MATH2111 HIGHER SEVERAL VARIABLE CALCULUS

Similar documents
SOUTHWEST COLLEGE Department of Mathematics

Syllabus ENGR 190 Introductory Calculus (QR)

MTH 141 Calculus 1 Syllabus Spring 2017

Math 181, Calculus I

Mathematics. Mathematics

SOUTHERN MAINE COMMUNITY COLLEGE South Portland, Maine 04106

Penn State University - University Park MATH 140 Instructor Syllabus, Calculus with Analytic Geometry I Fall 2010

ELEC3117 Electrical Engineering Design

AU MATH Calculus I 2017 Spring SYLLABUS

ACTL5103 Stochastic Modelling For Actuaries. Course Outline Semester 2, 2014

AP Calculus AB. Nevada Academic Standards that are assessable at the local level only.


Stochastic Calculus for Finance I (46-944) Spring 2008 Syllabus

Mathematics subject curriculum

THE UNIVERSITY OF SYDNEY Semester 2, Information Sheet for MATH2068/2988 Number Theory and Cryptography

Phys4051: Methods of Experimental Physics I

Bittinger, M. L., Ellenbogen, D. J., & Johnson, B. L. (2012). Prealgebra (6th ed.). Boston, MA: Addison-Wesley.

Answer Key Applied Calculus 4

Level 6. Higher Education Funding Council for England (HEFCE) Fee for 2017/18 is 9,250*

Course Syllabus for Math

Statewide Framework Document for:

EECS 700: Computer Modeling, Simulation, and Visualization Fall 2014

Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017

Honors Mathematics. Introduction and Definition of Honors Mathematics

Faculty of Health and Behavioural Sciences School of Health Sciences Subject Outline SHS222 Foundations of Biomechanics - AUTUMN 2013

ICTCM 28th International Conference on Technology in Collegiate Mathematics

Mathematics Program Assessment Plan

EGRHS Course Fair. Science & Math AP & IB Courses

ME 4495 Computational Heat Transfer and Fluid Flow M,W 4:00 5:15 (Eng 177)

INTERMEDIATE ALGEBRA Course Syllabus

Course Content Concepts

MATH 205: Mathematics for K 8 Teachers: Number and Operations Western Kentucky University Spring 2017

Office Hours: Day Time Location TR 12:00pm - 2:00pm Main Campus Carl DeSantis Building 5136

ED487: Methods for Teaching EC-6 Social Studies, Language Arts and Fine Arts

Firms and Markets Saturdays Summer I 2014

FINN FINANCIAL MANAGEMENT Spring 2014

PHY2048 Syllabus - Physics with Calculus 1 Fall 2014

Big Ideas Math Grade 6 Answer Key

Intermediate Algebra

Math 96: Intermediate Algebra in Context

PH.D. IN COMPUTER SCIENCE PROGRAM (POST M.S.)

Probability and Game Theory Course Syllabus

General Physics I Class Syllabus

Department of Statistics. STAT399 Statistical Consulting. Semester 2, Unit Outline. Unit Convener: Dr Ayse Bilgin

Foothill College Summer 2016

GEOG 473/573: Intermediate Geographic Information Systems Department of Geography Minnesota State University, Mankato

Instructor: Matthew Wickes Kilgore Office: ES 310

Class Meeting Time and Place: Section 3: MTWF10:00-10:50 TILT 221

MAT 122 Intermediate Algebra Syllabus Summer 2016

Learning Disability Functional Capacity Evaluation. Dear Doctor,

CHMB16H3 TECHNIQUES IN ANALYTICAL CHEMISTRY

PROGRAM REVIEW CALCULUS TRACK MATH COURSES (MATH 170, 180, 190, 191, 210, 220, 270) May 1st, 2012

Grading Policy/Evaluation: The grades will be counted in the following way: Quizzes 30% Tests 40% Final Exam: 30%

International Business Bachelor. Corporate Finance. Summer Term Prof. Dr. Ralf Hafner

Marketing Management MBA 706 Mondays 2:00-4:50

This Performance Standards include four major components. They are

PATHWAYS IN FIRST YEAR MATHS

SAT MATH PREP:

Characterizing Mathematical Digital Literacy: A Preliminary Investigation. Todd Abel Appalachian State University

Theory of Probability

Medical Terminology - Mdca 1313 Course Syllabus: Summer 2017

CARITAS PROJECT GRADING RUBRIC

MEE 6501, Advanced Air Quality Control Course Syllabus. Course Description. Course Textbook. Course Learning Outcomes. Credits.

3D DIGITAL ANIMATION TECHNIQUES (3DAT)

Foothill College Fall 2014 Math My Way Math 230/235 MTWThF 10:00-11:50 (click on Math My Way tab) Math My Way Instructors:

B.S/M.A in Mathematics

International Environmental Policy Spring :374:315:01 Tuesdays, 10:55 am to 1:55 pm, Blake 131

Ruggiero, V. R. (2015). The art of thinking: A guide to critical and creative thought (11th ed.). New York, NY: Longman.

The Algebra in the Arithmetic Finding analogous tasks and structures in arithmetic that can be used throughout algebra

MTH 215: Introduction to Linear Algebra

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering

PSYCHOLOGY 353: SOCIAL AND PERSONALITY DEVELOPMENT IN CHILDREN SPRING 2006

Psychology 102- Understanding Human Behavior Fall 2011 MWF am 105 Chambliss

Course Name: Elementary Calculus Course Number: Math 2103 Semester: Fall Phone:

Math Placement at Paci c Lutheran University

Instructor Experience and Qualifications Professor of Business at NDNU; Over twenty-five years of experience in teaching undergraduate students.

MATH 108 Intermediate Algebra (online) 4 Credits Fall 2008

ED : Methods for Teaching EC-6 Social Studies, Language Arts and Fine Arts

Politics and Society Curriculum Specification

This course has been proposed to fulfill the Individuals, Institutions, and Cultures Level 1 pillar.

Spring 2015 Natural Science I: Quarks to Cosmos CORE-UA 209. SYLLABUS and COURSE INFORMATION.

CHEM 101 General Descriptive Chemistry I


Seventh Grade Course Catalog

Math Techniques of Calculus I Penn State University Summer Session 2017

Name: Giovanni Liberatore NYUHome Address: Office Hours: by appointment Villa Ulivi Office Extension: 312

Lecture 1: Machine Learning Basics

Maintaining Resilience in Teaching: Navigating Common Core and More Online Participant Syllabus

ENG 111 Achievement Requirements Fall Semester 2007 MWF 10:30-11: OLSC

BAYLOR COLLEGE OF MEDICINE ACADEMY WEEKLY INSTRUCTIONAL AGENDA 8 th Grade 02/20/ /24/2017

MBA 5652, Research Methods Course Syllabus. Course Description. Course Material(s) Course Learning Outcomes. Credits.

Spring 2014 SYLLABUS Michigan State University STT 430: Probability and Statistics for Engineering

BUS Computer Concepts and Applications for Business Fall 2012

APPLICATION FOR NEW COURSE

Introduction to Forensic Drug Chemistry

BA 130 Introduction to International Business

CAAP. Content Analysis Report. Sample College. Institution Code: 9011 Institution Type: 4-Year Subgroup: none Test Date: Spring 2011

S T A T 251 C o u r s e S y l l a b u s I n t r o d u c t i o n t o p r o b a b i l i t y

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

Integrating simulation into the engineering curriculum: a case study

Transcription:

FACULTY OF SCIENCE SCHOOL OF MATHEMATICS AND STATISTICS MATH2111 HIGHER SEVERAL VARIABLE CALCULUS Semester 1, 2017 CRICOS Provider Code 00098G

MATH2111 Course Outline Information about the course Course Authority: Dr Denis Potapov Lecturers: Dr Denis Potapov RC 6111 d.potapov@unsw.edu.au Dr Jan Zika RC 4074 j.zika@unsw.edu.au. Dr Potapov will lecture weeks 1 6 and Dr Zika will lecture weeks 7 12. Consultation: Consultation times will be arranged in week 2 and announced in lectures and on Moodle. Credit: 6 Units of Credit (6UOC). Prerequisites: MATH1231 or MATH1241 or MATH1251 each with a mark of at least 70. Exclusions: MATH2019, MATH2049, MATH2069, MATH2100, MATH2110, MATH2011, MATH2039, MATH2510, MATH2610 Lectures: The lecture times as stated on myunsw are: The locations are subject to change. Monday 1 2PM EE-G25 Tuesday 9 10AM EE-G25 Thursday 11AM-12PM EE-G25 Friday 1 2PM EE-G25 Tutorials: The tutorials begin in week 2. Tutorial problem sheets will be posted on Moodle. You should attempt the problems before attending your tutorial. About this course This 6UOC course is the Higher Version of the core second year mathematics topic, Several Variable Calculus. Either this course or its ordinary level version MATH2011 is required for completion of a mathematics major. It also forms a compulsory or recommended component of several other programs. MATH2111 is highly recommended for students intending to proceed to Honours. Course Aims The aim of this course is to deepen your understanding of the ideas and techniques of integral and differential calculus for functions of several variables. These ideas and 2

techniques are crucial to mechanics, dynamics, electromagnetism, fluid flow and many other areas of pure and applied mathematics. The course combines and extends ideas from one variable calculus and linear algebra to establish the calculus of vector-valued functions: from differentiation through multiple integration to integration over curves and surfaces and the classical Stokes and Divergence Theorems. The emphasis is on understanding fundamental concepts, developing spatial understanding and acquiring the ability to solve concrete problems. Higher or Ordinary? Formally, entry to MATH2111 requires a mark of 70 in first year. Past experience indicates that students who have not achieved this grade struggle with the course. MATH2111 contains a significant amount of extra, theoretical, material compared to MATH2011. Apart from the extra understanding that this brings, the reward for this is that the examination marks are scaled to make sure that the grades are comparable. Many more Distinctions and High Distinctions are awarded in MATH2111 than in MATH2011. The pass rate in MATH2111 is traditionally very high (as it should be with the quality of students in the course). Gaining a high mark in MATH2111 requires that a student understands a reasonable amount of this extra material. Passing requires (as it does in MATH2011) that the student can at least do the most important computational parts of the course. Student Learning Outcomes Students taking this course will develop an understanding of the main ideas of calculus in higher dimensions, develop proficiency in performing computations arising in higher dimensional calculus, become acquainted with the central concepts of mathematical analysis, and of classical applied mathematics that will be used in later years. Through regularly attending lectures and applying themselves in tutorial exercises, students will develop competency in mathematical presentation, written and verbal skills. Relation to graduate attributes The above outcomes are related to the development of the Science Faculty Graduate Attributes, in particular: 1.Research, inquiry and analytical thinking abilities, 4. Communication. Teaching strategies underpinning the course New ideas and skills are introduced and demonstrated in lectures, then students develop these skills by applying them to specific tasks in tutorials and assessments. 3

Rationale for learning and teaching strategies We believe that effective learning is best supported by a climate of enquiry, in which students are actively engaged in the learning process. To ensure effective learning, students should participate in class as outlined below. We believe that effective learning is achieved when students attend all classes, have prepared effectively for classes by reading through previous lecture notes, in the case of lectures, and, in the case of tutorials, by having made a serious attempt at doing for themselves the tutorial problems prior to the tutorials. Furthermore, lectures should be viewed by the student as an opportunity to learn, rather than just copy down lecture notes. Effective learning is achieved when students have a genuine interest in the subject and make a serious effort to master the basic material. The art of logically setting out mathematics is best learned by watching an expert and paying particular attention to detail. This skill is best learned by regularly attending classes. Assessment UNSW assesses students under a standards based assessment policy. For how this policy is applied in the School of Mathematics and Statistics see http://www.maths.unsw.edu.au/currentstudents/assessment-policies You are required to complete four assessment tasks in this course: Writing Assignment 12% Class Test 1 (week 6) 14% Class Test 2 (week 11) 14% Final Examination 60% Writing Assignment The aim of writing assignment is to develop your ability to present your mathematics in a professional way, paying attention to neatness, grammar, clarity of argument, use of notation and so forth. The writing assignment will incorporate a peer review process that will be administered using Moodle. Further details of what is expected, including submission dates for the peer review and final submissions, will be announced in lectures and on Moodle. 4

Tests The class tests are designed to give you a chance to assess your mastery of the course material, including both the theoretical and computational aspects of the course. Each of the 2 class tests will last about 40 minutes. They will NOT take place in tutorials. They will be held in the lecture theatre during a lecture in weeks 6 and 11. Announcements will be made in lectures about the topics that will be covered in each of the tests. You must bring your STUDENT ID card to each test. Normal exam conditions apply in tests. In particular, you must not bring any kind of written material into the test and you must not try to get assistance from or give assistance to any other person. You will need to provide your own writing paper for the test. You will NOT be allowed to use a calculator in class tests. If illness (or some other circumstance beyond your control) affects your attendance at or performance in a class test do NOT make an official application for Special Consideration, just show a medical certificate (or other appropriate documentation) to the lecturer in charge. If this documentation is accepted, your final mark will be calculated using an increased weighting for the remaining assessment tasks. You should keep all marked tests until the end of semester in case an error has been made in recording the marks. Your marks will be available online, and you should check these well before the end of semester. Final exam The final exam is the major assessment task. Its purpose is to determine the level of student mastery of both the theoretical and computational course material. The duration of the final exam will be two hours. If your attendance at, or performance in, the final exam is affected by circumstances beyond your control, you may be able to apply for special consideration. See the Administrative Matters section for further information. You should read this information NOW so that you are aware of the rules and procedures for additional assessment. Calculator Information For end of semester UNSW exams student must supply their own calculator. Only calculators on the UNSW list of approved calculators may be used in the end of semester 5

exams. This list is similar to the list of calculators approved for HSC examinations. BEFORE the exam period calculators must be given a UNSW approved calculator sticker, obtainable from the School of Mathematics and Statistics Office, and other student or Faculty centres. The UNSW list of calculators approved for use in end of semester exams is available at https://my.unsw.edu.au/student/academiclife/assessment/examinations/calculator.html Resources for students Moodle This course will use Moodle. Use your zid and zpass to log in to Moodle at the following URL. http://moodle.telt.unsw.edu.au Texts The text for the course is Vector Calculus (Sixth Edition, 2012) by Marsden and Tromba and published by W. H. Freeman and Company, New York. In particular, there is a webpage to complement the book where you will find further resources, http://bcs.whfreeman.com/marsdenvc6e/ For the more abstract material you should consult more widely. Recommended texts are Morgan, F., Real Analysis, American Mathematical Society, 2005, P515/91. Williamson, Crowell and Trotter, Calculus of Vector Functions, P517.5/23. The first year text Calculus by Salas, Hille and Etgen published by Wiley (any recent edition) has material relevant to much of this course. A useful text for the writing assignment is Vivaldi, F., Mathematical Writing, Springer 2014, HUC 510/751. Lecture Notes. Lecture notes will be provided as a PDFs on Moodle. The Moodle site will also contain a significant amount of additional material that may be of use to students. These web notes should be thought of as an alternative source of information rather than as a description of what will be covered in the lectures this year. Problem sets. The tutorial exercises will be provided as PDFs on Moodle. Sample exams. Moodle will contain a number of sample exams. 6

Course Evaluation and Development The School of Mathematics and Statistics evaluates each course each time it is run. We carefully consider the student responses and their implications for course development. Feedback is very important to us, so please don t leave it to the end of the course to pass on any ideas. Administrative matters Important information on Additional Assessment School Rules and Regulations Plagiarism and academic honesty can be found on the School s website at http://www.maths.unsw.edu.au/currentstudents/assessment-policies Please carefully read this page and the documents two which it links. Syllabus The references shown against each topic are to the textbook by Marsden and Tromba [MT] and the two addition texts listed above, Morgan [M] and Williamson, Crowell and Trotter [WCT]. These references are not a definition of what is covered in this course they are just a guide to finding relevant material. Some parts of the course are not covered in the references and many parts of the references (even in the sections mentioned below) are not included in this course. Multivariable Calculus (Weeks 1 6) 1. Curves and Surfaces in R n [MT, Sections 2.4, 7.3] Curves in R n. Surfaces in R n. 7

2. Introduction to Analysis and Topology in R n [Web notes; M, Parts I and II; MT, Section 2.2] Topology of R n. Limits and continuity for functions R m to R n. Compact and connected sets Images of compact and connected sets 3. Differential Calculus [MT, Sections 2.3, 2.5, 2.6, 3.2 3.5] Partial derivatives. Differentiability. The Chain Rule Scalar fields Directional derivatives and the gradient Normals and tangents Taylor s Theorem, higher order differentials Maxima and minima, Lagrange multipliers Solvability of systems of non-linear equations The Inverse and Implicit Function Theorems 4. Integral Calculus [MT, Sections 5.1 5.5, 6.2] Double and triple integrals Iterated integrals and Fubini s Theorem Differentiation under the integral sign Change of variables Integrals in polar, cylindrical and spherical coordinates Vector Calculus (Weeks 7 11) 1. Prelude Scalar and vector fields Dot and cross products 2. Path Integrals [MT, Sections 7.1 7.2] Path integral of a scalar field Path integral of a vector field Work and energy Properties of path integrals Surface integrals 8

3. Surface Integrals [MT, Sections 7.3 7.7] Parametrized surfaces Surface area Integrals of scalar functions over surfaces Surface integrals of vector fields Applications. 4. Vector Differential Operators [MT, Section 4.4] Gradient Curl Divergence Two key identities Translating and rotating the frame of reference 5. Vector Integral Theorems [MT, Sections 8.1 8.5] Two concepts of boundary Green s theorem Stokes s theorem Divergence theorem Applications of the integral theorems Differential forms (trailer) 6. Orthogonal Curvilinear coordinates [MT, Sections 8.1 8.5] General curvilinear coordinates Path, surface and volume integrals Gradient, curl and divergence Fourier Series (Week 12) [WCT, Sections 5.5, 5.6, 5.8, Appendix 4; M, Sections 17, 22] Introduction Periodic functions Trigonometric polynomials Pointwise vs uniform convergence Trigonometric series 9

Piecewise continuous functions Fourier polynomials Fourier series 10