Focus of the Unit: Much of this unit focuses on extending previous skills of multiplication and division to multi-digit whole numbers.

Similar documents
Grade 5 + DIGITAL. EL Strategies. DOK 1-4 RTI Tiers 1-3. Flexible Supplemental K-8 ELA & Math Online & Print

Extending Place Value with Whole Numbers to 1,000,000

Montana Content Standards for Mathematics Grade 3. Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011

This scope and sequence assumes 160 days for instruction, divided among 15 units.

South Carolina College- and Career-Ready Standards for Mathematics. Standards Unpacking Documents Grade 5

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified

Common Core Standards Alignment Chart Grade 5

First Grade Standards

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade

Using Proportions to Solve Percentage Problems I

Exemplar 6 th Grade Math Unit: Prime Factorization, Greatest Common Factor, and Least Common Multiple

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

The New York City Department of Education. Grade 5 Mathematics Benchmark Assessment. Teacher Guide Spring 2013

Arizona s College and Career Ready Standards Mathematics

Draft -Unit 1. Whole Number Computation and Application 8 Weeks. 1 Joliet Public Schools District 86 DRAFT Curriculum Guide , Grade 5, Unit 1

Dublin City Schools Mathematics Graded Course of Study GRADE 4

Fourth Grade. Reporting Student Progress. Libertyville School District 70. Fourth Grade

Algebra 1 Summer Packet

Rendezvous with Comet Halley Next Generation of Science Standards

Missouri Mathematics Grade-Level Expectations

Let s think about how to multiply and divide fractions by fractions!

Statewide Framework Document for:

Are You Ready? Simplify Fractions

Grade 6: Correlated to AGS Basic Math Skills

What's My Value? Using "Manipulatives" and Writing to Explain Place Value. by Amanda Donovan, 2016 CTI Fellow David Cox Road Elementary School

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

Multiplication of 2 and 3 digit numbers Multiply and SHOW WORK. EXAMPLE. Now try these on your own! Remember to show all work neatly!

QUICK START GUIDE. your kit BOXES 1 & 2 BRIDGES. Teachers Guides

Lesson 17: Write Expressions in Which Letters Stand for Numbers

About the Mathematics in This Unit

Mathematics process categories

Unit 3 Ratios and Rates Math 6

TOPICS LEARNING OUTCOMES ACTIVITES ASSESSMENT Numbers and the number system

Activity 2 Multiplying Fractions Math 33. Is it important to have common denominators when we multiply fraction? Why or why not?

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C

Backwards Numbers: A Study of Place Value. Catherine Perez

Objective: Model division as the unknown factor in multiplication using arrays and tape diagrams. (8 minutes) (3 minutes)

Ohio s Learning Standards-Clear Learning Targets

Pre-Algebra A. Syllabus. Course Overview. Course Goals. General Skills. Credit Value

Remainder Rules. 3. Ask students: How many carnations can you order and what size bunches do you make to take five carnations home?

Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking

Written by Wendy Osterman

ENGAGE. Daily Routines Common Core. Essential Question How can you use the strategy draw a diagram to solve multistep division problems?

Problem of the Month: Movin n Groovin

South Carolina English Language Arts

FractionWorks Correlation to Georgia Performance Standards

Mathematics subject curriculum

STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point.

The following shows how place value and money are related. ones tenths hundredths thousandths

Math 96: Intermediate Algebra in Context

Georgia Department of Education Georgia Standards of Excellence Framework GSE Sophisticated Shapes Unit 1

Developing a concrete-pictorial-abstract model for negative number arithmetic

Sample Problems for MATH 5001, University of Georgia

Name: Class: Date: ID: A

DMA CLUSTER CALCULATIONS POLICY

Math Grade 3 Assessment Anchors and Eligible Content

Helping Your Children Learn in the Middle School Years MATH

After your registration is complete and your proctor has been approved, you may take the Credit by Examination for MATH 6A.

Common Core State Standards

Learning Disability Functional Capacity Evaluation. Dear Doctor,

Table of Contents. Development of K-12 Louisiana Connectors in Mathematics and ELA

Curriculum Design Project with Virtual Manipulatives. Gwenanne Salkind. George Mason University EDCI 856. Dr. Patricia Moyer-Packenham

Alignment of Australian Curriculum Year Levels to the Scope and Sequence of Math-U-See Program

KeyTrain Level 7. For. Level 7. Published by SAI Interactive, Inc., 340 Frazier Avenue, Chattanooga, TN

RIGHTSTART MATHEMATICS

Characteristics of Functions

One Way Draw a quick picture.

Math 121 Fundamentals of Mathematics I

MODULE FRAMEWORK AND ASSESSMENT SHEET

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand

Unit 3: Lesson 1 Decimals as Equal Divisions

Lesson 12. Lesson 12. Suggested Lesson Structure. Round to Different Place Values (6 minutes) Fluency Practice (12 minutes)

Standard 1: Number and Computation

Objective: Add decimals using place value strategies, and relate those strategies to a written method.

Math 098 Intermediate Algebra Spring 2018

Chapter 4 - Fractions

Big Ideas Math Grade 6 Answer Key

BENCHMARK MA.8.A.6.1. Reporting Category

What the National Curriculum requires in reading at Y5 and Y6

Work Stations 101: Grades K-5 NCTM Regional Conference &

UNIT ONE Tools of Algebra

End-of-Module Assessment Task

Mathematics Success Grade 7

TABE 9&10. Revised 8/2013- with reference to College and Career Readiness Standards

P a g e 1. Grade 5. Grant funded by:

Contents. Foreword... 5

CAAP. Content Analysis Report. Sample College. Institution Code: 9011 Institution Type: 4-Year Subgroup: none Test Date: Spring 2011

The Indices Investigations Teacher s Notes

Assessment Strategies Sight Word Assessments Running Records Daily Work Anecdotal Notes

Zoo Math Activities For 5th Grade

Investigate the program components

Radius STEM Readiness TM

Classroom Connections Examining the Intersection of the Standards for Mathematical Content and the Standards for Mathematical Practice

Physics 270: Experimental Physics

NCSC Alternate Assessments and Instructional Materials Based on Common Core State Standards

MATH 205: Mathematics for K 8 Teachers: Number and Operations Western Kentucky University Spring 2017

Answers To Hawkes Learning Systems Intermediate Algebra

Grade Five Chapter 6 Add and Subtract Fractions with Unlike Denominators Overview & Support Standards:

Cal s Dinner Card Deals

LLD MATH. Student Eligibility: Grades 6-8. Credit Value: Date Approved: 8/24/15

Transcription:

Approximate Time Frame: 3-4 weeks Connections to Previous Learning: In fourth grade, students fluently multiply (4-digit by 1-digit, 2-digit by 2-digit) and divide (4-digit by 1-digit) using strategies based on place-value and the properties of operations. 5 th grade students will extend these skills to develop fluency with efficient procedures for multiplying and dividing multi-digit whole numbers. Focus of the Unit: Much of this unit focuses on extending previous skills of multiplication and division to multi-digit whole numbers. Students will fluently multiply multi-digit numbers by using a standard algorithm. They will use area models as a stepping stone to partial products. Then partial products will help with place value understanding as they learn the column multiplication method. All three of these are recording strategies for the standard algorithm. Students should be exposed to all three methods so that they are adequately prepared to critique the reasoning of others when either method is chosen. They will divide (whole numbers with up to four-digit dividends and two-digit divisors) using strategies based on place-value, the properties of operations, and/or the relationship between multiplication and division; they will illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. At this point in the students learning, they can fluently apply all operations using whole numbers. Now they are ready to begin incorporating the order of operations. Students will use parentheses, brackets, and braces to write and evaluate numerical expressions. Connections to Subsequent Learning: Fifth grade students experiences with numerical expressions prepare students to work with algebraic expressions in the sixth grade. In sixth grade, students will read, write, and evaluate more complex expressions using variables. In grades 6-8, students begin using properties of operations to manipulate algebraic expressions and produce equivalent expressions for different purposes. This builds on the extensive work done in K-5 working with addition, subtraction, multiplication, and division. From the 6-8, Expressions and Equations Progression Document, pp. 2-5 An expression expresses something. Facial expressions express emotions. Mathematical expressions express calculations with numbers. Some of the numbers might be given explicitly, like 2 or. Other numbers in the expression might be represented by letters, such as x, y, P, or n. The calculation an expression represents might use only a single operation, as in, or it might use a series of nested or parallel operations, as in. An expression can consist of just a single number, even 0. Priority Standards Supporting Standards Additional Standards Page 1

Letters standing for numbers in an expression are called variables. In good practice, including in student writing, the meaning of a variable is specified by the surrounding text; an expression by itself gives no intrinsic meaning to the variables in it. Depending on the context, a variable might stand for a specific number, for example, the solution to a word problem; it might be used in a universal statement true for all numbers, for example when we say that for all numbers a and b; or it might stand for a range of numbers, for example when we say that. In choosing variables to represent quantities, students specify a unit; rather than saying let G be gasoline, they say let G be the number of gallons of gasoline.mp6 An expression is a phrase in a sentence about a mathematical or real-world situation. As with a facial expression, however, you can read a lot from an algebraic expression (an expression with variables in it) without knowing the story behind it, and it is a goal of this progression for students to see expressions as objects in their own right, and to read the general appearance and fine details of algebraic expressions. An equation is a statement that two expressions are equal, such as. It is an important aspect of equations that the two expressions on either side of the equal sign might not actually always be equal; that is, the equation might be a true statement for some values of the variable(s) and a false statement for others. For example, is true only if is not true for any number and is true for all numbers. A solution to an equation is a number that makes the equation true when substituted for the variable (or, if there is more than one variable, it is a number for each variable). An equation may have no solution (e.g. has no solutions because, no matter what number is, it is not true that adding 3 to x yields the same answer as adding 4 to x). An equation may also have every number for a solution (e.g., An equation that is true no matter what the variable represents is called an identity, and the expressions on each side of the equation are said to be equivalent expressions. For example are equivalent expressions. In Grades 6 8, students start to use properties of operations to manipulate algebraic expressions and produce different but equivalent expressions for different purposes. This work builds on their extensive experience in K 5 working with the properties of operations in the context of operations with whole numbers, decimals and fractions. Apply and extend previous understandings of arithmetic to algebraic expressions: Students have been writing numerical expressions since Kindergarten, such as In Grade 5 they used whole number exponents to express powers of 10, and in Grade 6 they start to incorporate whole number exponents into numerical expressions, for example when they describe a square with side length 50 feet as having an area of 50 2 square feet. 6.EE.1 Students have also been using letters to represent an unknown quantity in word problems since Grade 3. In Grade 6 they begin to work systematically with algebraic expressions. They express the calculation Subtract y from 5 as 5 - y, and write expressions for repeated numerical calculations.mp8 For example, students might be asked to write a numerical expression for the change from a $10 bill after buying a book at various prices: Price of book ($) 5.00 6.49 7.15 Change from $10 10-5 10-6.49 10-7.15 Priority Standards Supporting Standards Additional Standards Page 2

Abstracting the pattern they write 10- p for a book costing p dollars, thus summarizing a calculation that can be carried out repeatedly with different numbers.6.ee.2a Such work also helps students interpret expressions. For example, if there are 3 loose apples and 2 bags of A apples each, students relate quantities in the situation to the terms in the expression 3 + 2A. As they start to solve word problems algebraically, students also use more complex expressions. For example, in solving the word problem Daniel went to visit his grandmother, who gave him $5.50. Then he bought a book costing $9.20. If he has $2.30 left, how much money did he have before visiting his grandmother? Students might obtain the expression by following the story forward, and then solve the equation and calculating 6.EE.7 As word problems get more complex, students find greater benefit in representing the problem algebraically by choosing variables to represent quantities, rather than attempting a direct numerical solution, since the former approach provides general methods and relieves demands on working memory. Students in Grade 5 began to move from viewing expressions as actions describing a calculation to viewing them as objects in their own right; 5.OA.2 in Grade 6 this work continues and becomes more sophisticated. They describe the structure of an expression, seeing for example as a product of two factors the second of which,, can be viewed as both a single entity and a sum of two terms. They interpret the structure of an expression in terms of a context: if a runner is 7t miles from her starting point after t hours, what is the meaning of the 7? MP7 If a, b, and c are the heights of three students in inches, they recognize that the coefficient has the effect of reducing the size of the sum, and they also interpret multiplying by as dividing by 3. 6.EE.2b Both interpretations are useful in connection with understanding the expression as the mean of a, b, and c. 6.SP.3 In the work on number and operations in Grades K 5, students have been using properties of operations to write expressions in different ways. For example, students in grades K 5 write and and recognize these as instances of general properties which they can describe. They use the any order, any grouping property to see the expression as, allowing them to quickly evaluate it. The properties are powerful tools that students use to accomplish what they want when working with expressions and equations. They can be used at any time, in any order, whenever they serve a purpose. Work with numerical expressions prepares students for work with algebraic expressions. During the transition, it can be helpful for them to solve numerical problems in which it is more efficient to hold numerical expressions unevaluated at intermediate steps. For example, the problem Fred and George Weasley make 150 Deflagration Deluxe boxes of Weasleys Wildfire Whiz-bangs at a cost of 17 Galleons each, and sell them for 20 Galleons each. What is their profit? is more easily solved by leaving unevaluated the total cost, Galleons, and the total revenue Galleons, until the subtraction step, where the distributive law can be used to calculate the answer as Galleons. A later algebraic version of the problem might ask for Priority Standards Supporting Standards Additional Standards Page 3

the sale price that will yield a given profit, with the sale price represented by a letter such as p. The habit of leaving numerical expressions unevaluated prepares students for constructing the appropriate algebraic equation to solve such a problem. As students move from numerical to algebraic work the multiplication and division symbols and are replaced by the conventions of algebraic notation. Students learn to use either a dot for multiplication, e.g., 1 2 3 instead of 1, or simple juxtaposition, e.g., 3x instead of 3 x (during the transition, students may indicate all multiplications with a dot, writing 3 x for 3x). A firm grasp on variables as number helps students extend their work with the properties of operations from the arithmetic to algebra. MP2 For example, students who are accustomed to mentally calculating as can now see that for all numbers a. They apply the distributive property to the expression to 6.EE.3 produce the equivalent expression and to the expression to produce the equivalent expression Desired Outcomes Standard(s): Perform operations with multi-digit whole numbers and with decimals to hundredths. 5.NBT.5 Fluently multiply multi-digit whole numbers using the standard algorithm. 5.NBT.6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division, illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. Write and interpret numerical expressions. 5.OA.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. Transfer: Students will apply concepts and procedures of multiplication and division to solve real world problems. Example: The parking garage has 4,224 parked on 6 levels, each of which have a blue, a green, a yellow and a red section. If each section has the same amount of cars, how many cars are in each section? Understandings: Students will understand that Parentheses, brackets, and braces are used to guide the order of operations when simplifying expressions. A standard algorithm is used to fluently multiply multi-digit whole numbers. A variety of different strategies can be used to divide multi-digit numbers, visual models (rectangular array, equations, and/or area model) and strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Priority Standards Supporting Standards Additional Standards Page 4

Essential Questions: How do parentheses, brackets, and braces affect the way you simplify expressions? How do you multiply multi-digit numbers using a standard algorithm? How do you choose different division strategies to divide multi-digit numbers? Highlighted Mathematical Practices: (Practices to be explicitly emphasized are indicated with an *.) 1. Make sense of problems and persevere in solving them. Students persevere in solving problems to represent and solve in a range of contexts by selecting appropriate strategies. 2. Reason abstractly and quantitatively. Students reason abstractly by choosing strategies to represent situations. * 3. Construct viable arguments and critique the reasoning of others. Students explain calculations using models, properties of operations, and rules that generate patterns when they talk and write about the steps they take to solve problems. They refine their mathematical communication skills as they participate in mathematical discussions involving questions like How did you get that? and Why is that true? They explain their thinking to others and respond to others thinking. 4. Model with mathematics. Students make diagrams and equations to represent the multiplication and division situations. 5. Use appropriate tools strategically. Use manipulatives to model division (e.g. base- ten materials, Cuisenaire Rods, Digi/blocks). 6. Attend to precision. 7. Look for and make use of structure. Students will look for the place value structure of numbers to aide in efficient calculation. * 8. Look for and express regularity in repeated reasoning. Students use repeated reasoning to understand algorithms and make generalizations about patterns when multiplying and dividing multi-digit numbers. Students connect place value and their prior work with operations to understand algorithms to fluently multiply multi-digit numbers. Prerequisite Skills/Concepts: Students should already be able to Multiply 4-digit by 1-digit numbers and 2-digit by 2-digit numbers. Divide whole numbers with up to four-digit dividends and one-digit divisors. Solve problems with the different problem solving structures using the four operations. Advanced Skills/Concepts: Some students may be ready to Divide multi-digit whole numbers by multi-digit whole numbers by using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Evaluate more complex numerical expressions Priority Standards Supporting Standards Additional Standards Page 5

Knowledge: Students will know Skills: Students will be able to How to illustrate and explain division (up to 4-digit whole numbers by up to 2-digit whole numbers) calculations by using a visual model (rectangular array, equations, and/or area model) (5.NBT.6). Fluently multiply multi-digit whole numbers. (5.NBT.5) Divide up to 4-digit whole numbers by up to 2-digit whole numbers by using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. (5.NBT.6) Use parentheses, brackets, and braces in numerical expressions. And evaluate those expressions.(5.oa.1) WIDA Standard: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Mathematics. English language learners benefit from: A preview of critical vocabulary terms before instruction. The use of visuals to make explicit connections between the vocabulary and the content being learned. Academic Vocabulary: Critical Terms: Expressions Parentheses Brackets Braces Supplemental Terms: Dividend Divisor Quotient Remainder Array Area model Equation Priority Standards Supporting Standards Additional Standards Page 6

Assessment Pre-Assessments Formative Assessments Summative Assessments Self-Assessments Area Model Pairs Check Worksheet Review Cards Division Self Assessment Partial Product Method Worksheet 5.NBT.5 Summative Assessment Assesses students place value understanding of base-ten system Using Area Models for Multi-digit Multiplication Pre-assessment Sample Lesson Sequence 1. 5.NBT.5 & 5.OA.1 Multiplying multi-digit numbers (Model Lesson) 2. 5.NBT.6 & 5.OA.1 Dividing multi-digit numbers (Model Lesson) Priority Standards Supporting Standards Additional Standards Page 7