Physics 101a: Classical and Modern Physics I

Similar documents
EECS 700: Computer Modeling, Simulation, and Visualization Fall 2014

Penn State University - University Park MATH 140 Instructor Syllabus, Calculus with Analytic Geometry I Fall 2010

Instructor Dr. Kimberly D. Schurmeier

Dr. Zhang Fall 12 Public Speaking 1. Required Text: Hamilton, G. (2010). Public speaking for college and careers (9th Ed.). New York: McGraw- Hill.

Please read this entire syllabus, keep it as reference and is subject to change by the instructor.

Class Meeting Time and Place: Section 3: MTWF10:00-10:50 TILT 221

MAR Environmental Problems & Solutions. Stony Brook University School of Marine & Atmospheric Sciences (SoMAS)

Syllabus ENGR 190 Introductory Calculus (QR)

*In Ancient Greek: *In English: micro = small macro = large economia = management of the household or family

INTERMEDIATE ALGEBRA Course Syllabus

Spring 2015 Natural Science I: Quarks to Cosmos CORE-UA 209. SYLLABUS and COURSE INFORMATION.

CHEM:1070 Sections A, B, and C General Chemistry I (Fall 2017)

BUS Computer Concepts and Applications for Business Fall 2012

Teaching a Laboratory Section

Foothill College Fall 2014 Math My Way Math 230/235 MTWThF 10:00-11:50 (click on Math My Way tab) Math My Way Instructors:

EDIT 576 DL1 (2 credits) Mobile Learning and Applications Fall Semester 2014 August 25 October 12, 2014 Fully Online Course

EDIT 576 (2 credits) Mobile Learning and Applications Fall Semester 2015 August 31 October 18, 2015 Fully Online Course

MTH 215: Introduction to Linear Algebra

SOUTHERN MAINE COMMUNITY COLLEGE South Portland, Maine 04106

Financial Accounting Concepts and Research

Spring 2012 MECH 3313 THERMO-FLUIDS LABORATORY

ENVR 205 Engineering Tools for Environmental Problem Solving Spring 2017

PHYSICS 40S - COURSE OUTLINE AND REQUIREMENTS Welcome to Physics 40S for !! Mr. Bryan Doiron


Math 181, Calculus I

CALCULUS III MATH

CHEMISTRY 104 FALL Lecture 1: TR 9:30-10:45 a.m. in Chem 1351 Lecture 2: TR 1:00-2:15 p.m. in Chem 1361

STUDENT PACKET - CHEM 113 Fall 2010 and Spring 2011

CHMB16H3 TECHNIQUES IN ANALYTICAL CHEMISTRY

MTH 141 Calculus 1 Syllabus Spring 2017

HUMAN ANATOMY AND PHYSIOLOGY II

Syllabus Foundations of Finance Summer 2014 FINC-UB

Economics 201 Principles of Microeconomics Fall 2010 MWF 10:00 10:50am 160 Bryan Building

Accounting 312: Fundamentals of Managerial Accounting Syllabus Spring Brown

AST Introduction to Solar Systems Astronomy

EECS 571 PRINCIPLES OF REAL-TIME COMPUTING Fall 10. Instructor: Kang G. Shin, 4605 CSE, ;

CIS Introduction to Digital Forensics 12:30pm--1:50pm, Tuesday/Thursday, SERC 206, Fall 2015

Syllabus Fall 2014 Earth Science 130: Introduction to Oceanography

Page 1 of 8 REQUIRED MATERIALS:

MKT ADVERTISING. Fall 2016

Biology 1 General Biology, Lecture Sections: 47231, and Fall 2017

University of Waterloo School of Accountancy. AFM 102: Introductory Management Accounting. Fall Term 2004: Section 4

Astronomy/Physics 1404 Introductory Astronomy II Course Syllabus

CEE 2050: Introduction to Green Engineering

Chemistry 141. Professor James F Harrison. 1:30-2:30 pm MWF Room 37 Chemistry Basement. Office Hours

Introduction. Chem 110: Chemical Principles 1 Sections 40-52

ME 4495 Computational Heat Transfer and Fluid Flow M,W 4:00 5:15 (Eng 177)

Introduction to Personality Daily 11:00 11:50am

FINANCE 3320 Financial Management Syllabus May-Term 2016 *

Required Materials: The Elements of Design, Third Edition; Poppy Evans & Mark A. Thomas; ISBN GB+ flash/jump drive

PHY2048 Syllabus - Physics with Calculus 1 Fall 2014

Stochastic Calculus for Finance I (46-944) Spring 2008 Syllabus

CHEM6600/8600 Physical Inorganic Chemistry

Social Media Journalism J336F Unique ID CMA Fall 2012

Office: Colson 228 Office Hours: By appointment

BUSINESS FINANCE 4265 Financial Institutions

Syllabus: CS 377 Communication and Ethical Issues in Computing 3 Credit Hours Prerequisite: CS 251, Data Structures Fall 2015


Course Content Concepts

MATH Study Skills Workshop

MULTIMEDIA Motion Graphics for Multimedia

Improving Conceptual Understanding of Physics with Technology

Intermediate Algebra

Foothill College Summer 2016

Class Numbers: & Personal Financial Management. Sections: RVCC & RVDC. Summer 2008 FIN Fully Online

PHILOSOPHY & CULTURE Syllabus

THE UNIVERSITY OF SYDNEY Semester 2, Information Sheet for MATH2068/2988 Number Theory and Cryptography

AGN 331 Soil Science Lecture & Laboratory Face to Face Version, Spring, 2012 Syllabus

CALCULUS I Math mclauh/classes/calculusi/ SYLLABUS Fall, 2003

Office: CLSB 5S 066 (via South Tower elevators)

HISTORY 108: United States History: The American Indian Experience Course Syllabus, Spring 2016 Section 2384

Class Tuesdays & Thursdays 12:30-1:45 pm Friday 107. Office Tuesdays 9:30 am - 10:30 am, Friday 352-B (3 rd floor) or by appointment

PREP S SPEAKER LISTENER TECHNIQUE COACHING MANUAL

MATH 1A: Calculus I Sec 01 Winter 2017 Room E31 MTWThF 8:30-9:20AM

Math 96: Intermediate Algebra in Context

General Physics I Class Syllabus

MANA 7A97 - STRESS AND WORK. Fall 2016: 6:00-9:00pm Th. 113 Melcher Hall

ENEE 302h: Digital Electronics, Fall 2005 Prof. Bruce Jacob

Physics XL 6B Reg# # Units: 5. Office Hour: Tuesday 5 pm to 7:30 pm; Wednesday 5 pm to 6:15 pm

How to make an A in Physics 101/102. Submitted by students who earned an A in PHYS 101 and PHYS 102.

Math 22. Fall 2016 TROUT

BIOS 104 Biology for Non-Science Majors Spring 2016 CRN Course Syllabus

JN2000: Introduction to Journalism Syllabus Fall 2016 Tuesdays and Thursdays 12:30 1:45 p.m., Arrupe Hall 222

The Anthony School Middle School Study Skills Packet

Reinventing College Physics for Biologists: Explicating an Epistemological Curriculum

Strategic Management (MBA 800-AE) Fall 2010

AGN 331 Soil Science. Lecture & Laboratory. Face to Face Version, Spring, Syllabus

Fall Semester 2012 CHEM , General Chemistry I, 4.0 Credits

Chemistry 106 Chemistry for Health Professions Online Fall 2015

Neuroscience I. BIOS/PHIL/PSCH 484 MWF 1:00-1:50 Lecture Center F6. Fall credit hours

Theory of Probability

MATH 205: Mathematics for K 8 Teachers: Number and Operations Western Kentucky University Spring 2017

Instructor. Darlene Diaz. Office SCC-SC-124. Phone (714) Course Information

Jeff Walker Office location: Science 476C (I have a phone but is preferred) 1 Course Information. 2 Course Description

McKendree University School of Education Methods of Teaching Elementary Language Arts EDU 445/545-(W) (3 Credit Hours) Fall 2011

POLITICAL SCIENCE 315 INTERNATIONAL RELATIONS

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY (AETC)

ANCIENT GREEK HISTORY MWF 8:30-9:20 Main 326. Frances B. Titchener Main 310 (435)

Instructor: James Michael Fortney. Office Hours: MON 1-3 WED 1-3

Course Syllabus for Math

Transcription:

Physics 101a: Classical and Modern Physics I Fall 2010 Syllabus, Information, and Policies Physics 101 is an introductory course exploring the central ideas of classical mechanics and thermodynamics with applications drawn principally from the life sciences, but also from astrophysics, forensic science and everyday life. Students intending to major in natural sciences other than physics or astronomy should find that the two semesters of Physics 101-102 provide a solid foundation in classical and modern physics. Potential math or chemistry majors should take either this or the Physics 105-106 sequence. Non-science majors also may find this course to be a valuable part of their liberal arts program. Physics majors are advised to take the 105-106 sequence, although you may also start the major in Physics 101 and 102 (or even switch into Physics 106 having taken Physics 101 first semester.) Location and times We expect you to attend all class meetings, including lectures, recitations and laboratories. Lecture: MWF 11:30-12:30 PM KINSC Hilles 109. Discussion Section/Recitation: attend at least one of these weekly: all in H108: M 2:30-3:30; Tues. 8:30-10am; Wed 8:30-9:30 Laboratory: Tues. or Wed. 1:15-4:00 PM KINSC Hilles 105. You will be assigned to the Tues. or Wed. section on the basis of a form to be filled out on the first day of class. The results will be posted on a bulletin board outside H105; check your assignment promptly as the laboratory begins the first week of class. Subsequently, the laboratory meets every other week, except as interrupted by fall break. The schedule is listed in the laboratory manual and is available online. It is expected that you will attend every lab meeting; any departures from the schedule must be discussed in advance with the instructor. You will only be able to complete the lab in the allotted time if you have read the instructions thoroughly and made a good effort to understand them in advance. Therefore, you are required to come to each lab fully prepared, having read the manual and having answered all pre-lab questions beforehand! Physics Clinic: Mondays & Tuesdays 7 to 10pm, Hilles 107 (Physics Lounge) starting the second week of classes. This resource is staffed by experienced and friendly physics majors to help you with any remaining questions you may have from class or with homework. The Dean's office provides Peer Tutors at your request in all subjects, including physics. Instructors Suzanne Amador Kane, Room L103 KINSC, (610) 896-1198 (office), samador@haverford.edu ; Office hours: Tues. 10-11:30am, Wed. 9:30-11:30am, or by appointment--you also can get help in Clinic & recitations!

Scott Shelley (lab), Room L207 KINSC, (610) 896-1310 (office), sshelley@haverford.edu Peter Love (lab), Room L105 KINSC (610) 796-6505 (office), plove@haverford.edu ; Office hours: Tu 5:30-7pm; Wed. 5:30-7pm; Th 1-4pm We expect you to read your email and check the Blackboard web site regularly as we will make announcements and answer some questions this way. You should feel free to send us email when you have a question or comment. However, if you are having trouble with a homework problem, for instance, it is usually far more efficient if you stop by so that we can work through the problem at a chalkboard rather than through an email exchange. Please do not hesitate to contact us; no question or topic is too small. If you are having a lot of trouble with the homework, be sure to come to see one of us as soon as possible. A good way to get together is to arrange a mutually agreeable time with us, either by email or in person after class. Feedback: we will issue course evaluations half-way through the semester. However, if you have concerns about the course or ideas about how to make it better, you should let us know immediately, either in person or by email. Don't wait! Textbooks and supplies Required textbook: Physics for the Life Sciences, Timothy McKay (University of Michigan). This electronic textbook will be posted on Blackboard, and we will arrange a means for you to purchase an inexpensive paper copy if you wish. Optional: General Physics, Morton Sternheim and Joseph Kane, John Wiley & sons, 1991. (This textbook will be used for problems, example and other material, but you are not expected to purchase it; note the tradeoff: this is a unique, quite good older textbook, so there are many inexpensive used copies available--but it doesn't have full-color photos, etc. Great quality physics + cheaper--but lower production values.) The textbooks will also be on reserve in the White Science Library in the KINSC. A calculator will be needed for problem sets and tests and in the laboratory. You do not need graphing capabilities, but a scientific calculator is recommended for doing trigonometry, exponentials, and other calculations. You will also need to purchase a laboratory manual for this course from the bookstore or directly from Scott Shelley. All other supplies needed in the laboratory will be provided. A selection of other texts and useful references is on reserve in the science library and on Blackboard. Course announcements All important announcements will be made in class as well as on the Blackboard web site for this course and via email. Assignments and Tests

Written work will be assigned weekly, and will be due outside my office (L103) at 5pm on Wednesdays, unless otherwise announced. Staple your assignment if there are multiple pages! Your work must be clear and well explained. There will also be assigned reading and exercises to prepare you for class discussion. All assignments will be posted on the Blackboard web site for this course. You are expected to answer all homework questions in full, legibly and neatly. It is never enough to just write down a numerical answer: you should briefly yet thoroughly indicate your reasoning using a narrative description, equations and where appropriate a sketch or graph. Units and significant figures will count in the grading. There will be two midterm examinations plus a self-scheduled final exam. Grading Midterm#1 15% Midterm#2 15% Final exam 20% Laboratory 22.5% Homework 22.5% Participation/online homework 5% We will post your grades on Blackboard so you can review your standing in the course throughout the semester. Late policies Labs must be done on the scheduled date unless cleared in advance by the lab instructors. Individual experiments are not kept after the week in which they are used. See the lab manual for additional information. The following late penalties will be in effect for homework. Assignments are due exactly at 5pm in my office (L103). Work turned in late will be given 75% credit up to one week late, and 50% credit up to two weeks late. No work will be accepted after that. We do not accept split up assignments. However, there is one exception to the late policy: you may grant yourself up to two free one-week extensions on homework assignments (only--not lab reports or exams!) by emailing the lecture professor to let us know you will be taking a free extension. Exams must be turned in no later than the stated times, except by prior agreement. You may get an extension on an examination or assignment ONLY with a Dean's excuse. For any take-home exams, you are expected to be present in lecture to pick up the exam on time; no exams will be given to another student or will be available for pickup after the stated time. Syllabus & approximate schedule for topics

Date Topic Labs/Exams Week 1 Aug. 30 Week 2 Sept. 6 Week 3 Sept. 13 Week 4 Sept. 20 Week 5 Sept. 27 Week 6 Oct. 4 Physics & Life (course introduction); forces & vectors Not changing : Newton's first and second laws: Real world forces: stretching, squashing and friction Describing motion: velocity, acceleration & Newton's second law Getting around: Newton's second law (continued) Uniform Circular motion; 2D dynamics Oct. 11 FALL BREAK FALL BREAK Week 7 Oct. 18 Week 8 Oct. 25 Week 9 Nov. 1 Week 10 Nov. 8 Week 11 Nov. 15 Week 12 Nov. 22 Week 13 Nov. 29 Week 14 Dec. 6 Kinetic Energy; Energy accounting: potential energy & conservation Rotational Dynamics; Collisions: impulse & momentum Oscillations & resonance Temperature & ideal gases Random processes: diffusion and microscopic transport in life Thermal properties of liquids and solids; heat transfer; life & random processes Life in fluids: pressure & surface tension More physics of fluids: flowing & mixing Dec. 13-17 FINALS WEEK Honor code matters Lab 1: Position, velocity & accel Lab 2: Biomechanics & bone sca Lab 3: Trajectories Midterm 1: out in lecture Fri. Oc 4 Midterm 1: out in lecture Fri. Oc 4 Lab 4: Energy transformations Lab 5: Rotational motion Lab 6: Thermal properties lab Thanksgiving Break Nov. 25-26 Lab 7: Fluids Lab We value Haverford's honor code for the integrity it fosters and the pedagogical flexibility it affords. The important guiding principle of academic honesty is that you must never represent the work of others as your own. The following guidelines should govern your behavior in the course; please request clarification if you find yourself in any doubtful situations. Last day of classes Dec. 10--all w labs, etc.) due by 5pm Self-scheduled Final Exam due by

You may seek assistance from the instructors, from Physics Clinic TA's, from tutors, or from other students in doing the weekly assigned exercises and preparing for class discussions. You may also work together with other members of the class on these assignments and this is often quite beneficial. For your own good, avoid situations in which you are either contributing either too much or too little to such collaborations. Just copying someone else's work is clearly a representation of another student's work as your own and is a violation of the Code. This applies to copying down results worked out on a blackboard by any other students or by an instructor during office hours or by a Physics Clinic TA, as well as solutions written down on paper by any of the above. If you are turning in an assignment late, you may not consult or copy from the posted solutions while doing the assignment. There is one exception: you may study from problem set solutions for an exam if you still have a problem set outstanding, but you must not have any access to the problem set solutions while you do the problem set itself. Put them aside entirely while you complete the problem set. Textbooks like Sternheim & Kane often give the answers for the odd (or even)-numbered exercises. These are given so that you will know if you have done a problem correctly. It is not sound learning procedure to try to work backwards from given answers, but doing so is not a violation of the honor code. Copying solutions set slavishly IS a violation of the Honor Code. All exams must be entirely your own work. Detailed instructions will be given on the exams themselves and discussed in advance, and you must obey those in detail. You must use only those materials allowed in the instructions given on the exam. No collaboration of any sort is allowed once you start an exam. The allowed time (a single contiguous block) must be strictly observed. Honor code guidelines for the lab are contained in the lab manual. Accommodations for disability Students who think they may need accommodations in this course because of the impact of a disability are encouraged to meet with me privately early in the semester. Students should also contact Rick Webb, Coordinator, Office of Disabilities Services (rwebb@haverford.edu, 610-896-1290) to verify their eligibility for reasonable accommodations as soon as possible. Early contact will help to avoid unnecessary inconvenience and delays. Advice You may need to improve your study habits in order to do well in this course. The following suggestions are based on the experience of previous students. Review your class notes between lectures, and come prepared to ask questions. Annotate your class notes as you read them. When you take notes in class, don't just write down equations! Qualitative information is often essential! Stay up to date on the reading; preferably read the assigned material twice; for example, once before the relevant lecture, and once after.

Read with pen in hand to work out things described only briefly in the text or lecture. Ask yourself "what is the main point of each section", and answer the question. Highlighting the text as you read is no substitute for this exercise in thinking and reinterpreting what you have read! Make drawings of the physical situations we discuss in class or the ones you encounter in problem sets (and real life!) This helps you understand just what is going on much more than merely thinking about it. Don't spend more than 1 hour on a single homework problem. Show clearly where you're stumped and just move on. Don't feel badly if this happens occasionally, or worry about the effect on your grade. Consistency in doing the homework is more important. Try the homework problems first yourself, but do get help in clinic or during office hours if you need it. That's why these resources are provided. We expect you will make use of them as one more learning tool. You need to allocate about 7 hours for study and homework per week (plus class time and lab responsibilities). This isn't merely a time budget. It's also how much time you need to allow the ideas and methodology to really sink in so that you have truly mastered the subjects. Do stop in to see one of us if you have questions or suggestions. When you're studying for an exam, first perform new problems and redo as many old problems as you have time for. Only after you have done so is it a good idea to then review the solutions to problems and previous exams. You always learn more from engaging in problem-solving than reviewing how someone else (even yourself in a previous week!) solved a problem. Study for the exams in advance. Your brain tackles problems differently if you have given it time to mull over new material and new approaches to problem-solving. You really think differently (and better) once you have literally slept on new ideas. Remember that if the material is new or unfamiliar for you, learning will take time, just as learning a new language takes time. Try not to become discouraged if the going is rough at times, and don't prejudge your ability to master the material. Generations of students have done it before you. There is no magic method of presenting the material that we can use to make it easy.