Mechanics. Rémi Poirier. Contents. 1. Course information. 2. Place in the program. 3. Contribution to exit profile

Similar documents
PHYSICS 40S - COURSE OUTLINE AND REQUIREMENTS Welcome to Physics 40S for !! Mr. Bryan Doiron

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED MECHANICS MET 2025

Teaching a Laboratory Section

Spring 2015 Natural Science I: Quarks to Cosmos CORE-UA 209. SYLLABUS and COURSE INFORMATION.

MTH 215: Introduction to Linear Algebra

MTH 141 Calculus 1 Syllabus Spring 2017

Class Meeting Time and Place: Section 3: MTWF10:00-10:50 TILT 221


Instructor: Matthew Wickes Kilgore Office: ES 310

Math 181, Calculus I

Faculty of Health and Behavioural Sciences School of Health Sciences Subject Outline SHS222 Foundations of Biomechanics - AUTUMN 2013

SOUTHWEST COLLEGE Department of Mathematics

Accounting 312: Fundamentals of Managerial Accounting Syllabus Spring Brown

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

Physics 270: Experimental Physics

SOUTHERN MAINE COMMUNITY COLLEGE South Portland, Maine 04106

General Physics I Class Syllabus

Foothill College Summer 2016

CALCULUS III MATH

Grading Policy/Evaluation: The grades will be counted in the following way: Quizzes 30% Tests 40% Final Exam: 30%

CIS 121 INTRODUCTION TO COMPUTER INFORMATION SYSTEMS - SYLLABUS

EGRHS Course Fair. Science & Math AP & IB Courses

ASTRONOMY 2801A: Stars, Galaxies & Cosmology : Fall term

State University of New York at Buffalo INTRODUCTION TO STATISTICS PSC 408 Fall 2015 M,W,F 1-1:50 NSC 210

Office Hours: Mon & Fri 10:00-12:00. Course Description

Syllabus ENGR 190 Introductory Calculus (QR)

CHMB16H3 TECHNIQUES IN ANALYTICAL CHEMISTRY

AST Introduction to Solar Systems Astronomy

UNIV 101E The Student in the University

INTERMEDIATE ALGEBRA Course Syllabus

Required Materials: The Elements of Design, Third Edition; Poppy Evans & Mark A. Thomas; ISBN GB+ flash/jump drive

SAT MATH PREP:

MATH 1A: Calculus I Sec 01 Winter 2017 Room E31 MTWThF 8:30-9:20AM

Mathematics subject curriculum

Pre-AP Geometry Course Syllabus Page 1

Application of Virtual Instruments (VIs) for an enhanced learning environment

EEAS 101 BASIC WIRING AND CIRCUIT DESIGN. Electrical Principles and Practices Text 3 nd Edition, Glen Mazur & Peter Zurlis

Firms and Markets Saturdays Summer I 2014

Professors will not accept Extra Credit work nor should students ask a professor to make Extra Credit assignments.

Syllabus Foundations of Finance Summer 2014 FINC-UB

Pearson Baccalaureate Higher Level Mathematics Worked Solutions

CPMT 1347 Computer System Peripherals COURSE SYLLABUS

ACTL5103 Stochastic Modelling For Actuaries. Course Outline Semester 2, 2014

Indiana University Northwest Chemistry C110 Chemistry of Life

Introductory Astronomy. Physics 134K. Fall 2016

Physics XL 6B Reg# # Units: 5. Office Hour: Tuesday 5 pm to 7:30 pm; Wednesday 5 pm to 6:15 pm

PHO 1110 Basic Photography for Photographers. Instructor Information: Materials:

PreAP Geometry. Ms. Patricia Winkler

POFI 1349 Spreadsheets ONLINE COURSE SYLLABUS

CS/SE 3341 Spring 2012

ITSC 2321 Integrated Software Applications II COURSE SYLLABUS

TROY UNIVERSITY MASTER OF SCIENCE IN INTERNATIONAL RELATIONS DEGREE PROGRAM

COMM370, Social Media Advertising Fall 2017

Foothill College Fall 2014 Math My Way Math 230/235 MTWThF 10:00-11:50 (click on Math My Way tab) Math My Way Instructors:

Ab Calculus Clue Problem Set Answers

SYLLABUS. EC 322 Intermediate Macroeconomics Fall 2012

STANDARDIZED COURSE SYLLABUS

MAT 122 Intermediate Algebra Syllabus Summer 2016

Texas A&M University-Central Texas CISK Comprehensive Networking C_SK Computer Networks Monday/Wednesday 5.

Course outline. Code: PHY202 Title: Electronics and Electromagnetism

Computer Architecture CSC

STA2023 Introduction to Statistics (Hybrid) Spring 2013

Theory of Probability

INTRODUCTION TO GENERAL PSYCHOLOGY (PSYC 1101) ONLINE SYLLABUS. Instructor: April Babb Crisp, M.S., LPC

Reinventing College Physics for Biologists: Explicating an Epistemological Curriculum

AGN 331 Soil Science Lecture & Laboratory Face to Face Version, Spring, 2012 Syllabus

Math Techniques of Calculus I Penn State University Summer Session 2017

Instructor Dr. Kimberly D. Schurmeier

CS 3516: Computer Networks

S T A T 251 C o u r s e S y l l a b u s I n t r o d u c t i o n t o p r o b a b i l i t y

Office Hours: Day Time Location TR 12:00pm - 2:00pm Main Campus Carl DeSantis Building 5136

Intensive English Program Southwest College

Spring 2015 IET4451 Systems Simulation Course Syllabus for Traditional, Hybrid, and Online Classes

Page 1 of 8 REQUIRED MATERIALS:

HCI 440: Introduction to User-Centered Design Winter Instructor Ugochi Acholonu, Ph.D. College of Computing & Digital Media, DePaul University

Instructor. Darlene Diaz. Office SCC-SC-124. Phone (714) Course Information

PHYS 2426: UNIVERSITY PHYSICS II COURSE SYLLABUS: SPRING 2013

MATH 108 Intermediate Algebra (online) 4 Credits Fall 2008

Scottsdale Community College Spring 2016 CIS190 Intro to LANs CIS105 or permission of Instructor

Course Syllabus Advanced-Intermediate Grammar ESOL 0352

Math 96: Intermediate Algebra in Context

Math 22. Fall 2016 TROUT

AP Calculus AB. Nevada Academic Standards that are assessable at the local level only.

MAR Environmental Problems & Solutions. Stony Brook University School of Marine & Atmospheric Sciences (SoMAS)

Course Syllabus p. 1. Introduction to Web Design AVT 217 Spring 2017 TTh 10:30-1:10, 1:30-4:10 Instructor: Shanshan Cui

MGT/MGP/MGB 261: Investment Analysis

Course Syllabus Art History II ARTS 1304

Math 098 Intermediate Algebra Spring 2018

Timeline. Recommendations

COURSE SYLLABUS: CPSC6142 SYSTEM SIMULATION-SPRING 2015

Economics 201 Principles of Microeconomics Fall 2010 MWF 10:00 10:50am 160 Bryan Building

CHEMISTRY 104 FALL Lecture 1: TR 9:30-10:45 a.m. in Chem 1351 Lecture 2: TR 1:00-2:15 p.m. in Chem 1361

EECS 700: Computer Modeling, Simulation, and Visualization Fall 2014

Honors Mathematics. Introduction and Definition of Honors Mathematics

GENERAL CHEMISTRY I, CHEM 1100 SPRING 2014

Rendezvous with Comet Halley Next Generation of Science Standards

Syllabus Fall 2014 Earth Science 130: Introduction to Oceanography

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED STATICS MET 1040

Innovative Teaching in Science, Technology, Engineering, and Math

Bachelor of Science in Mechanical Engineering with Co-op

Transcription:

Physics 203-NYA Fall 2018 Mechanics Rémi Poirier Department of Physics, Champlain College, Saint-Lambert, Québec, Canada Office: E205, Email: rpoirier@champlaincollege.qc.ca, Web: www.remipoirier.com Abstract The main objective of this course is to provide the student with a rigorous overview of the Mechanics part of the Physics curriculum, at the college level. The course serves as an introduction to the other Physics courses, since most physical phenomena involve the application of some principle of mechanics. Indeed, subsequent courses in Physics will consistently apply the principles of mechanics discussed in this course. In keeping with this goal, the student is constantly exposed to quantitative methods and numerical problems. A second objective is to develop the student s experimental techniques of observation, physical measurement and verification laws. This goal is achieved through frequent laboratory sessions. Contents 1 Course information 1 2 Place in the program 1 3 Contribution to exit profile 1 4 Specific Course Objectives 2 5 Course Content 3 5.1 Teaching Schedule....................... 3 5.2 Teaching Method........................ 3 5.3 Textbook............................. 3 5.4 Problem Solving........................ 3 5.5 Experiments........................... 3 Lab Reports Experiment Logs 5.6 Quizzes.............................. 3 5.7 Tests................................ 3 5.8 Final Exam............................ 3 5.9 List of Equations........................ 4 5.10 Marking Scheme........................ 4 6 Absence during an evaluation 4 7 Special Needs 4 8 Plagiarism 4 9 Topics Discussed 4 Course Code: 203-NYA-05 Course Title: Mechanics Weighting: 3-2-3 Course Credits: 2.66 Total Course Hours: 75 Pre-requisites: None 1. Course information 2. Place in the program Mechanics is the first of three obligatory Ministerial Physics courses, which have to be taken by all students in the Science Program. Students follow this course usually during the first semester and concurrently with Mathematics Differential Calculus. This course is followed by Physics NYB (Electricity and Magnetism) and NYC (Waves and Modern Physics). There are also a number of optional Physics courses in the fourth semester. 3. Contribution to exit profile As described in the Science Program (200.B0), students must possess certain attributes upon graduation. To varying degrees in this course, students will learn to: Apply the experimental method Take a systematic approach to problem solving Use the appropriate data-processing technologies Reason logically Communicate effectively Learn autonomously Work as members of a team Make connections between science, technology and social progress Become familiar with the context in which scientific concepts are discovered and developed

Mechanics 2/5 Figure 1. Sir Isaac Newton and his discoveries. Painting by Jean-Le on Huens. Commissioned by the National Geographic Society for its May 1974 edition. Adopt attitudes that are useful for scientific work Apply what they have learned to new situations 4. Specific Course Objectives The course 203-NYA-05 is designed to fulfill the 00UR objectives: Analyze various situations and phenomena in physics using the basic principles of classical mechanics, for which the performance criteria are: Proper use of concepts, laws and principles Adequate representation of situations in physics Use of appropriate terminology Graphic and mathematical representations adapted to the nature of the problem Justification of steps in the analysis of situations Rigorous application of Newton s laws and the principles of conservation Critical evaluation of results Interpretation of the limits of the models Meticulous experimentation Laboratory report in line with established standards The experimental component of the 203-NYA-05 course will also aim to fulfill the optional 00UV objectives: Apply the experimental method in a scientific field, for which performance criteria are: Proper use of concepts, laws and principles Rigorous application of concepts, laws and principles Appropriate use of terminology Correct representation in a drawing or graph or in mathematical form Consistency and rigour in problem solving, and justification of the approach used Observance of the experimental method and, where applicable, the experimental procedure Justification of the approach used Assessment of the plausibility of the results

Mechanics 3/5 5. Course Content 5.1 Teaching Schedule We meet five hours a week. These are divided into three hours of theory and two hours of lab work or problem solving. Problem sessions are organized to develop problem solving skills and to promote team work. Students are expected to be in class on time, and to behave themselves in a dignified manner. Attendance is necessary but not sufficient to ensure success. While it is suggested that students spend at least three hours every week to complete the requirements of the course, most students will require close to five hours. It is absolutely essential that students arrange their schedule to include this period of preparation. 5.2 Teaching Method The course will be presented using a mix of active learning activities, lectures, in-class problem solving, laboratory experiments and demonstrations. Laboratory periods will be used for experiments as well as class tests and lectures. 5.3 Textbook The textbook used in this course, is free open source text from OpenStax called University Physics developped by Rice University. (https://openstax.org) This three volume textbook will be used this semester as a primary reference. Sections will be assigned for reading before a topic is discussed in class, and problems will be assigned from this textbook. You are expected to come to class prepared, having read the assigned sections, and to solve all assigned problems before the quizzes and tests. All lab experiments, problem sessions, and other relevant documents and information, are available on your class website (www.remipoirier.com). It is your responsibility to download and print the documents BEFORE class. 5.4 Problem Solving This should become your mantra; solve problems... solve problems... This class is problem-solving oriented. I wish to see if you are able to translate a written problem into mathematical notation, and solve it using the techniques learned in class. A list of suggested problems from the end of chapter problems in the textbook, will be made available through the class website. It is the student responsibility to practice all suggested problems before the test. 5.5 Experiments Physics is an experimental science, and as such, experiments are of paramount importance to this class. The lab component of the course is divided into two sections: Lab Reports and Experiment Logs. 5.5.1 Lab Reports There will be three (3) evaluated lab reports during the semester, they must be typed using a software such as, LibreOffice Writer or Microsoft Word. Graphs must be computer generated, using Libre Office Calc, or Microsoft Excel. Equations must be typeset in the text with an equation editor. Further details regarding the format and content of lab reports will be given during the first lab session and are provided in your website (www.remipoirier.com). Deadlines Formal lab reports must be submitted within two weeks using the Omnivox system. Late lab reports will be accepted with a penalty of -10% for the next day, and -25% for the day after the next. Lab reports submitted later than two days after the deadline receive a grade of zero for all the students of the group, even if they have attended and participated in the lab. The same penalty schedule will be applied to any homework that needs to be submitted for evaluation. Electronic Format The lab reports will be submitted electronically in PDF, ODT (libreoffice), or DOCX (Microsoft- Word) format. Apple Pages documents are not accepted as they are not compatible with the evaluation software used; install and use LibreOffice instead. It will be your responsibility to make sure the documents are complete, and that all parts, including equations and graphs, display correctly before you send it for evaluation. Reports submitted in the wrong format will not be accepted. It is imperative that you write lab reports in proper English. Poor English leads to a lack of clarity that negatively affects your grade. 5.5.2 Experiment Logs During experiments for which no lab reports are necessary, you will nevertheless have to submit a log of your activities, measurements, and calculations. These logs will take different formats and are submitted either immediately at the end of the lab period, or after a few days following the lab. Further details regarding the format and content of the experiment logs will be given during the lab session and are provided in your website. 5.6 Quizzes Quizzes will be scheduled at roughly weekly intervals, throughout the semester, except when a test is scheduled. At the end, the two (2) worst quizzes will be discarded. 5.7 Tests These are 100-minutes tests, held during a lab period, requiring the solution of harder problems. There will be Two tests during the semester, the first one held in week 6 or 7, the second one in week 12 or 13. Exact dates are published on the class website, and are subject to change. 5.8 Final Exam A three-hour final exam will be held during the official final exam period. The final exam will consist of two sections covering all the material presented in the course, including labs; one section will consist of several multiple choice questions, the other of four to six long problems. The purpose of the

Mechanics 4/5 final exam is to evaluate your overall understanding of the concepts presented in the course. 5.9 List of Equations For the Tests and Final Exam, a list of equations will not be provided by the teacher. On the other hand, you will be allowed to bring one sheet of handwritten equations. This list must be letter sized (8.5 x 11 inches squared) only contain mathematical equations, physical constants, and physics equations relevant for the topics under evaluation. The teacher will not provide additional information to you if you have not made a complete list of equations. Full solutions of problems are not welcome on the equation sheet, and the teacher may remove the list if you included step-by-step solutions on the list. The equation sheet will be picked up with the test and will not be given back to you; you will therefore have to make three lists of equations during the semester: one for each of the tests and one for the final exam. During quizzes in class, the relevant equations and physical constants will be provided for you. 5.10 Marking Scheme The Omnivox LEA system, will be used to calculate and communicate the grades to students. A single marking scheme is used in this class. Table 1. Marking Scheme Lab Reports (3) 15% Logfiles 5% Quizzes (n-2) 10% Tests (2) 30% Final Exam 40% The Final Evaluation for the course is the final exam. The Mid-Term Evaluation for the course is the first exam of the course plus the first three quizzes of the semester, and the first lab report. All experiment logs, and two of the quizzes, are formative; all other evaluations are summative. 6. Absence during an evaluation Students should be present for all classes and labs, unless there is a serious emergency. A student who is absent for a test, a quiz or a lab must contact the professor as soon as possible by email to notify the absence. Students must also provide a signed medical note to the Professor to justify their absence as soon as they are back to class. The professor may ask the Office of the Registrar to validate the medical note at his discretion. Unless the teacher receives a notification or justification in due time, the absent student gets a mark of zero for the evaluation. Please consult the College s IPESA (all of sections 5.2 and 5.3, pages 17 to 20) for further provisions. 7. Special Needs If you require special accomodations during tests and exam, you should complete a request through the Student Access Center at least a week prior to the test date. Failure to present the request in due time will be met by a rejection, and you will have to take the exam in the same condition as the rest of the class. Exams taken in the Student Access Center must be taken on the same day as the regular exam, in a single seating. The start or end time of the exam must be synchronized with the rest of the class. For example, if you start the exam early, you may not leave before the first section of students finish their seating. Alternatively, you may not start your exam after the first section of students have finished their exam. 8. Plagiarism The College has clear policies on cheating and plagiarism. Academic honesty and integrity is the basis of good ethical science. Students must read the College s IPESA (all of section 5.4, pages 20 to 21) and Course Calendar to clearly understand the definitions of the terms cheating and plagiarism. More specifically, the use of cell phones is strictly prohibited during class. Using any communication device during an evaluation will result in a mark of zero for this evaluation! Cooperation between students during tests or quizzes is strictly prohibited; cases of cheating will be dealt with severely. You may use the internet for research purposes when writing your lab reports. You may even use some figures or pictures from the web. However if you do so, you must state clearly below the image, the website where it was taken from. You must also state clearly in a reference section the list of websites you used in your research. You may not quote or copy from someone else s work on the internet or elsewhere. In cases where the text in the report is too close to another text, the report (hence all members of the group) will receive a mark of zero. This includes student who share their work with friends. It has happened numerous times that students have shared their work in order to help friends, only to find that the friends had copied part of their report. The result was the same as stated above, and two lab reports, so four people, received a grade of zero, and an administrative note was added to their file to prevent further incidents, as per the guidelines in the Institutional Policy on the Evaluation of Student Achievement (IPESA). 9. Topics Discussed The following lists the topics discussed during the course with the corresponding chapters in the OpenSource University Physics Volume 1 textbook. An attempt is also made to indicate during each week of the semester the topics will be discussed. This scheduling is subject to change.

Mechanics 5/5 Scientific Measurement Introduction to Units and Measurements. Chapter 1 Week 1. Vectors Co-ordinate systems; components; unit vectors; rectangular polar notations; vector algebra; scalar and vector products. Chapter 2, sections 1, 2, 3, 4 Week 2. Static Equilibrium of Rigid Objects Forces; normal; friction; tension; Hooke s law; free-body diagrams equilibrium; center of gravity; torques. Chapter 5, sections 1, 2, 4, 5, 6, 7, Chapter 6, sections 1, 2, Chapter 10, section 6, Chapter 12, sections 1, 2. Weeks 3, and 4. Work and Energy Work; Kinetic Energy; Work done by variable force; Power; Conservative Forces; Potential Energy; Mechanical Energy; Conservation Principles. Chapter 7, Chapter 8, Chapter 10, sections 4, 8 Weeks 12, and 13. Momentum and Collisions Linear momentum; impulse; elastic and inelastic collisions. Chapter 9 Week 14. Angular Momentum Angular Momentum; Conservation of Angular Momentum; Precession. Chapter 11. Week 15. Kinematics kinematics (1D) position; displacement; speed; velocity; acceleration; motion diagrams; free fall; equations of kinematics. Chapter 3 Week 5. Linear Kinematics (2D) Position, displacement, velocity and acceleration vectors; Projectile motion. Chapter 4, sections 1, 2, 3 Week 6. Rotational Kinematics Angular displacement, velocity and acceleration; uniform and non-uniform circular motion; radial and tangential acceleration. Chapter 4, section 4, Chapter 10, sections 1, 2, 3. Week 7. Dynamics Dynamics: Newton s Laws First law: Inertia, mass; Second law: acceleration, force, gravity, weight; Third law: interactions. Chapter 5, sections 2, 3, 5 Chapter 6, sections 1, 2. Week 8. Circular Motion and Centripetal Forces Centripetal forces; satellite motion; Newton s law of gravitation; circular orbits. Chapter 6, section 3 Chapter 13, sections 1, 4. Weeks 9, and 10. Rotational Dynamics of Rigid Objects Moment of inertia; parallel axis theorem; torque and angular acceleration Chapter 10, sections 4, 5, 6, 7. Week 11. Figure 2. Isaac Newton, Philosophiae Naturalis Principia Mathematica, 1729, Book 1, Plate 20.