Examining the Enrollment and Dropout Rates of URMs in STEM Courses at UC Berkeley. Jennifer Be. Hannah Broïdo. Pui Fung Lam.

Similar documents
Status of Women of Color in Science, Engineering, and Medicine

Evaluation of a College Freshman Diversity Research Program

Effective Recruitment and Retention Strategies for Underrepresented Minority Students: Perspectives from Dental Students

CAMPUS PROFILE MEET OUR STUDENTS UNDERGRADUATE ADMISSIONS. The average age of undergraduates is 21; 78% are 22 years or younger.

New Jersey Institute of Technology Newark College of Engineering

The Diversity of STEM Majors and a Strategy for Improved STEM Retention

Graduate Division Annual Report Key Findings

STEM Academy Workshops Evaluation

A Diverse Student Body

What is related to student retention in STEM for STEM majors? Abstract:

Biological Sciences (BS): Ecology, Evolution, & Conservation Biology (17BIOSCBS-17BIOSCEEC)

Supply and Demand of Instructional School Personnel

Natural Sciences, B.S.

Port Graham El/High. Report Card for

10/6/2017 UNDERGRADUATE SUCCESS SCHOLARS PROGRAM. Founded in 1969 as a graduate institution.

Tablet PCs, Interactive Teaching, and Integrative Advising Promote STEM Success

SMILE Noyce Scholars Program Application

CONTENTS. Overview: Focus on Assessment of WRIT 301/302/303 Major findings The study

An Empirical Analysis of the Effects of Mexican American Studies Participation on Student Achievement within Tucson Unified School District

School of Engineering Foothill College Transfer Guide

(Includes a Detailed Analysis of Responses to Overall Satisfaction and Quality of Academic Advising Items) By Steve Chatman

5 Programmatic. The second component area of the equity audit is programmatic. Equity

Demographic Survey for Focus and Discussion Groups

Texas Bioscience Institute Educating Scientists For The Future. Nelda Howton

Los Angeles City College Student Equity Plan. Signature Page

National Survey of Student Engagement

File Print Created 11/17/2017 6:16 PM 1 of 10

BENCHMARK TREND COMPARISON REPORT:

Strategy for teaching communication skills in dentistry

HEALTH SERVICES ADMINISTRATION

ReFresh: Retaining First Year Engineering Students and Retraining for Success

Biological Sciences, BS and BA

MISSISSIPPI STATE UNIVERSITY SUG FACULTY SALARY DATA BY COLLEGE BY DISCIPLINE

Denver Public Schools

TABLE OF CONTENTS Credit for Prior Learning... 74

EGRHS Course Fair. Science & Math AP & IB Courses

ADVANCED PLACEMENT STUDENTS IN COLLEGE: AN INVESTIGATION OF COURSE GRADES AT 21 COLLEGES. Rick Morgan Len Ramist

Basic Skills Initiative Project Proposal Date Submitted: March 14, Budget Control Number: (if project is continuing)

UNIVERSITY OF UTAH VETERANS SUPPORT CENTER

All Hands on Deck! Engaging Faculty Voices to Rise Above the Storm!

Wisconsin 4 th Grade Reading Results on the 2015 National Assessment of Educational Progress (NAEP)

OUTLINE OF ACTIVITIES

The Use of Statistical, Computational and Modelling Tools in Higher Learning Institutions: A Case Study of the University of Dodoma

Frank Phillips College. Accountability Report

PUBLIC INFORMATION POLICY

Preliminary Report Initiative for Investigation of Race Matters and Underrepresented Minority Faculty at MIT Revised Version Submitted July 12, 2007

MISSISSIPPI STATE UNIVERSITY SUG FACULTY SALARY DATA BY COLLEGE BY DISCIPLINE 12 month salaries converted to 9 month

VOL. 3, NO. 5, May 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

Environmental Science BA

Leveraging MOOCs to bring entrepreneurship and innovation to everyone on campus

NCEO Technical Report 27

Segmentation Study of Tulsa Area Higher Education Needs Ages 36+ March Prepared for: Conducted by:

The Demographic Wave: Rethinking Hispanic AP Trends

National Survey of Student Engagement The College Student Report

Diversity Registered Student Organizations

APPLICANT INFORMATION. Area Code: Phone: Area Code: Phone:

2012 New England Regional Forum Boston, Massachusetts Wednesday, February 1, More Than a Test: The SAT and SAT Subject Tests

Doctoral Initiative on Minority Attrition and Completion

APPLICATION PROCEDURES

NUTRITIONAL SCIENCE (H SCI)

DEPARTMENT OF PHYSICAL SCIENCES

Summary of Selected Data Charter Schools Authorized by Alameda County Board of Education

Society of Women Engineers (SWE)

(ALMOST?) BREAKING THE GLASS CEILING: OPEN MERIT ADMISSIONS IN MEDICAL EDUCATION IN PAKISTAN

A Correlation of Teacher Understanding of the Nature of Science (NOS) with Student Understanding

SYRACUSE UNIVERSITY and BELLEVUE COLLEGE

Fostering Equity and Student Success in Higher Education

2005 National Survey of Student Engagement: Freshman and Senior Students at. St. Cloud State University. Preliminary Report.

Kansas Adequate Yearly Progress (AYP) Revised Guidance

EDELINA M. BURCIAGA 3151 Social Science Plaza Irvine, CA

FACTORS THAT INFLUENCE THE COLLEGE CHOICE PROCESS FOR AFRICAN AMERICAN STUDENTS. Melanie L. Hayden. Thesis submitted to the Faculty of the

U VA THE CHANGING FACE OF UVA STUDENTS: SSESSMENT. About The Study

Annual Report to the Public. Dr. Greg Murry, Superintendent

Undergraduate Program Guide. Bachelor of Science. Computer Science DEPARTMENT OF COMPUTER SCIENCE and ENGINEERING

Course Selection for Premedical Students (revised June 2015, with College Curriculum updates)

BIOS 104 Biology for Non-Science Majors Spring 2016 CRN Course Syllabus

Strategic Planning for Retaining Women in Undergraduate Computing

NDPC-SD Data Probes Worksheet

University of Utah. 1. Graduation-Rates Data a. All Students. b. Student-Athletes

NATIONAL SURVEY OF STUDENT ENGAGEMENT (NSSE)

What We Are Learning about Successful Programs In College Calculus

M.S. in Environmental Science Graduate Program Handbook. Department of Biology, Geology, and Environmental Science

CONSERVATION BIOLOGY, B.S.

How the Guppy Got its Spots:

Final. Developing Minority Biomedical Research Talent in Psychology: The APA/NIGMS Project

Understanding student engagement and transition

The University of North Carolina Strategic Plan Online Survey and Public Forums Executive Summary

National Survey of Student Engagement Spring University of Kansas. Executive Summary

EDUCATIONAL ATTAINMENT

RCPCH MMC Cohort Study (Part 4) March 2016

UH STEM Pathways Project

1GOOD LEADERSHIP IS IMPORTANT. Principal Effectiveness and Leadership in an Era of Accountability: What Research Says

Science Clubs as a Vehicle to Enhance Science Teaching and Learning in Schools

The Ohio State University. Colleges of the Arts and Sciences. Bachelor of Science Degree Requirements. The Aim of the Arts and Sciences

Educational Attainment

MEASURING GENDER EQUALITY IN EDUCATION: LESSONS FROM 43 COUNTRIES

Cuero Independent School District

Biology and Microbiology

Quantitative Study with Prospective Students: Final Report. for. Illinois Wesleyan University Bloomington, Illinois

Kenya: Age distribution and school attendance of girls aged 9-13 years. UNESCO Institute for Statistics. 20 December 2012

Transcription:

1 Examining the Enrollment and Dropout Rates of URMs in STEM Courses at UC Berkeley Jennifer Be Hannah Broïdo Pui Fung Lam Jong Ha Lee Research Question Our research question centers around the topic of weeder courses as a potential contributor to the lack of diversity in STEM fields at the undergraduate level at UC Berkeley. We divided our question into two parts. The first part centers around quantitatively analyzing the dropout and enrollment rates within several weeder courses (as well as several control courses), specifically analyzing any disproportions that may exist between underrepresented minorities (URMs) and other demographic groups. The second part focuses on qualitatively analyzing potential factors that may contribute to the disproportion of dropout rates in introductory weeder STEM courses, both through literature reviews and through interviews with students and professors of weeder courses. Part 1 Weeder Courses Weeder courses is a term commonly used by many UC Berkeley students to describe introductory STEM courses in the College of Letters & Sciences. For the purpose of our research, we have defined a weeder course as a College of Letters & Sciences lower division major prerequisites possessing the following characteristics: 1. Possesses a large class size which includes many students interested, but not declared, in pursuing a major that specifically requires completing the weeder course successfully

2 2. Are adequately difficult to determine whether one can successfully continue the major 3. And overall, results in many student that not only drop out from the prerequisite course, but more importantly, drops out from declaring a certain major itself Based on this definition and student interviews, we identified the following weeder courses, along with the course progression, to analyze: 1. Biology 1A 2. Chemistry 1A Chemistry 3A Chemistry 3B 3. Computer Science 61A Computer Science 61B Computer Science 61C 4. Physics 8A Physics 8B (See Data Appendix at end of paper for more information on each course) The control non weeder courses that we identified are: 1. Engineering 7 2. Engineering 25 3. International & Area Studies 45 (See Data Appendix at end of paper for more information on each course) We purposefully chose to exclude Engineering courses from weeder courses (and include it as a control course) as we did not believe that it fit with our weeder courses definition. Students at UC Berkeley are accepted into a specific college (e.g. College of Engineering or College of Letters and Sciences) and it is very hard to switch between colleges. We made the assumption that the College of Engineering was much more likely to have already weeded out many high

3 school seniors from underrepresented minorities. Furthermore, the College of Engineering does not need to weed students out it accepts only the number of that it has the resources. Method We obtained data from the Berkeley Institute for Data Science (BIDS) for enrollment rates of various demographic groups in the courses listed above from Week 0 Week 17. The demographic groups listed in our data were: African American, Asian, Chicano / Latino, Decline to State, International, Native American / Alaska Native, Pacific Islander and White. Furthermore, the data was disaggregated between Female, Male and Decline to State. We combined the enrollment numbers into five categories (selected out based on literature reviews and feedback from graduate student mentors): 1. Male non URMs 2. URMs 3. Female 4. Overall 5. Female URMs URMs were defined as belonging to the following demographic groups: African American, Chicano / Latino, Native American / Alaska Native and Pacific Islander. In order to analyze and compare the dropout rates within these different demographic groups, we normalized the enrollment numbers in Week 0 to 1, and then divided the enrollment numbers in each group in Weeks 1 17 by the enrollment number in Week 0. This enabled us to clearly see the dropout rates in each demographic group, and to compare these dropout rates.

4 Results Discussion In our definition of a weeder course, we managed to find consistent trends in our data. In our selected weeder courses, the high dropout rates for underrepresented minorities and female underrepresented minorities are consistent throughout our graphs (see data appendix). This common theme in our data further proves that weeder courses results in the lack of diversity in STEM fields. In addition to being in a competitive and difficult course, URMs could face societal and psychological factors that other students that might not apply to them. Some of these factors are further discussed in part 2, the qualitative part of our research. Results

5 From our graphs (see data appendix), we found a correlation between higher dropout rates in weeder courses and underrepresented minorities. The gradients in dropout rate for weeder courses are much steeper than in our control courses. In contrast to our weeder courses, in which male non URMs consistently rank high on the normalized scale, they drop the most in E 7 and IAS 45. From the data given, we made analysis on dropout rates and now have substantial evidence to support our thesis. Part 2 The second part of our research project was primarily focused on finding qualitative reasoning for the trends that we observed through our data analyses. As mentioned in Part 1 s discussion, our results highlight a big disproportionately in dropout rates for URMs, specifically for female URMs. We therefore wanted to understand some of the potential factors that may have been contributing to this. Method We decided to use the snowball interviewing methodology, whereby we started out interviewing primarily URM but also non URM students who had enrolled in identified weeder courses, and then asked them for referrals to other students they may know. A total of 6 students and a professor teaching a weeder course were interviewed. The students identified themselves in the following ways: 1. African American Male, enrolled and completed Chem 1A and Physics 8A 2. Chicano Female, dropped out of Chem 1A 3. African American Male, dropped out of Physics 8A

6 4. African American Female, dropped out of Bio 1A 5. Non URM Male, enrolled and completed Chem 1A 6. Non URM Female, dropped out of CS 61A The interviews were all carried out in person. There were guideline questions for interviewers to follow, but all interviews were done in a fluid format based on the interviewee s answers. Results These common themes came out from our student interviews: 1. The innate difference in background and resources a. Well off background of majority groups vs. underprivileged background of minority groups, and the lack of support for the latter especially in STEM courses 2. Lack of representation for minorities a. Includes both being unaware of the other fellow minority groups present in the class, and simply not having enough minorities in STEM courses b. According to a recent Daily Californian article, UC Berkeley s faculty diversity falls well behind the relative diversity of California s population, and recent campus reports show that it also lags behind diversity in the academic job market. 3. Sheer difficulty of the course a. Dropouts not only due to midterm scores, but also the speed and quantity of content covered in introductory STEM courses b. Traditional lecture courses are typically packed in content and are not intended to actively engage students From the results, it appears that the adverse effects of chemistry courses experienced by many of

7 the URM students leads directly to these students questioning their own ability to continue to pursue a medical career, and as a consequence dropping medicine as a possible career trajectory (The Turning Point). We also noticed that male URMs versus female URMs opinions differed greatly. Female URMs were more likely to talk about lack of empowerment and representation in the weeder courses they took, while male URMs and non URMs focused primarily on time management and exploring different options, not necessarily experiencing difficulty in terms of support groups or representation. The professor teaching a weeder course made the following observations: 1. Weeder courses must have the intent of weeding out students, otherwise they should just be considered hard classes with challenging course material. 2. URM students do not utilize resources such as office hours and student learning center a. The professor hypothesized that this may primarily be due to high school experiences URMs may have attended high schools with little resources and may therefore not have the experience and confidence to utilize resources available to them in college. 3. Students are used to getting As in high school and may therefore be dropping out as they consider Bs and Cs to be bad grades, when in fact they should be considered very respectable grades at Berkeley. 4. Although the gender of course GSIs is representative of students, they are very rarely URM GSIs. Discussion

8 Several possible band aid solutions emerged from our interviews: 1. Mini introductory STEM courses a. Especially for those coming from an under educated background who have had little or no exposure to the difficulty of introductory STEM courses at Berkeley b. Example: Chemistry P offered by the Student Learning Center (SLC) 2. A well developed resource on finding fellow URMs in STEM courses a. Mentors who have already took the course, fellow students in the course, etc 3. Ability test in weeder courses to assign discussion sections 4. Increased diversity amongst GSIs / course TAs The combination of these solutions led us to ask ourselves the following questions: Are these resources / solutions already available? Are they publicized and made aware of to URMs? Why do we constantly see this problem of lack of resources? Are the problems minorities face with STEM courses attributed to their predisposed backgrounds, lack of support from the University, or both? There are a few programs targeted toward minority students, but to what extent are they effective? How can we scale them? Conclusion In conclusion, our data analysis demonstrated the disproportion of retention rates in individual STEM courses and STEM major course progressions. Female URMs suffered the greatest dropout rates, while Male non URMs had the lowest dropout rates. This trend was consistent throughout the biggest weeder courses at UC Berkeley Biology 1A, Chemistry 1A, Computer Science 61A and Physics 8A. We led in person snowball interviews with students from a variety

9 of demographic groups and a professor of a weeder course in order to gain a qualitative understanding of the reasons or factors behind this trend. Next steps may entail experimenting potential solutions provided in this paper and delving further into where exactly lies the problem: awareness, support or initiative?

10 Data Appendix Weeder Courses Biology Series Biology 1A 1B (BIO) Although both under the name General Biology, the topics in these classes are unrelated and this series does not need to be taken in order. Bio 1A is known to be harder, covers molecular biology, and has a prerequisite of Chem 1A, while Bio 1B covers ecology and has no prerequisites. Typically, only biological science majors need to take both classes. Other majors require one, but not the other (for example, Bioengineering requires 1A, but the Environmental Earth Science major requires 1B). Note: We only analyze data for Biology 1A. Chemistry Series Chemistry 1A 3A 3B (CHEM) Chem 1A is general chemistry, Chem 3A is an introduction to organic chemistry, and Chem 3B its continuation. Most College of Engineering students only need to take Chem 1A. The whole series is required by biological sciences majors (in College of Engineering (CoE), College of Natural Resources, or L&S Molecular and Cell Biology/Integrated Biology, students in the Pre Med track, etc). Computer Science Series Physics Series Computer Science 61A 61B 61C (CS) The 61 series is required for L&S Computer Science and CoE Electrical Engineering and Computer Science (EECS). In addition, some CoE and Cognitive Science majors can choose to replace their Engineering 7 requirement with 61A. Although this series is for CS majors, 61A and the CS minor has been growing in popularity because of its applicability in other fields. 61A is a time intensive introductory course, so many nonmajors opt for/begin with CS 10, which covers history, social implications, and principles of computing. Many Non EECS Engineering majors take Engineering 7 (listed below). Physics 8A 8B (PHYSICS) This series is an introductory physics course and is less calculus intensive than Physics 7A 7B (which is Physics for Scientists and Engineers, and includes College of Engineering students and L&S Physics students). Physics 8A is a prerequisite for many biological science, architecture, and

11 physical science majors. Non Weeder Courses Engineering Classes Engineering 7 (E) Except for EECS majors, E7 is required for all College of Engineering majors. It can be taken instead of CS 61A for Cognitive Science and some CoE majors. It covers the elements of programming using MATLAB, a programming language intended for numerical computing. Engineering 25 (E) Engineering 25, or Visualization for Design, is part one of a three part series required for Mechanical Engineering majors. This three part series is fairly new (Fall 2014) and is intended to replace the two part series consisting of E10 and E28. Other Control Classes International & Area Studies 45 (IAS) IAS 45, or Survey of World History, is reading intensive class that fulfills the L&S International and Area Studies requirement; however, it is typically taken by prospective Political Economy and Development Studies majors. For the Political Economy major, must be completed with a B or higher on the 1st attempt. Chemistry Series

12

Computer Science Series 13

14

Physics Series 15

16

17 Bio 1A Control: Non Weeder Courses Engineering 7 & IAS 45

18

19

20 Citations Barr, Don, and John Matsui. "The" Turning Point" for Minority Pre Meds: The Effect of Early Undergraduate Experience in the Sciences on Aspirations to Enter Medical School of Minority Students at UC Berkeley and Stanford University." (2008). Chang, M. J., Sharkness, J., Hurtado, S., & Newman, C. B. (2014). What matters in college for retaining aspiring scientists and engineers from underrepresented racial groups. Journal Of Research In Science Teaching, 51(5), 555 580. doi:10.1002/tea.21146 Olson, S., Riordan, D. G., & Executive Office of the, P. (2012). Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics. Report to the President.Executive Office Of The President, Pauker, Madeleine. "UC Berkeley s persistent lack of faculty diversity prompts efforts to address issue." The Daily Californian. The Independent Berkeley Student Publishing Co., 12 Jul. 2015. Web. 28 Nov. 2015.