in my project from the beginning to the end. 9

The STEAM Journal, Vol. 3, Iss. 1 [2017], Art. 11 References Buchanan, R. (2001). Design and the new rhetoric: Productive arts in the philosophy of culture. Philosophy and Rhetoric, 34(3), 183-206. Cohen, J., McCabe, L., Michelli, N. M., & Pickeral, T. (2009). School climate: Research, policy, practice, and teacher education. Teachers college record, 111(1), 180-213. Cropley, D. H. (2016). Creativity in engineering. In Multidisciplinary Contributions to the Science of Creative Thinking (pp. 155-173). Springer Singapore. Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design issues, 17(3), 49-55. Cross, N. (2011). Design thinking: Understanding how designers think and work. Berg. Herro, D., & Quigley, C. (2016). STEAM Enacted: A Case study of a middle school teacher implementing STEAM instructional practices. Journal of Computers in Mathematics and Science Teaching, 35(4), 319-342. Jolly, A., (2014). STEM vs. STEAM: Do the arts belong? Education week: Teacher. Retrieved from http://www.edweek.org/tm/articles/2014/11/18/ctq-jolly-stem-vs-steam.html Kim, Y., & Park, N. (2012). Development and application of STEAM teaching model based on the Rube Goldberg s invention. In Computer science and its applications (pp. 693-698). Springer Netherlands. Kirschner, P. A. (2015). Do we need teachers as designers of technology enhanced learning? Instructional Science, 43(2), 309-322. Mote, C., Strelecki, K., & Johnson, K. (2014). Cultivating high-level organizational engagement to promote novel learning experiences in STEAM. The STEAM Journal, 1(2), 18. http://scholarship.claremont.edu/steam/vol3/iss1/11 10

Henriksen: Creating STEAM with Design Thinking Norton, P., & Hathaway, D. (2015). In Search of a Teacher Education Curriculum: Appropriating a Design Lens to Solve Problems of Practice. Educational Technology, 55(6), 3-14. Piro, J. (2010). Going from STEM to STEAM: The Arts Have a Role in America s Future, Too. Education Week, 29 (24), 28 29. Plattner, H., Meinel, C., & Leifer, L. (Eds.). (2010). Design thinking: understand improve apply. Springer Science & Business Media. Watson, A. D. (2015). Design Thinking for Life. Art Education, 68(3), 12-18. 11