Implementing A Social Learning Ecosystem For Engineering Education - A Case Study

Similar documents
ATENEA UPC AND THE NEW "Activity Stream" or "WALL" FEATURE Jesus Alcober 1, Oriol Sánchez 2, Javier Otero 3, Ramon Martí 4

Higher education is becoming a major driver of economic competitiveness

OPAC and User Perception in Law University Libraries in the Karnataka: A Study

Inquiry Learning Methodologies and the Disposition to Energy Systems Problem Solving

Nurturing Engineering Talent in the Aerospace and Defence Sector. K.Venkataramanan

Nottingham Trent University Course Specification

GREAT Britain: Film Brief

Leveraging MOOCs to bring entrepreneurship and innovation to everyone on campus

MASTER S COURSES FASHION START-UP

Platform for the Development of Accessible Vocational Training

EMBA 2-YEAR DEGREE PROGRAM. Department of Management Studies. Indian Institute of Technology Madras, Chennai

COMMUNITY ENGAGEMENT

Strategic Planning for Retaining Women in Undergraduate Computing

Head of Maths Application Pack

Document number: 2013/ Programs Committee 6/2014 (July) Agenda Item 42.0 Bachelor of Engineering with Honours in Software Engineering

How to Develop and Evaluate an etourism MOOC: An Experience in Progress

The Condition of College & Career Readiness 2016

THREE-YEAR COURSES FASHION STYLING & CREATIVE DIRECTION Version 02

The development and implementation of a coaching model for project-based learning

Politics and Society Curriculum Specification

Teacher of Art & Design (Maternity Cover)

K5 Math Practice. Free Pilot Proposal Jan -Jun Boost Confidence Increase Scores Get Ahead. Studypad, Inc.

University of Essex Access Agreement

Job Description for Virtual Learning Platform Assistant and Staff ICT Trainer

HARPER ADAMS UNIVERSITY Programme Specification

Bluetooth mlearning Applications for the Classroom of the Future

The Open University s repository of research publications and other research outputs. Moving forward with TESSA: what is the potential for MOOCs?

Strategic Plan SJI Strategic Plan 2016.indd 1 4/14/16 9:43 AM

Higher Education Review (Embedded Colleges) of Navitas UK Holdings Ltd. Hertfordshire International College

A LIBRARY STRATEGY FOR SUTTON 2015 TO 2019

Automating the E-learning Personalization

Developing, Supporting, and Sustaining Future Ready Learning

Classroom Teacher Primary Setting Job Description

Integration of ICT in Teaching and Learning

Changes to GCSE and KS3 Grading Information Booklet for Parents

The Comparative Study of Information & Communications Technology Strategies in education of India, Iran & Malaysia countries

Video Marketing Strategy

DIGITAL GAMING & INTERACTIVE MEDIA BACHELOR S DEGREE. Junior Year. Summer (Bridge Quarter) Fall Winter Spring GAME Credits.

Library Consortia: Advantages and Disadvantages

OFFICE OF ENROLLMENT MANAGEMENT. Annual Report

TEACHER OF MATHEMATICS (Maternity Full time or Part time from January 2018)

Developing an Assessment Plan to Learn About Student Learning

STATUS OF OPAC AND WEB OPAC IN LAW UNIVERSITY LIBRARIES IN SOUTH INDIA

Mathematics Program Assessment Plan

The context of using TESSA OERs in Egerton University s teacher education programmes

VOL VISION 2020 STRATEGIC PLAN IMPLEMENTATION

Priorities for CBHS Draft 8/22/17

Learning in the digital age

This Access Agreement is for only, to align with the WPSA and in light of the Browne Review.

The Open University s repository of research publications and other research outputs

Circuit Simulators: A Revolutionary E-Learning Platform

Course Specification Executive MBA via e-learning (MBUSP)

Examining the Structure of a Multidisciplinary Engineering Capstone Design Program

Lectora a Complete elearning Solution

Using Virtual Manipulatives to Support Teaching and Learning Mathematics

Institutional repository policies: best practices for encouraging self-archiving

Procedia - Social and Behavioral Sciences 136 ( 2014 ) LINELT 2013

Davidson College Library Strategic Plan

E-Learning project in GIS education

November 17, 2017 ARIZONA STATE UNIVERSITY. ADDENDUM 3 RFP Digital Integrated Enrollment Support for Students

Aurora College Annual Report

Infrared Paper Dryer Control Scheme

On the Combined Behavior of Autonomous Resource Management Agents

Research-Based Instructional Practices That Maximize Student Learning. Ainsley B. Rose December 7, 2015

Requesting Title II, Part A Services. A Guide for Christian School Administrators

Teacher of English. MPS/UPS Information for Applicants

Curriculum for the Bachelor Programme in Digital Media and Design at the IT University of Copenhagen

Education the telstra BLuEPRint

LIBRARY AND RECORDS AND ARCHIVES SERVICES STRATEGIC PLAN 2016 to 2020

elearning OVERVIEW GFA Consulting Group GmbH 1

EDITORIAL: ICT SUPPORT FOR KNOWLEDGE MANAGEMENT IN CONSTRUCTION

An Introduction and Overview to Google Apps in K12 Education: A Web-based Instructional Module

Initial teacher training in vocational subjects

Bluetooth mlearning Applications for the Classroom of the Future

new research in learning and working

An Evaluation of E-Resources in Academic Libraries in Tamil Nadu

Version Number 3 Date of Issue 30/06/2009 Latest Revision 11/12/2015 All Staff in NAS schools, NAS IT Dept Head of Operations - Education

SEN SUPPORT ACTION PLAN Page 1 of 13 Read Schools to include all settings where appropriate.

Towards a Collaboration Framework for Selection of ICT Tools

Self Study Report Computer Science

Evaluation of Learning Management System software. Part II of LMS Evaluation

Bachelor of Engineering in Biotechnology

CUSTOM ELEARNING SOLUTIONS THAT ADD VALUE TO YOUR LEARNING BUSINESS

Foundation Certificate in Higher Education

Navitas UK Holdings Ltd Embedded College Review for Educational Oversight by the Quality Assurance Agency for Higher Education

WORKSHOP. technologies

Software Development: Programming Paradigms (SCQF level 8)

(Includes a Detailed Analysis of Responses to Overall Satisfaction and Quality of Academic Advising Items) By Steve Chatman

2013 Annual HEITS Survey (2011/2012 data)

Measurement. Time. Teaching for mastery in primary maths

Director, Intelligent Mobility Design Centre

Envision Success FY2014-FY2017 Strategic Goal 1: Enhancing pathways that guide students to achieve their academic, career, and personal goals

Personal Tutoring at Staffordshire University


Senior Research Fellow, Intelligent Mobility Design Centre

Student Experience Strategy

GCSE English Language 2012 An investigation into the outcomes for candidates in Wales

eportfolio Guide Missouri State University

Job Description Head of Religious, Moral and Philosophical Studies (RMPS)

EQuIP Review Feedback

Transcription:

ABSTRACT Implementing A Social Learning Ecosystem For Engineering Education - A Case Study K. Mallikharjuna Babu 1, G. Gopalakrishnan 2, S. Girish 2 and S. Suryanarayan 2 1. Principal - BMS College of Engineering, Bull Temple Rd, Basavanagudi, Bengaluru Karnataka 560019 India <drkmbabu@gmail.com> 2. Wiksate Solutions Pvt. Ltd., 13 Profile Avenue, 11 Aundh Road, Pune 411 020 India girish@wiksate.com ; sudhakshina@wiksate.com ; suri@wiksate.com Social Learning occurs when students interact amongst themselves as a community of networked learners and this is an important component of the process of education. Modern developments in communication technology now make it possible for students to engage with each other and with their teachers beyond class-room walls through electronic media without constraints of location or time. This paper presents a case study of the implementation and practice of social learning process at the BMS College of Engineering (BMSCE) through the use of a Technology Enabled Social Learning (TESL) platform that facilitates ubiquitous engagement among the student community. Challenges in the implementation and practice of the social learning process in institutions of higher learning are discussed and results are presented of various social learning metrics to bring out the growth in students active engagement in learning through the use of the TESL platform. Keywords: Technology Enabled Social Learning, Informal Learning, Social Learning Analytics. 1. INTRODUCTION Developments in Information and Communication Technology (ICT) now enable us to address the demand for education by the large community of students through online courses and their delivery by various modes. However, the application of ICT has so far focused more on provisioning of knowledge contents and their delivery. The use of such online education to supplement traditional class-room lectures does not however solve the problem of reduced teacher-student or student-student engagement. Learning often happens amongst students when they interact amongst themselves as a community of networked learners[1]. Such a learning process, also referred to as Social Learning, is a critical component of the process of education. Developments in ICT now make it possible for students to engage with each other and with their teachers beyond the class-room walls through electronic media without the constraints of location or time. A Technology Enabled Social Learning [TESL] platform[2] that facilitates ubiquitous engagement among the students, developed by Wiksate Solutions Private Limited (WIKSATE) became available in 2014 and this motivated the BMS College of Engineering (BMSCE) to introduce a TESL ecosystem for enhancing the students learning. Since then, BMSCE, with active Beta partnership of 1

WIKSATE, launched the induction of social Learning for a number of courses in different departments for different batches in the engineering programme. This paper presents a case study of the implementation and practice of Social Learning in BMSCE during the last three years. Results of social interaction analytics are presented to bring out the steady growth in student interactions focused on various topics across disciplines and its impact on the learning process. 2. THE SOCIAL LEARNING PROCESS Fig.1 shows a schematic of how social learning happens when students in a knowledge network engage with each other and their teachers as a community of learners. Peers and Seniors Faculty Alumni Industry Knowledge Network Fig.1 Schematic of a Social Learning Knowledge Network The learning process of students as members of a network of learners involves, connecting and sharing the information acquired with other members of the community as well as responding to (questioning/commenting/correcting/acknowledging) such information shared by other members of the network. This collective process of discussion and reflection helps the community of learners to convert the information shared into curated knowledge and create knowledge networks. Often, the knowledge network is contextual to the geography of the institute. For example, learners from a particular institute often tend to create knowledge networks with their seniors and alumni who can provide contextual value to the institute students. This knowledge can be retained and form part of the institute s learning footprint. The use of ICT and modern communication media can enable learners to have efficient and sustained interactions with their peers as well as with a wider cohort of learners and experts to create several knowledge networks of significant practical value. 2

3. THE TESL ECOSYSTEM - OBJECTIVES BMSCE in partnership with WIKSATE commenced a series of experiments to implement social learning practices using the TESL platform for a limited set of branches and students over a period starting February 2013. The common vision statement for the project was to create active engaged learners. The specific objectives of the experiment were to (i) promote Informal Learning among students and (ii) provide faculty with real-time data from closed loop analytics to measure and improve delivery and support processes. The approach was to focus on about 5 departments in the first 6 months and grow it across all departments beyond that period. The experiment covered over 2000 students, over 40 courses, 20 faculty and 11 programmes. 4.TESL IMPLEMENTATION Educational institutes face numerous challenges in dealing with the vast population of students. Whilst technology used appropriately can deliver efficiencies and free up faculty time significantly to focus on their core responsibility, it s often the adoption and transformation processes that ensure essential uptake of technology based automation. Implementing a TESL ecosystem in a large educational institution requires the motivation and involvement of faculty to interact with students beyond their class-room lectures and contact hours, through communication media[3]. Faculty participation in the social learning ecosystem, over and above Fig. 2 Three -Tier Implementation of the TESL Ecosystem their traditional responsibilities to academic programmes, requires personal motivation as well as institutional support and encouragement. Building such an ecosystem requires all levels of the institute to co-opt and participate to ensure that the initiative shows successful growth during the formative years. An administrative structure for the induction of the TESL ecosystem was 3

established and responsibilities were assigned to faculty identified as transformational faculty who as learning champions, facilitated and moderated student interactions. Student champions were identified, who as transformation agents catalysed the involvement of other students in social interactions related to various discussion groups and courses. This approach helped realise transformation in phases through a three-tier implementation and communication set-up as shown in Fig.2. 5. TESL ECOSYSTEM TECHNOLOGY AND PRACTICE The TESL platform is a web-based interaction engine designed to be accessed through various communication media. Ubiquitous connectivity is provided by enabling access through personal computers, laptops, tablets and smart mobile[4] phones. These account for and support student preferences to adopt these gadgets as principal consumption interfaces of knowledge. Entwining social learning into curriculum delivery can greatly improve engagement and interactions. Real time interactions provide extensive insights into student learning patterns, behaviours and preferences. Real time interventions provide a greater ability to manage students@risk and improve their learning experiences. Student interactions are multidisciplinary and there is a significant inclination towards peripheral learning areas outside the curriculum. Supplementing the learning journey of students in certain learning groups that have more student demand and interest, promote an open learning culture. The TESL platform also facilitates asynchronous communication empowering students to have social interaction round the clock. The analytics features available in the TESL platform to measure student engagements and movements in real-time provide feedback to faculty so that they can device intervention and continuous improvement measures during course delivery on an ongoing basis. 6. SOME RESULTS OF THE CASE STUDY The implementation of the social learning ecosystem was very successful in realising the goals set forth. Some representative data are presented here to bring out the quantitative and qualitative features of growth of social learning at BMSCE. Fig. 3 shows the growth of Key Social Learning Parameters. It was observed that the growth of subscriptions to social learning groups was organic and unenforced. Growth is also attributed to students and faculty getting comfortable with the functions and features of the platform. It was also observed that the learning groups grew over a period of time. Students formed multidisciplinary groups to cross share and build knowledge. This had a cascading effect leading to growth in interactions and learning reach. The results given below, sum up the growth of social learning over the period of three years. 4

4000+ learnings 2100+ learners 45% active learners (engagement) 50,000+ interactions Fig 3. Growth of Key Social Learning Parameters Fig 4. Growth of the Faculty and Student Sharings Fig. 4 shows the growth of faculty and student sharings (Reach) over the period 2014-15. Reach is a measure of how learning permeates to an individual or a group of students within an ecosystem. In the first half of the induction period, faculty led the way in creating and permeating learnings. Second half indicates a gradual shift of reach from faculty to students. 5

Student formed learning groups presenting wider and open following across various disciplines Strong multi disciplinary student inclinations from other branches wanting to join popular courses Fig.5. Popular Special Interest groups The graphics presented in Fig. 5 show how special interest groups attract students to join and contribute. The green bars indicate student inquisitiveness/interest to join these groups and interact. Students from various disciplines joined course and non-course groups. These results provide visibility to the open social learning culture among the students. Fig 6 shows a breakup of student media preferences. It also shows a course-wise breakup to identify courses that generate the specific media type of social learning activity. Higher consumption of specific media indicates student preferences of media type. For instance, Thermodynamics showed a high preference to video based learning objects. Thus, these analytics provide significant insights into student preferences and dispositions in relation to subject and course related content. Fig 6. Learning media preferences Fig 7 provides an interesting picture of the interaction behaviours in terms of the biological clock patterns of students and faculty. It shows that active engaged learning happens round the clock among the student community. 6

7. CONCLUSIONS Fig 7. Distribution Interaction Pattern of Social Learning over 24x7x365 The present project on building a technology enabled social learning ecosystem at BMSCE was a transformational activity. Its successful realization was made possible by the involvement and motivation at all levels of the educational institute, namely management, faculty and students. The WIKSATE TESL platform provided (i) a powerful interaction engine for students to interact and share their learnings with their co-learners in a knowledge network and (ii) real-time data to faculty which give insight into student preferences and engagement and help plan continuous improvements in the course delivery and outcome. It also helped promoting a culture of openness and moderated learning providing a vital bridge to close the gap between educators and students. The results from TESL analytics show that students have a natural motivation and inquisitiveness to get involved in interactions when empowered by ICT and a mobile centric ubiquitous access to knowledge networks. The results also show a steady growth of interactions at all levels, which highlights the importance of practice as a critical component besides technology, in the induction of social learning ecosystem in an institutional environment. 8. ACKNOWLEDGEMENTS The successful implementation of the TESL ecosystem at the BMS College of Engineering required keen involvement of the management, staff and students. The development and periodic fine-tuning of the TESL platform demanded sustained intense effort of the management and staff at Wiksate Solutions Private Limited. The collective contributions of all the stake holders are gratefully acknowledged. 7

9. REFERENCES 1. Lone Dirckinck-Holmfeld, Vivien Hodgson, David McConnell (Editors) Exploring the Theory, Pedagogy and Practice of Networked Learning Research in Networked Learning Book Series, Springer, 2011 2. G Gopalakrishnan, S Girish, S Suryanarayan " An Interaction Engine for Intelligent Social Learning", White paper 2014-1, Wiksate Solutions Pvt Ltd., Pune, India. 3. Babu, K.; Kanmani, B.; Gopalakrishnan, G.; Girish, S.; Suryanarayan, S. Improvement of learning outcome and its measurement using social learning intelligence, International Conference on Interactive Collaborative Learning (ICL), WEEF Dubai, p 459-463, December 3 to 6, 2014. 4. G Gopalakrishnan, S Girish Mobile-centric Ubiqutous Access to Social Learning, White paper 2015-2, Wiksate Solutions Pvt Ltd., Pune, India. 5. Babu, K.; Kanmani, B.; Gopalakrishnan, G.; Girish, S.; Suryanarayan, S Social Learning Intelligence. 2016. Web. Available: https://www.youtube.com/watch?v=n82u_wk1yxs 1 Jan. 2015. 10. AUTHORS Professor K Malikarjuna Babu is the Principal of the BMS College of Engineering, Bangalore, a leading technical educational institution in Karnataka, India. He lead the institution to acquire academic autonomy and introduced several educations reforms to enhance the quality of teaching and learning processes which include introducing outcome based education, social learning and several other initiatives. Girish Gopalakrishnan is the CEO of Wiksate Solutions Private Limited, Pune (India). Prior to founding Girish was Director- Education Technologies with the State Government of Victoria, Australia. Sudhakshina Girish is the Chief Technology Officer at Wiksate. She is a technocrat with over 15 years experience in core programming and advanced algorithm development. S. Suryanarayan Chief Advisor of WIKSATE, is a retired Professor of Aerospace Engineering and formerly Dean of R&D at IIT Bombay with over 40 years of experience in teaching, technology development and policy. His current areas of interest are education, pedagogy and policy. 8