Student Learning Outcomes Draft for Implementation Spring 2015

Similar documents
Probability and Statistics Curriculum Pacing Guide

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

STA 225: Introductory Statistics (CT)

Grade 6: Correlated to AGS Basic Math Skills

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

Extending Place Value with Whole Numbers to 1,000,000

Statewide Framework Document for:

Honors Mathematics. Introduction and Definition of Honors Mathematics

Math 96: Intermediate Algebra in Context

FIGURE IT OUT! MIDDLE SCHOOL TASKS. Texas Performance Standards Project

Radius STEM Readiness TM

Montana Content Standards for Mathematics Grade 3. Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011

Mathematics subject curriculum

Introducing the New Iowa Assessments Mathematics Levels 12 14

Mathematics Program Assessment Plan

Dublin City Schools Mathematics Graded Course of Study GRADE 4

UNIT ONE Tools of Algebra

Unit 3 Ratios and Rates Math 6

First Grade Standards

Edexcel GCSE. Statistics 1389 Paper 1H. June Mark Scheme. Statistics Edexcel GCSE

Physics 270: Experimental Physics

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified

Florida Reading for College Success

STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point.

1.11 I Know What Do You Know?

TABE 9&10. Revised 8/2013- with reference to College and Career Readiness Standards

Missouri Mathematics Grade-Level Expectations

Mathematics. Mathematics

Spinners at the School Carnival (Unequal Sections)

Learning Disability Functional Capacity Evaluation. Dear Doctor,

learning collegiate assessment]

Intentional coaching and planning: Integrating practices into content instruction

Arizona s College and Career Ready Standards Mathematics

INFORMATION LITERACY SKILLS CONTINUUM Grades 6-12

SAT MATH PREP:

Content Language Objectives (CLOs) August 2012, H. Butts & G. De Anda

Fourth Grade. Reporting Student Progress. Libertyville School District 70. Fourth Grade

Introduction to the Practice of Statistics

Learning Microsoft Publisher , (Weixel et al)

Problem of the Month: Movin n Groovin

Unit 7 Data analysis and design

Common Core Standards Alignment Chart Grade 5

Informal Comparative Inference: What is it? Hand Dominance and Throwing Accuracy

Update on Standards and Educator Evaluation

The lab is designed to remind you how to work with scientific data (including dealing with uncertainty) and to review experimental design.

Further, Robert W. Lissitz, University of Maryland Huynh Huynh, University of South Carolina ADEQUATE YEARLY PROGRESS

Florida Mathematics Standards for Geometry Honors (CPalms # )

Intentional coaching and planning: Integrating mathematics teaching practices into content instruction

Practical Research. Planning and Design. Paul D. Leedy. Jeanne Ellis Ormrod. Upper Saddle River, New Jersey Columbus, Ohio

Julia Smith. Effective Classroom Approaches to.

OFFICE SUPPORT SPECIALIST Technical Diploma

Cal s Dinner Card Deals

Classroom Connections Examining the Intersection of the Standards for Mathematical Content and the Standards for Mathematical Practice

Hardhatting in a Geo-World

Focus of the Unit: Much of this unit focuses on extending previous skills of multiplication and division to multi-digit whole numbers.

Math 121 Fundamentals of Mathematics I

Math Pathways Task Force Recommendations February Background

Unit 3. Design Activity. Overview. Purpose. Profile

Statistical Studies: Analyzing Data III.B Student Activity Sheet 7: Using Technology

South Carolina English Language Arts

Characterizing Mathematical Digital Literacy: A Preliminary Investigation. Todd Abel Appalachian State University

Lecture 1: Machine Learning Basics

Ohio s New Learning Standards: K-12 World Languages

Integrating Common Core Standards and CASAS Content Standards: Improving Instruction and Adult Learner Outcomes

Foothill College Summer 2016

May To print or download your own copies of this document visit Name Date Eurovision Numeracy Assignment

Lesson M4. page 1 of 2

Standard 1: Number and Computation

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C

Grade Band: High School Unit 1 Unit Target: Government Unit Topic: The Constitution and Me. What Is the Constitution? The United States Government

Using Calculators for Students in Grades 9-12: Geometry. Re-published with permission from American Institutes for Research

TU-E2090 Research Assignment in Operations Management and Services

Licensing for State of Texas Community Colleges. General Information About the Dana Center s Copyright

Ohio s Learning Standards-Clear Learning Targets

Research Design & Analysis Made Easy! Brainstorming Worksheet

success. It will place emphasis on:

Build on students informal understanding of sharing and proportionality to develop initial fraction concepts.

The Editor s Corner. The. Articles. Workshops. Editor. Associate Editors. Also In This Issue

This table contains the extended descriptors for Active Learning on the Technology Integration Matrix (TIM).

AP Statistics Summer Assignment 17-18

Learning Microsoft Office Excel

TOPICS LEARNING OUTCOMES ACTIVITES ASSESSMENT Numbers and the number system

Maximizing Learning Through Course Alignment and Experience with Different Types of Knowledge

CAAP. Content Analysis Report. Sample College. Institution Code: 9011 Institution Type: 4-Year Subgroup: none Test Date: Spring 2011

Enhancing Students Understanding Statistics with TinkerPlots: Problem-Based Learning Approach

Chapters 1-5 Cumulative Assessment AP Statistics November 2008 Gillespie, Block 4

After your registration is complete and your proctor has been approved, you may take the Credit by Examination for MATH 6A.

MODULE 4 Data Collection and Hypothesis Development. Trainer Outline

SURVIVING ON MARS WITH GEOGEBRA

TIM: Table of Summary Descriptors This table contains the summary descriptors for each cell of the Technology Integration Matrix (TIM).

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATHEMATICS ASSESSING THE EFFECTIVENESS OF MULTIPLE CHOICE MATH TESTS

NCSC Alternate Assessments and Instructional Materials Based on Common Core State Standards

PROGRESS MONITORING FOR STUDENTS WITH DISABILITIES Participant Materials

This scope and sequence assumes 160 days for instruction, divided among 15 units.

Language Acquisition Chart

NOT SO FAIR AND BALANCED:

Mathematics process categories

Disciplinary Literacy in Science

Transcription:

Quantitative Reasoning Student Learning Outcomes Draft for Implementation Spring 2015 About the New Mathways Project The New Mathways Project is a systemic approach to improving student success and college completion through implementation of processes, strategies, and structures built around three accelerated mathematics pathways and a supporting student success course. The pathways enable students placed into developmental mathematics to complete a credit-bearing, transferable mathematics course on an accelerated timeline, while simultaneously building skills for long-term success in college and in life. The NMP s vision is aligned with national perspectives in mathematics education. The NMP guiding principles and instructional strategies, course structure, and course content are aligned with the following standards and recommendations created and adopted by the professional mathematics and statistics communities: Adding it Up: Helping Children Learn Mathematics, National Research Council (National Academic Press, 2001) Beyond Crossroads: Implementing Mathematics Standards in the First Two Years of College, American Mathematical Association of Two-Year Colleges (AMATYC, 2006) Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curriculum Guide 2004: A report by the Committee on the Undergraduate Program in Mathematics of The Mathematical Association of America (MAA, 2004) Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report, American Statistical Association (ASA, 2005, 2010) Common Core State Standards for Mathematics: Standards for Mathematical Practice, National Governors Association Center for Best Practices and Council of Chief State School Officers (National Governors Association Center for Best Practices, Council of Chief State School Officers, 2010) Principles and Standards for School Mathematics, National Council of Teachers of Mathematics (NCTM, 2000) Texas College and Career Readiness Standards, Texas Higher Education Coordinating Board and Texas Education Agency (2009) www.utdanacenter.org 01222014 www.tacc.org

About Quantitative Reasoning Student Learning Outcomes for Quantitative Reasoning is designed for students who have completed Foundations of Mathematical Reasoning and the co-requisite Frameworks for Mathematics and Collegiate Learning. Readiness competencies Students enrolling in Quantitative Reasoning should be able to do the following: Demonstrate procedural fluency with real number arithmetic operations and use those operations to represent real-world scenarios and to solve stated problems. Demonstrate number sense, including dimensional analysis and conversions between fractions, decimals, and percentages. Determine when approximations are appropriate and when exact calculations are necessary. Solve linear equations, graph and interpret linear models, and read and apply formulas. Demonstrate a basic understanding of displays of univariate data such as bar graphs, histograms, dotplots, and circle graphs, including appropriate labeling. Take charge of their own learning through good classroom habits, time management, and persistence. Participate in the classroom community through written and oral communication. Course structure and contact hours Quantitative Reasoning is designed to be taught as a one-semester course with 3 student contact hours per week or in a quarter system with an equivalent number of contact hours. Active learning design principles are evident in each lesson. Students will be expected to actively do mathematics such as analyzing data, constructing hypotheses, solving problems, reflecting on their work, and making connections. The Quantitative Reasoning course is organized around big mathematical and statistical concepts. The course s nontraditional treatment of content will help students develop conceptual understanding by supporting them in making connections between concepts and applying previously learned material to new contexts. The course will help to prepare students for success in future courses, gain skills for the workplace, and participate as productive citizens in our society. 2

NMP Pathway Learning Goals With applications for the Quantitative Reasoning course The following five learning goals apply to all NMP mathematics courses, with the complexity of problem-solving skills and use of strategies increasing as students advance through the pathways. For each course, we define the ways that the learning goals are applied and the expectations for mastery. The bullets below each of the five learning goals specify the ways each learning goal is applied in the Quantitative Reasoning course. Each NMP course is designed so that students meet the goals across the courses in a given pathway. Within a course, the learning goals are addressed across the course s contentbased learning outcomes. These learning goals and the content-based learning outcomes were developed and informed by the individuals and resources acknowledged at the end of this document. Communication Goal: Students will be able to interpret and communicate quantitative information and mathematical and statistical concepts using language appropriate to the context and intended audience. Use appropriate mathematical and statistical language in oral, written, and graphical forms. Read and interpret authentic texts such as advertisements, consumer information, government forms, and newspaper articles containing quantitative information, including graphical displays of quantitative information. These texts may be as long as a standard magazine article and will include comparison, analysis, and synthesis of multiple forms or sources of quantitative information. Write 1 to 2 pages using quantitative information to synthesize information from multiple sources or to make or critique an argument. Problem Solving Goal: Students will be able to make sense of problems, develop strategies to find solutions, and persevere in solving them. Develop an answer to an open-ended question requiring analysis and synthesis of multiple calculations, data summaries, and/or models. Students will be expected to develop their own process with support from peers and the instructor. This type of question would be expected to extend over time (beyond one or two class meetings) with work occurring both in and outside of class time with specific checkpoints to monitor progress. 3

Reasoning Goal: Students will be able to reason, model, and draw conclusions or make decisions with mathematical, statistical, and quantitative information. Draw conclusions or make decisions in quantitatively based situations that are dependent upon multiple factors. Students will analyze how different situations would affect the decisions. Present written or verbal justifications of decisions that include appropriate discussion of the mathematics involved. Recognize when additional information is needed. Evaluation Goal: Students will be able to critique and evaluate quantitative arguments that utilize mathematical, statistical, and quantitative information. Evaluate the validity and possible biases in arguments presented in authentic contexts based on multiple sources of quantitative information (e.g., advertising, internet postings, consumer information, political arguments). Technology Goal: Students will be able to use appropriate technology in a given context. Use a spreadsheet to organize quantitative information and make repeated calculations using simple formulas. Use the internet to find quantitative information on a given subject and evaluate the validity and possible bias of information based on the source. Use internet-based tools appropriate for a given context (e.g., an online tool to calculate credit card interest). 4

Content Learning Outcomes for Quantitative Reasoning Quantitative Reasoning serves students who are focused on developing quantitative literacy skills that will be meaningful for their professional, civic, and personal lives. Such reasoning is a habit of mind, seeking pattern and order when faced with unfamiliar contexts. In this course, an emphasis is placed on the need for data to make good decisions and an understanding of the dangers inherent in basing decisions on anecdotal evidence rather than data. The topics for the Quantitative Reasoning course are: Number, Ratio, and Proportional Reasoning Modeling Probability Statistics Number, Ratio, and Proportional Reasoning Outcome: Students will draw conclusions and/or make decisions based on analysis and critique of quantitative information using proportional reasoning. Students will also effectively justify and communicate their conclusions in ways appropriate to the audience. Students will be able to: N.1 Solve real-life problems requiring interpretation and comparison of complex numeric summaries which extend beyond simple measures of center. For example: Interpret and/or compare weighted averages, indices, coding, and ranking. Evaluate claims based on complex numeric summaries. N.2 Solve real-life problems requiring interpretation and comparison of various representations of ratios (i.e., fractions, decimals, rates, and percentages). For example: Interpret nonstandard ratios used in media and risk reporting. Identify and contrast in written statements part-to-part versus part-to-whole ratios taken from meaningful context. Understand and communicate percentages as rates per 100. Identify uses and misuses of percentages related to a proper understanding of the base. Analyze growth and decay using absolute and relative change, and comparisons using absolute and relative difference. N.3 Distinguish between proportional and nonproportional situations and, when appropriate, apply proportional reasoning. For example: Solve for an unknown quantity in proportional situations. Determine the constant of proportionality in proportional situations, leading to a symbolic model for the situation (i.e., an equation based upon a rate of change, y = kx). Solve real-life problems requiring conversion of units using dimensional analysis. Apply scale factors to perform indirect measurements (e.g., maps, blueprints, concentrations, dosages, and densities). Recognize when proportional techniques do not apply. 5

Modeling Outcome: Students will draw conclusions and/or make decisions by analyzing and/or critiquing mathematical models, including situations for which the student must recognize underlying assumptions and/or make reasonable assumptions for the model. Students will be able to: M.1 Analyze and critique mathematical models and be able to describe their limitations. For example: Distinguish between correlation and causation. Determine whether interpolation and/or extrapolation are appropriate. M.2 Use models, including models created with spreadsheets or other tools, to estimate solutions to contextual questions, identify patterns, and identify how changing parameters affect the results. For example: Use functional models to estimate future population and spreadsheets to model financial applications (e.g., credit card debt, installment savings, amortization schedules, mortgage and other loan scenarios). M.3 Choose and create models for bivariate data sets, and use the models to answer questions and draw conclusions or make decisions. For example: Choose a linear, exponential, logistic, or periodic function to model a given set of data and justify the chosen model. Create models by hand or with technology. Use models appropriately. Demonstrate understanding of the limitations of chosen models and how the choice of model has long-term ramifications. Recognize when a change in model is needed. Probability Outcome: Students will apply probabilistic reasoning to draw conclusions, to make decisions, and to evaluate outcomes of decisions. Students will be able to: P.1 Evaluate claims based on empirical, theoretical, and subjective probabilities. For example: Analyze outcomes and draw conclusions or make decisions related to risk, pay-off, expected value, and false negatives/positives in various probabilities contexts. P.2 Use data displays and models to determine probabilities (including conditional probabilities) and use these probabilities to make informed decisions. For example: Use and make decisions based on data from two-way tables, tree diagrams, Venn diagrams, and area models. 6

Statistics Outcome: Students will draw conclusions or make decisions and communicate their rationale based on understanding, analysis, and critique of self-created or reported statistical information and statistical summaries. Students will be able to: S.1 Use statistical information from studies, surveys, and polls (including when reported in condensed form or as summary statistics) to make informed decisions. For example: Identify limitations, strengths, or lack of information in studies, including data collection methods (e.g., sampling, experimental, observational) and possible sources of bias. Identify errors or misuses of statistics to justify particular conclusions. Interpret and compare the results of polls using margin of error. S.2 Create and use visual displays of data. For example: Create (with and without technology) visual representations of realworld data such as charts, tables and graphs. Interpret and analyze visual representations of data. Describe strengths, limitations, and fallacies of various graphical displays. S.3 Summarize, represent, and interpret data sets on a single count or measurement variable. For example: Use plots and statistics appropriate to the shape of the data distribution to represent a single data set. Compare center, shape, and spread of two or more data sets. Interpret the differences in context. S.4 Use properties of distributions to analyze data and answer questions. For example: Recognize when data are normally distributed and use the mean and standard deviation of the data to fit them to a normal distribution. 7

Acknowledgments Development of NMP Quantitative Reasoning Student Learning Outcomes Student Learning Outcomes for These NMP Quantitative Reasoning Student Learning Outcomes were developed from, and informed by, the thoughtful recommendations of a broad-based group of mathematics and statistics professionals. In 2009, professionals began national discussions about ways to increase success for mathematics students. A focus on alternate mathematics pathways for developmental students in community colleges emerged from these conversations. Shortly thereafter, work began in earnest to develop a curriculum that included the mathematics that students need for their academic and career programs and to become productive citizens. Specifically, an initial meeting of members of the AMATYC (American Mathematical Association of Two-Year Colleges) Developmental Mathematics Committee outlined key principles and components of an introductory developmental mathematics course for students who would normally enroll in Introductory Algebra in the nation s community colleges. Those recommendations and the input from the Carnegie Committee on Mathematics Learning Outcomes (CCMLO) informed development of student mathematics learning outcomes for the Pathways initiative of the Carnegie Foundation for the Advancement of Teaching and the Charles A. Dana Center at and led to the jointly developed Quantway TM and Statway TM pathways. 1 The CCMLO consisted of representatives from AMATYC, the American Statistical Association (ASA), the Mathematical Association of America (MAA), the National Association for Developmental Education (NADE), and the National Council of Teachers of Mathematics (NCTM). In 2012, building on these recommendations, the Dana Center established a joint enterprise with the to bring alternative mathematics pathways for developmental students to Texas community colleges and, eventually, to the nation. 1 The Dana Center's New Mathways Project builds off our work in 2010 2011 with the Carnegie Foundation for the Advancement of Teaching. The original versions of the Statway and Quantway courses were created by The University of Texas at Austin under sponsorship of the Carnegie Foundation for the Advancement of Teaching, and are copyright 2011 by the Carnegie Foundation for the Advancement of Teaching and the Charles A. Dana Center at. STATWAY / Statway and Quantway are trademarks of the Carnegie Foundation for the Advancement of Teaching. 8