Education Distributed Computing Education, Part 3: The Winter School Online Experience

Similar documents
DICE - Final Report. Project Information Project Acronym DICE Project Title

Web-based Learning Systems From HTML To MOODLE A Case Study

EXECUTIVE SUMMARY. Online courses for credit recovery in high schools: Effectiveness and promising practices. April 2017

KENTUCKY FRAMEWORK FOR TEACHING

Executive summary (in English)

Keeping our Academics on the Cutting Edge: The Academic Outreach Program at the University of Wollongong Library

Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining

Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining

Helping Graduate Students Join an Online Learning Community

ACCOUNTING FOR MANAGERS BU-5190-AU7 Syllabus

MSc Education and Training for Development

Best Practices in Internet Ministry Released November 7, 2008

Nottingham Trent University Course Specification

Implementing a tool to Support KAOS-Beta Process Model Using EPF

Multimedia Courseware of Road Safety Education for Secondary School Students

RCPCH MMC Cohort Study (Part 4) March 2016

Programme Specification. MSc in Palliative Care: Global Perspectives (Distance Learning) Valid from: September 2012 Faculty of Health & Life Sciences

Programme Specification

ACCOUNTING FOR MANAGERS BU-5190-OL Syllabus

The influence of staff use of a virtual learning environment on student satisfaction

Online Marking of Essay-type Assignments

Study Group Handbook

PUBLIC CASE REPORT Use of the GeoGebra software at upper secondary school

Higher education is becoming a major driver of economic competitiveness

ENEE 302h: Digital Electronics, Fall 2005 Prof. Bruce Jacob

P. Belsis, C. Sgouropoulou, K. Sfikas, G. Pantziou, C. Skourlas, J. Varnas

Syllabus: CS 377 Communication and Ethical Issues in Computing 3 Credit Hours Prerequisite: CS 251, Data Structures Fall 2015

Programme Specification

Committee to explore issues related to accreditation of professional doctorates in social work

Strategy and Design of ICT Services

COURSE LISTING. Courses Listed. Training for Cloud with SAP SuccessFactors in Integration. 23 November 2017 (08:13 GMT) Beginner.

An adaptive and personalized open source e-learning platform

GOING GLOBAL 2018 SUBMITTING A PROPOSAL

Why Podcast? Computing and Network Services Fairfield University. Fairfield University - Summer

Chamilo 2.0: A Second Generation Open Source E-learning and Collaboration Platform

TCH_LRN 531 Frameworks for Research in Mathematics and Science Education (3 Credits)

Abstract. Janaka Jayalath Director / Information Systems, Tertiary and Vocational Education Commission, Sri Lanka.

Welcome to the session on ACCUPLACER Policy Development. This session will touch upon common policy decisions an institution may encounter during the

State University of New York at Buffalo INTRODUCTION TO STATISTICS PSC 408 Fall 2015 M,W,F 1-1:50 NSC 210

Course Syllabus Chem 482: Chemistry Seminar

CREATING SHARABLE LEARNING OBJECTS FROM EXISTING DIGITAL COURSE CONTENT

OCR LEVEL 3 CAMBRIDGE TECHNICAL

Guidelines for the Use of the Continuing Education Unit (CEU)

Progress Monitoring for Behavior: Data Collection Methods & Procedures

Basic Skills Initiative Project Proposal Date Submitted: March 14, Budget Control Number: (if project is continuing)

Poster Presentation Best Practices. Kuba Glazek, Ph.D. Methodology Expert National Center for Academic and Dissertation Excellence Los Angeles

SOCIAL SCIENCE RESEARCH COUNCIL DISSERTATION PROPOSAL DEVELOPMENT FELLOWSHIP SPRING 2008 WORKSHOP AGENDA

Promotion and Tenure Guidelines. School of Social Work

Planning a Webcast. Steps You Need to Master When

OFFICE OF ENROLLMENT MANAGEMENT. Annual Report

Applying Learn Team Coaching to an Introductory Programming Course

Welcome to the University of Hertfordshire and the MSc Environmental Management programme, which includes the following pathways:

Virtual Seminar Courses: Issues from here to there

Accounting & Financial Management

Winter School, February 1 to 5, 2016 Schedule. Ronald Schlegel, December 10, 2015

Programme Specification

The Waldegrave Trust Waldegrave School, Fifth Cross Road, Twickenham, TW2 5LH TEL: , FAX:

DYNAMIC ADAPTIVE HYPERMEDIA SYSTEMS FOR E-LEARNING

OPAC and User Perception in Law University Libraries in the Karnataka: A Study

FREQUENTLY ASKED QUESTIONS (FAQs) ON THE ENHANCEMENT PROGRAMME

UNIVERSITY LEVEL GIMP ONLINE COURSE - FACULTY OF TEACHER EDUCATION (ICT COURSE)

ASSESSMENT REPORT FOR GENERAL EDUCATION CATEGORY 1C: WRITING INTENSIVE

Mathematics Program Assessment Plan

Course Brochure 2016/17

Evaluation of Hybrid Online Instruction in Sport Management

RTV 3320: Electronic Field Production Instructor: William A. Renkus, Ph.D.

Please find below a summary of why we feel Blackboard remains the best long term solution for the Lowell campus:

PROPOSED MERGER - RESPONSE TO PUBLIC CONSULTATION

Call for International Experts for. The 2018 BFSU International Summer School BEIJING FOREIGN STUDIES UNIVERSITY

Java Programming. Specialized Certificate

GALICIAN TEACHERS PERCEPTIONS ON THE USABILITY AND USEFULNESS OF THE ODS PORTAL

Feature-oriented vs. Needs-oriented Product Access for Non-Expert Online Shoppers

PSYCHOLOGY 353: SOCIAL AND PERSONALITY DEVELOPMENT IN CHILDREN SPRING 2006

N E W S L E T T E R 3. VET Student's appearance concerns and the influence on completion rates in VET and on their success rates on the job market

Institutional repository policies: best practices for encouraging self-archiving

PROGRAMME SPECIFICATION

Developing creativity in a company whose business is creativity By Andy Wilkins

An Introduction and Overview to Google Apps in K12 Education: A Web-based Instructional Module

Evaluation of Respondus LockDown Browser Online Training Program. Angela Wilson EDTECH August 4 th, 2013

University of Texas Libraries. Welcome!

INFORMATION PACKAGE FOR PRINCIPAL SAINTS CATHOLIC COLLEGE JAMES COOK UNIVERSITY

POLICE COMMISSIONER. New Rochelle, NY

FINAL EXAMINATION OBG4000 AUDIT June 2011 SESSION WRITTEN COMPONENT & LOGBOOK ASSESSMENT

GUIDE TO EVALUATING DISTANCE EDUCATION AND CORRESPONDENCE EDUCATION

Requirements-Gathering Collaborative Networks in Distributed Software Projects

Introduction to Moodle

CSC200: Lecture 4. Allan Borodin

ELEC3117 Electrical Engineering Design

Texas A&M University - Central Texas PSYK EDUCATIONAL PSYCHOLOGY INSTRUCTOR AND CONTACT INFORMATION

Using Virtual Manipulatives to Support Teaching and Learning Mathematics

AUTHORING E-LEARNING CONTENT TRENDS AND SOLUTIONS

Proposal for an annual meeting format (quality and structure)

Re-envisioning library opening hours: University of the Western Cape library 24/7 Pilot Study

GLBL 210: Global Issues

University Library Collection Development and Management Policy

What is beautiful is useful visual appeal and expected information quality

TEACHER'S TRAINING IN A STATISTICS TEACHING EXPERIMENT 1

THE UNIVERSITY OF SYDNEY Semester 2, Information Sheet for MATH2068/2988 Number Theory and Cryptography

Job Description Head of Religious, Moral and Philosophical Studies (RMPS)

BSc (Hons) Banking Practice and Management (Full-time programmes of study)

Transcription:

September 2008 (vol. 9, no. 9), art. no. 0809-mds2008090001 1541-4922 2008 IEEE Published by the IEEE Computer Society Education Distributed Computing Education, Part 3: The Winter School Online Experience David Fergusson, Petar Jandric, Richard Hopkins, Elizabeth Vander Meer, and Malcolm Atkinson The International Summer Schools in Grid Computing (ISSGC) have provided numerous international students with the opportunity to learn grid systems, as detailed in part 2 of this series (http://doi.ieeecomputersociety.org/10.1109/mdso.2008.20). The International Winter School on Grid Computing 2008 (IWSGC 08) followed the successful summer schools, opening up the ISSGC experience to a wider range of students because of its online format. The previous summer schools made it clear that many students found the registration and travel costs and the time requirements prohibitive. The EU FP6 ICEAGE project held the first winter school from 6 February to 12 March 2008. The winter school repurposed summer school materials and added resources such as the ICEAGE digital library and summer-school-tested t-infrastructures such as GILDA (Grid INFN Laboratory for Dissemination Activities). The winter schools shared the goals of the summer school, which emphasized disseminating grid knowledge. The students act as multipliers, spreading the skills and knowledge they acquired at the winter school to their colleagues to build strong and enthusiastic local grid communities. Initial planning for IWSGC 08 From the beginning, the intention had been to replicate as closely as possible the ISSGC experience. Of course, the distance learning format imposed limitations. The Integrating Exercise (see part 2) was the most obvious and important ISSGC feature omitted from IWSGC. The winter school s organizers recognized early in planning that none of the contributing groups could provide the necessary effort to support both tutorials and the Integrating Exercise using a new mode of delivery. Future IWSGC events should certainly include an Integrating Exercise. Planning focused on providing a group of technologies that could be presented over a period of three to four weeks, considered the maximum sustainable effort from both students and tutors in an online mode. The admissions committee selected a maximum of 25 30 students, a manageable load for tutors unfamiliar with some of the technologies involved. The technologies also had to be compatible with GILDA. With these constraints in mind, IWSGC included four technologies: Condor, Globus, glite, and OGSA-DAI. UNICORE (Uniform Interface to Computing Resources) was not included in this case because materials in the correct formats weren t available. ISSGC presentations and video tutorials for each of the technologies were available in the ICEAGE digital library.unicore is now supported on the GILDA t- Infrastructure and was included in ISSGC 2008. IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 1

The practical work at the winter school required certain knowledge and skills. For this reason, a number of prerequisite exercises were provided in Unix, Java, XML, and obtaining GILDA certificates. Figure 1 shows the registration process for the winter school and student participation. Figure 1. Winter school work flow. Student statistics The following list provides a broad overview of student details for IWSGC 08. Figure 2 shows a breakdown of successful applicants by country. 55 potential students completed applications. 38 prospective participants started working on preparatory exercises. 29 participants from 16 countries successfully completed all exercises and were invited to register. IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 2

28 participants successfully completed the school (1 participant quit because of unexpected commitments). Figure 2. Distribution of successful applicants by countries of residence. Curriculum IWSGC 08's educational goals were to provide participants with the necessary theoretical background for practical use of the Grid, enable participants to use Condor, glite, and OGSA-DAI, direct participants toward available Grid services, and encourage collaboration between participants. The representative selection of ISSGC materials available in the ICEAGE digital library served as the basis for the IWSGC 08 core curriculum. Development of high-quality materials such as those in the digital library required substantial primary investments, which ICEAGE and other projects had already IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 3

made. For this reason, the IWSGC 08 curriculum was strongly oriented toward reusing ISSGC materials. The curriculum consisted of two main parts: concepts or general knowledge and example technologies. Concepts or general knowledge was divided into the following subcategories: general talks and materials, security, applications, production grids, and Web 2.0. Example technologies, illustrating concepts using real-life examples, included Condor, OGSA-DAI, Globus, and glite. Besides offering digital library materials, the winter school boosted participants' research and innovation capabilities through keynote lectures by Miron Livny, Ian Foster, and Malcolm Atkinson, three high-profile speakers invited especially for the event. The decision to include keynote speakers followed the successful summer schools example. After the lectures, winter school students were able to interact with these experts. Keynote speakers build a sense of community, and students gain a sense of inclusion and continuity by having an opportunity to see live lectures and participate in chats with well-known people in the field. In e-learning, participants can often get lost in cyberspace, so this format kept students interacting and engaged. Table 1 shows that the numbers of students involved in live presentations remained constant across the winter school period. This represents a major achievement for the school in maintaining the active interest of all students during the event. Table 1. Engagement in live presentations. Date Presenter Type Numbers Wednesday 6 February, 15:00 GMT Ian Foster Invited 39 Attendees 25 Peak users 34 Tuesday 26 February, 15:00 GMT Miron Livny Invited 40 Attendees 28 Peak users 34 Wednesday 12 March, 15:00 GMT Malcolm Atkinson Invited 39 Attendees 30 Peak users 40 IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 4

Besides live keynotes, the IWSGC 08 curriculum consisted of numerous lectures produced for the winter school and tutorials adapted for e-learning, all available in the digital library. Course design The ADDIE (Analysis, Design, Development, Implementation, and Evaluation) model (see Figure 3) is the generic course design process that instructional designers and training developers have traditionally used. The initial steps in this model are to analyze educational needs, profile prospective school participants, and identify available resources. IWSGC course designers concluded that prospective participants should be enthusiastic and ambitious researchers who have recently started or are about to start working on Grid projects. Figure 3. ADDIE model of instructional design. Participants with diverse backgrounds were encouraged to apply. Aiming at a roughly beginner audience scattered across the world, the IWSGC design involved a fully distributed (online) delivery mode. School development started off by identifying precise timescales. Participants would need to devote 20 hours a week for the event s duration. Recommended scheduling was set at four hours a day, Monday through Friday. Course designers determined that the total participant workload would average 100 hours over five weeks, plus time for preparatory exercises (the amount of time spent on these exercises would depend on the students individual backgrounds). If students missed a part of the course, they could catch up during weekends (until Monday 9:00 GMT). GMT scheduling was applied because the school was open to participants from all over the world. IWSGC 08 consisted of seven live online events and asynchronous work in between. To successfully complete the course, participants had to attend at least five live events in their duration and complete all required asynchronous activities. Tutoring was offered during weekdays; each technology provided several tutors, while the school coordinator offered academic and administrative support for school participants from start to finish. Figure 4 shows sequential details of the winter school structure. IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 5

Figure 4. IWSGC 08 structure. IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 6

The winter school designers developed the event using WebCT (Blackboard), the off-the-shelf system hosted at the University of Edinburgh, the ICEAGE Project leading partner. Because the course design team members and tutors were geographically scattered (in Scotland, Italy, Switzerland, and the US), all school preparations were done online. Course delivery A virtual learning environment of some sort is, of course, central to supporting an online distance learning course. Various levels of sophistication can be selected, from a basic online notice board implemented in static HTML to a fully integrated dynamic environment. Careful resource analysis showed that the timeframe and finances did not allow for either development or implementation of our own course delivery vehicles. Course planners examined many possibilities for presenting the course, including the University of Edinburgh s island in 2nd Life, Sakai, and Moodle. As we mentioned earlier, the designers decided to use WebCT (Blackboard). Although this might not have been the most recent or versatile implementation, it has been extensively tested and has a support network available. This led to minimal input from the IWSGC team; they directed their efforts to supporting services not available through WebCT (for instance, assessments). The course designers decided early in the planning process that live video presentations were important to the winter school. These had two purposes: attracting potential students by using live presentations from well-known research leaders, and bolstering student engagement with the school and avoiding dropouts. To ease access for all students, IWSGC planners felt that minimal special components should be required to view the video stream. Similarly, planners felt the video stream should be persistent to allow asynchronous access. To attract students, the planners needed engagement from the most influential researchers in distributed computing, often the busiest people in the field. It was therefore critical to minimize video production constraints on the presenters. These two constraints meant that the video system should have minimal requirements at both ends (student and presenter) and should be mediated by a central service. Given the potential drain on resources that supporting a Web streaming application can produce, a service that already had support was also desirable. After considering several tools, ICEAGE bought an Adobe Connect license to deliver the live keynote talks after seeing evidence of Adobe s superior support services. Preparatory exercises and applications were conducted through the ICEAGE Grid People Registry (www.iceage-eu.org). This is a specialist application developed by the ICEAGE project to support aspects of the schools that couldn t easily be provided using off-the-shelf components. The University of Edinburgh s e-science MSc has adopted this system, and it is being generalized for use throughout the university. Student satisfaction After the winter school ended, course organizers gave participants open-answer questionnaires. To make the results comparable to those of the summer schools, the existing ISSGC questionnaire was slightly modified to accommodate the school s online nature. To elicit suggestions that could be used to help develop future online events, the IWSGC questionnaire was also more detailed than the one used for the summer schools. Ninety-three percent of participants (26 of 28) answered this questionnaire. An online quantitative feedback form, used in other events, was also circulated to students and presenters, but a low response rate meant that results could not be easily evaluated. Overall, IWSGC 08 participants expressed high satisfaction with the winter school. The majority of questions, such as those about school duration or commitment, were answered equally on both sides of the spectrum that is, roughly equal numbers of participants wanted the school longer or shorter, more or less demanding, and so forth. Students identified no problems with infrastructure or technical IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 7

support. They rated the tutoring and keynote talks the strongest parts of the school and pointed out no particular weak points. The case of IWSGC 08 is a prime example of organic design. It bears significant heritage from the successful ISSGC series it grows rapidly, assimilates new technologies such as learning management systems and podcasting tools, and adapts to instruction in an online environment. Finally, it s heavily rooted in its environment: the choice of the WebCT learning management system, for instance, is almost completely based on available resources. Based on such a model, it s possible to have a regular series of such events with significantly less effort in terms of material preparation. All IWSGC 08 materials are fully reusable and platform independent; the next winter school is expected to take up to 50 percent less commitment in preparatory phases. Future IWSGCs can continue to address the needs of the growing distributed computing community by producing well-trained and enthusiastic teachers, as well as reusable teaching materials, using a democratic online format. Subsequent articles in this series will present further details of means by which we can help the widest range of domains and institutions provide education in the area of distributed computing, considering teaching infrastructures, intellectual property rights issues, curriculum design, and related supportive policy frameworks. David Fergusson is deputy director of training, outreach, and education at the National e-science Centre, Edinburgh. Contact him at dfmac@nesc.ac.uk. Richard Hopkins retired, was a trainer at the National e-science Centre, Edinburgh. Contact him care of dfmac@nesc.ac.uk or evmeer@nesc.ac.uk. Petar Jandric is a former trainer at the National e-science Centre, Edinburgh. Contact him care of dfmac@nesc.ac.uk. Elizabeth Vander Meer is the education and training policy officer at the National e-science Centre, Edinburgh. Contact her at evmeer@nesc.ac.uk. Malcolm Atkinson is director of the e-science Institute and e-science envoy at the National e- Science Centre, Edinburgh. Contact him at mpa@nesc.ac.uk. Cite this article: David Fergusson, Petar Jandric, Richard Hopkins, Elizabeth Vander Meer, and Malcolm Atkinson, "Distributed Computing Education, Part 3: The Winter School Online Experience," IEEE Distributed Systems Online, vol. 9, no. 9, 2008, art. no. 0809-o9001. IEEE Distributed Systems Online (vol. 9, no. 9), art. no. 0809-mds2008090001 8