Teaching Electronics to First Year Engineering Students

Similar documents
The Diversity of STEM Majors and a Strategy for Improved STEM Retention

African American Male Achievement Update

A Hands-on First-year Electrical Engineering Introduction Course

Ecosystem: Description of the modules:

Multidisciplinary Engineering Systems 2 nd and 3rd Year College-Wide Courses

LEGO MINDSTORMS Education EV3 Coding Activities

MinE 382 Mine Power Systems Fall Semester, 2014

Process to Identify Minimum Passing Criteria and Objective Evidence in Support of ABET EC2000 Criteria Fulfillment

Physics 270: Experimental Physics

Student Perceptions of Reflective Learning Activities

Freshman Engineering Project on Energy Scavenging

Nanotechnology STEM Program via Research Experience for High School Teachers

Evaluation of a College Freshman Diversity Research Program

Field Experience Management 2011 Training Guides

What is related to student retention in STEM for STEM majors? Abstract:

Undergraduates Views of K-12 Teaching as a Career Choice

The Impact of Honors Programs on Undergraduate Academic Performance, Retention, and Graduation

Developing a Distance Learning Curriculum for Marine Engineering Education

AGENDA Symposium on the Recruitment and Retention of Diverse Populations

Preliminary Report Initiative for Investigation of Race Matters and Underrepresented Minority Faculty at MIT Revised Version Submitted July 12, 2007

Session H1B Teaching Introductory Electrical Engineering: Project-Based Learning Experience

Program Change Proposal:

ENGINEERING AT ILLINOIS WOMEN IN ENGINEERING UNIVERSITY OF ILLINOIS

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Chapter 9 Banked gap-filling

Leveraging MOOCs to bring entrepreneurship and innovation to everyone on campus

Changing the face of science and technology. DIVISION OF SOCIAL SCIENCES ISEE. Institute for Scientist & Engineer Educators

EEAS 101 BASIC WIRING AND CIRCUIT DESIGN. Electrical Principles and Practices Text 3 nd Edition, Glen Mazur & Peter Zurlis

Strategic Planning for Retaining Women in Undergraduate Computing

Engineering Our Future

AC : DEVELOPMENT OF AN INTRODUCTION TO INFRAS- TRUCTURE COURSE

Strategic Plan Dashboard Results. Office of Institutional Research and Assessment

Tablet PCs, Interactive Teaching, and Integrative Advising Promote STEM Success

Volunteer State Community College Strategic Plan,

AC : BIOMEDICAL ENGINEERING PROJECTS: INTEGRATING THE UNDERGRADUATE INTO THE FACULTY LABORATORY

Math Pathways Task Force Recommendations February Background

Connecting Middle Grades Science and Mathematics with TI-Nspire and TI-Nspire Navigator Day 1

Mapping the Assets of Your Community:

Robert S. Unnasch, Ph.D.

National Survey of Student Engagement (NSSE) Temple University 2016 Results

ARTICULATION AGREEMENT

A Diverse Student Body

Spinners at the School Carnival (Unequal Sections)

Physics Experimental Physics II: Electricity and Magnetism Prof. Eno Spring 2017

Ab Calculus Clue Problem Set Answers

Status of Women of Color in Science, Engineering, and Medicine

3/6/2009. Residence Halls & Strategic t Planning Overview. Residence Halls Overview. Residence Halls: Marapai Supai Kachina

High School Digital Electronics Curriculum Essentials Document

OFFICE OF ENROLLMENT MANAGEMENT. Annual Report

Understanding and improving professional development for college mathematics instructors: An exploratory study

Division of Student Affairs Annual Report. Office of Multicultural Affairs

The University of North Carolina Strategic Plan Online Survey and Public Forums Executive Summary

Doctor in Engineering (EngD) Additional Regulations

Educational Attainment

English Language Arts Summative Assessment

5 Programmatic. The second component area of the equity audit is programmatic. Equity

African American Studies Program Self-Study. Professor of History. October 9, 2015

University of Waterloo School of Accountancy. AFM 102: Introductory Management Accounting. Fall Term 2004: Section 4

Biomedical Sciences (BC98)

Circuit Simulators: A Revolutionary E-Learning Platform

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand

ENGINEERING FIRST YEAR GUIDE

Factors influencing students choice of engineering major

CHEM 101 General Descriptive Chemistry I

Mathematics Program Assessment Plan

OUTLINE OF ACTIVITIES

THE VIRTUAL WELDING REVOLUTION HAS ARRIVED... AND IT S ON THE MOVE!

Libraries Embrace the Engineering Grand Challenges

Testimony in front of the Assembly Committee on Jobs and the Economy Special Session Assembly Bill 1 Ray Cross, UW System President August 3, 2017

Supply and Demand of Instructional School Personnel

1. Locate and describe major physical features and analyze how they influenced cultures/civilizations studied.

CEE 2050: Introduction to Green Engineering

History. 344 History. Program Student Learning Outcomes. Faculty and Offices. Degrees Awarded. A.A. Degree: History. College Requirements

Dr. Steven Roth Dr. Brian Keintz Professors, Graduate School Keiser University, Fort Lauderdale

Enhancing Learning with a Poster Session in Engineering Economy

RAISING ACHIEVEMENT BY RAISING STANDARDS. Presenter: Erin Jones Assistant Superintendent for Student Achievement, OSPI

Program Review

Course Selection for Premedical Students (revised June 2015, with College Curriculum updates)

It s not me, it s you : An Analysis of Factors that Influence the Departure of First-Year Students of Color

Society of Women Engineers (SWE)

San José State University Department of Psychology PSYC , Human Learning, Spring 2017

Course outline. Code: PHY202 Title: Electronics and Electromagnetism

TCH_LRN 531 Frameworks for Research in Mathematics and Science Education (3 Credits)

Evaluation of Teach For America:

Bowling Green State University SPIE Student Chapter

Using a PLC+Flowchart Programming to Engage STEM Interest

Michigan State University

P. Belsis, C. Sgouropoulou, K. Sfikas, G. Pantziou, C. Skourlas, J. Varnas

Communities in Schools of Virginia

Colorado State University Department of Construction Management. Assessment Results and Action Plans

School Performance Plan Middle Schools

Entrepreneurial Discovery and the Demmert/Klein Experiment: Additional Evidence from Germany

Finding a Classroom Volunteer

Bachelor of Science in Mechanical Engineering with Co-op

Basic Skills Plus. Legislation and Guidelines. Hope Opportunity Jobs

Executive Summary. Palencia Elementary

Senior Stenographer / Senior Typist Series (including equivalent Secretary titles)

AC : DESIGNING AN UNDERGRADUATE ROBOTICS ENGINEERING CURRICULUM: UNIFIED ROBOTICS I AND II

The Policymaking Process Course Syllabus

Chapter Six The Non-Monetary Benefits of Higher Education

Transcription:

Paper ID #13242 Teaching Electronics to First Year Engineering Students Dr. Lizzie Santiago, West Virginia University Lizzie Y. Santiago, Ph.D., is a teaching assistant professor for the freshman engineering program in the Benjamin M. Statler College of Engineering and Mineral Resources. She holds a Ph.D. in chemical engineering and has postdoctoral training in neural tissue engineering and molecular neurosciences. She teaches freshman engineering courses and supports the outreach and recruiting activities of the college. Her research interests include neural tissue engineering, stem cell research, absorption of air pollutants in human upper airways, attrition and university retention, increasing student awareness and interest in research and engineering, STEM education, and recruitment and retention of women and minorities. Mr. Oyemayowa Luqman Abioye, West Virginia University Oyemayowa L. Abioye is a graduate student in the department of Industrial Management and Systems Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University. As a graduate teaching/research assistant, he works with WVU freshman engineering program where he taught engineering problem solving skill and performs academic research under the supervision of teaching assistant professor. He holds an undergraduate degree in electrical engineering and a masters degree in industrial safety management. c American Society for Engineering Education, 2015

Teaching Electronics to First Year Engineering Students Introduction: There is no doubt that engineers significantly contribute to the growth of any nation s economy. However, the rate of engineering innovations and initiatives poses a great challenge to the United States (US) due to the high attrition rates observed in engineering programs in the US. Attrition is recognized as a significant problem in engineering education; engineering programs are reporting graduation rates in the range of 40-60%. 1-7 Students seem to experience a loss of interest and lack of motivation for engineering in part due to the demanding engineering curriculum of the first two years. 2,3 The first two years are recognized as critical to promote student retention in engineering. To improve student retention, the first-year engineering curriculum have experienced significant changes in the last decade. There is a growing trend towards incorporating engineering concepts in first year engineering courses. The purpose is to demonstrate that engineering is fun, rewarding, relevant, and interesting. With these changes, there has been an increase in the implementation of hands on activities that promotes student engagement in a student centered environment. The objective of this project was to introduce a new module on electronics to students enrolled in a first year engineering program. The module was incorporated in an engineering problem solving course and was designed to include reading material, practice problems, hands-on activities, and a project. This paper describes the content of the module, how the module was implemented, and its impact in students perception of engineering. Methodology: Sample Size: 42 students enrolled in an engineering problem solving course participated in this study. All students were enrolled in a first year engineering program at a land-grant institution in the mid-atlantic region; none of the students have been accepted in a major engineering discipline. Eighty-six percent of the students were male, and all students enrolled were calculus ready. Content of Electronics Module: A hands-on module was developed to introduce first year engineering students to electronics. The module s instructional material included the instructor s note, theoretical practice problems, a student handout, and hands-on activities that involved the design of electrical circuits using electrical components. At the completion of the module, students were expected to be able to identify the basic parts of electrical circuits design/assemble basic electrical circuits

distinguish series from parallel circuit connection relate voltage and current in a circuit compute the equivalent resistance of series and parallel circuits apply knowledge learned on circuits to real world applications Pre-test: Students were asked to read the student handout prior to the beginning of the module. A preliminary test was administered to determine students baseline knowledge on electronics and knowledge gained by reading the handout. Delivery of the module: The electronics module was delivered in three weeks (5 lectures) and was combined with concepts taught on Excel. Prior to the first lecture, students were asked to read a student handout prepared for the module. Lectures were used for practical demonstration of circuit design and for hands-on activities in which students were asked to design several different circuits, chosen by the instructor. All material used in class was provided by the instructor. The module concluded with a group project in which teams of two students each were asked to design and built an electronic sensor to measure levels of water inside a tank. The project also required students to perform some calculations using excel. Table 1. Material covered on each lecture Lecture #1 Lecture #2 Lecture #3 Lecture #4 Lecture #5 Lectures Material Covered per Lecture -Introduction to Breadboards -How to read resistors color code -Introduction to circuits -Building basic circuits using breadboards and resistors - Assigned project for the module -Introduction to Inductors and LEDs -Building basic circuits using breadboards, inductors, LEDs, and resistors -Theory: Ohm s Law Kirchhoff s Law -Practice Problem to design an automatic dark detector -Practice problems to apply Ohm s and Kirchhoff s Law -Instructor reviewed student s designs for the project -Project (student s demo their final project for the module) Impact of Module in Student Learning and Perception of Engineering: At the end of the module, students were asked to complete an online survey aimed to assess the impact of the module in students interest in engineering. The intention of the module was to engage students and to teach them some basic concepts on circuits and electronics. Due to the fact that the module was delivered in a few weeks, we limited the survey to some general questions that allowed us to test knowledge gained from the module as well as any change in interest in engineering.

Results: Modifications to the course to implement electronics component: To implement a module on electronics, some minor modifications were implemented into the engineering problem solving course. The module was linked to the excel portion of the course and the project for the module involved excel calculations as well as the design of a sensor to measure levels of water inside a tank. The fact that more time was spent in project #2 caused an overlap between the second and third projects of the course. At the end, students had less time to complete the final design project for the course. Activities completed in class: Several hands-on activities were completed during class time to expose students to the design of simple electrical circuits. The activities included building simple circuits using a breadboard, several resistors, and a power supply. Circuits were built with resistors in series and in parallel. A more complex activity completed during class time involved the assembly of an automatic dark sensing circuit diagram, as shown in Figure 1. For the activity, the class was divided into groups of two students per team. The instructor led the in class activity by explaining the purpose and operation of each of the components in the circuits while students follow each step of the assembly process. The principle of operation of the completed circuit was explained in class and a demonstration followed. Figure 1: Automatic dark sensor circuit [Image]. 12 The final circuit assembled by each team was reviewed by the instructor and feedback was given individually to each team. To design and built an automatic dark sensor circuit, the following components were given to each team 330 ohms resistor

100 ohms resistor 830 pins breadboard Jumper wires 9V D.C. battery BC 547 transistor Light dependent resistor Light emitting diodes The estimated cost to build an automatic dark sensor circuit was $7 per team. Module Project To merge concepts of electronics with real life applications, students were asked to complete a project that involved the design and assembly of a circuit that will sense different levels of water inside a storage tank, using indicator lights. The design was expected to trigger an alarm once the water level reached full capacity. Students were also asked to prepare an excel spreadsheet that calculates volume of water at different levels inside the storage tank. Project Circuit Schematic Figure 2: Circuit diagram for water level indicator [Image]. 13 The components used to complete the circuit for the water level indicator were: 470 ohms resistor x6 Buzzer alarm 830 pins breadboard Jumper wires 9V D.C. battery Storage tank A1015 transistor x3

Probes (cables) Light emitting diodes x3 (Red, Yellow and Green) For the water level indicator, the estimated cost was $12.00 per team. Analysis of Survey: Forty-two students enrolled in a problem solving class completed the electronics module as part of the course. Eighty six percent of the students enrolled were male (14% were female) and 53% of them self-identified as first year engineering students. Due to the limited number of students in the study, we decided not to analyze the data by year of study (freshman versus nonfreshman). Figure 3: Sensor developed to measure levels of water inside a tank. At level 3, which indicates the tank is full, the attached buzzer alarm goes off simultaneously as the red indicator light comes on All students were able to complete the circuit designs during class time and completed the final project for the module (see Figure 3). Each team s project was tested during class time and students were allowed to modify their final design based on feedback received from the instructor. Based on the analysis of the survey (as shown in Figure 4), 52% of the students indicated that the electronics module increased their interest in pursuing a degree in engineering, while 40% indicated that the module did not produce a change in their interest in engineering.

The module on electronics covered in class: 2% Increased my interest in ENGR 40% 52% Decreased my interest in ENGR Produced no change in interest in ENGR No response 5% Figure 4: Some student reported an increase in interest in engineering due to the module According to the survey, 74% of the students recommended that the module should be part of the engineering problem solving class next semester. 79% of the responders also found the module interesting. Five percent of the responders indicated an intent to transfer out engineering program while 95% indicated an interest to continue pursuing a degree in engineering. According to the survey, the module did not promote the pursue of a degree in electrical engineering. Discussion: Instructors can potentially influence students retention rate in engineering by promoting in class activities that engage and attract students to engineering. For first year programs, it can be more challenging to prepare and deliver appropriate engineering projects and activities since students knowledge of engineering is limited. This paper presents a simple and cost effective module that can be implemented in first year courses to engage students in hands-on activities related to circuits and electronics. Although several full semester courses have been developed to introduce first year students to circuits and electronics, the simplicity and little time associated to this module make it more suitable for those institutions in which students are required to complete several courses (Mathematics, Chemistry, Calculus I, English, among others) before being accepted into an engineering major. 8,9,14 One key feature of this module is its cost effectiveness. By designing simple circuits and by encouraging students to work in pairs the instructor was able to reduce the initial cost of the module to $10 per student. Once the module was completed, all materials were collected and kept by the instructor to be reused in future courses; this further decreases the long term cost of implementing the module. The module was well accepted by students. Attendance was mostly 100% throughout the period the module was taught. For every lecture, the class was usually interactive and the questions asked by students were well thought and mainly complemented the instruction given in class.

More advanced activities, such as the design of a clapper sound activated switch, could be implemented in the module. The research group also plan to develop additional modules based on other engineering discipline (such as chemical, mechanical, or civil engineering). Due to a small sample size and a low percent of underrepresented groups in the course, the authors were unable to analyze the data by gender, ethnicity, or entry level (first semester versus second semester or above). However, we plan to implement the module in Fall 2015 in a larger number of students, which will allow for a more in depth analysis of the data and of the impact of the module in students confidence, and interest in engineering. Conclusion: Losing nearly half of talented first year engineering students is not acceptable and more needs to be done at the educational level to improve retention rates in engineering. This project shows that it is possible to design carefully structured and effective hands-on experiences using a limited budget. Even students that were not planning to pursue a degree in electrical engineering benefited from learning about circuits and reported an increase in interest in engineering due to the exposure to circuits and electronics. More time and effort should be dedicated to the development of effective educational material for engineering courses. Future work will involve the development of modules for other branches of engineering to promote an early exposure to engineering concepts and potentially increase retention in engineering. Acknowledgements: This material is based in part upon work supported by the National Sciences Foundation under a RIGEE Grant (L. Santiago). Financial support was also provided by a grant from engageengineering.org and by the first year engineering program at West Virginia University. References 1. Melsa, James. Transforming Engineering Education through Educational Scholarship Journal of Engineering Education (2007): 171-172. 2. Seymour, E., & Hewitt, N. Talking about leaving: Why undergraduates leave the sciences. Boulder, CO: Westview Press, 1997. Print. 3. Seymour, Elaine. Tracking the Processes of Change in U.S. Undergraduate Education in Science, Mathematics, Engineering, and Technology. Science Education 86 (2002): 79-105. 4. Crosling, Glenda; Heagney, Margaret; Thomas, Liz. Improving Student Retention in Higher Education: Improving Teaching and Learning. Australian Universities Review 51 (2009): 9-18 Web. 1 Jan. 2012. 5. Roberts, Jalynn; Styron, Ronald. Student Satisfaction and Persistence: Factors Vital to student retention Research in Higher Education Journal, 6 (2010): 1-18. Web. 28 Dec. 2011. 6. Pascarella, Ernest T.; Terenzini, Patrick T., Predicting Freshman Persistence and Voluntary Dropout Decisions from a Theoretical Model. Journal of Higher Education 51 (1980): 60-75. 7. Keeping students in engineering: A research-to-practice brief: American Society for Engineering Education. (n.d.). Retrieved from http://www.asee.org/retention-project/keeping-students-in-engineering-aresearch-guide-to-improving-retention

8. Carlson, Bruce, Schoch, Paul, Kalsher, Michael, Racicot, Bernadette, A Motivational First-year Electronics Lab Course, Journal of Engineering Education (1997): 357-362. 9. Knight, Daniel, Carlson, Lawrence, Sullivan, Jacquelyn, Improving Engineering Student Retention through Hands-On, Team Based, First-Year Design Projects, Proceedings International Conference on Research in Engineering Education (2007): 1-13. 10. All About Circuits: Free Electric Circuits & Electronics Textbooks. (n.d.). Retrieved from http://www.allaboutcircuits.com 11. Basic Electronics Tutorials and Revision. (n.d.). Retrieved from http://www.electronics-tutorials.ws 12. BuildCircuit - Site for electronics hobbyists and engineers. (2014, August). Retrieved from http://www.buildcircuit.com 13. CircuitDiagram.Org. (2014, December). Water level indicator using transistors. Retrieved from http://www.circuitdiagram.org/ 14. Tsividis, Yannis, Teaching Circuits and Electronics to First-Year Students, Proceedings IEEE International Symposium (1998): I424-I427 15. Ohland, Matthew W.; Sheppard, Sheri D.; Lichtenstein, Gary; Eris, Ozgur; Chachra, Debbie; Layton, Richard A., "Persistence, Engagement, and Migration in Engineering Programs" Mechanical Engineering (2008) Web 1 Jan. 2012. 16. Ohland, Matthew W.; Zhang, Guili; Thorndyke, Brian; Anderson, Timothy J., Grade-Point Average, Changes of Majors Selected by Students Leaving Engineering. 34th ASEE/IEEE Frontiers in Education Conference (2004), Session T1G. 17. Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and Passion for Long-Term Goals. Journal of Personality and Social Psychology, 92(6), 1087-1101.