Indian Institute of Technology, Kanpur

Size: px
Start display at page:

Download "Indian Institute of Technology, Kanpur"

Transcription

1 Indian Institute of Technology, Kanpur Course Project - CS671A POS Tagging of Code Mixed Text Ayushman Sisodiya (12188) Donthu Vamsi Krishna ( ) Sandeep Kumar Begad (12612) Mentor - Prof. Amitabha Mukerjee Abstract Social media in today s world possess enormous amount of data. This data is used by various companies for advertisement to suitable group, declaring promotions, etc. But the problem starts in bilingual or multilingual populations where a lot of people tend to use multiple languages in the same sentence. Now analysis of such a text unravels a whole new field of study.

2 Contents 1 Introduction 2 2 Previous work 2 3 Dataset 2 4 Theory Support Vector machine Naive Bayes Classifier Decision Trees Logistic classifier Conditional Random Field Methodology Language Identification Backtransliteration POS Tagging Results 8 7 Error Analysis and Conclusions 11 8 Acknowledgement 11 1

3 1 Introduction Mixing of languages is called code mixing. Code mixing occurs due to various reasons. According to a work by Hidayat et. al 2012[4], An analysis of code switching used by facebookers: a case study in a social network site, there are the following major reasons for code switching: 45% : Real lexical needs For instance someone is thinking of some object but is not able to recall the word in the language he is using already, then he/she will tend to switch to a language where he knows the appropriate word. 40% : Talking about a particular topic People tend to talk about some topics in their mother tongue (like food) and generally while discussing science people tend to switch to English. 5% : For content clarification While explaining something, for better clarification of the audience, to make the audience more clear about the topic, code switching is used. A bit older work by Dewaele (2010)[2] said that strong emotional arousal also increases code mixing frequency. As social media contains valuable information, due to the presence of above mentioned type of code mixed text, the complexity in analyzing the data increases. Even today there are no proper tools that deals with this type of data. The primary reason behind this limitation is due to proper corpus acquisition and there have not been any. This project proposes a model that POS tags the code mixed text which can be used for various tasks in Natural Language Processing 2 Previous work There has not been much work done in terms of POS tagging of code mixed text. We came across only one related paper which was POS Tagging of English-Hindi Code-Mixed Social Media Content by Vyas et. al[7]. They used word level language identification using a logistic classifier and to take into account the context they calculate context switching probabilities. We will have a similar approach for language identification, but for including context we employed a conditional random field. 3 Dataset For the language identification using 1-5 n-gram character vectors part we extracted the top 5000 Hindi words and top 5000 English words from Fire 2013 shared Task Dataset LINK and 1000 English and 1000 test from the same. For the remaining part, we manually extracted 100 sentences from facebook pages of Bollywood actors namely Shahrukh Khan, Amir Khan etc. While extracting the sentences, we ensured that the number of words per sentence is atleast 5 and the sentence contains code mixed text. By considering the context of every word in the sentence and the base language of the sentence, We then manually tagged them by their language and by their POS tags. So after tagging, the structure looks 2

4 like this. word / Language (E/H) / POS tag Example: kolkata/h/noun kaa/h/adp charm/e/noun ur/h/conj busy/e/adj life/e/noun mujhe/h/pron behad/h/adj pasand/h/verb hai/h/verb Therefore, the tags are / separated, the words are space separated and the sentences are line separated. 4 Theory This section deals with all the theoretical concepts that are involved in the project. 4.1 Support Vector machine A support vector machine or popularly know as SVM is a supervised learning technique which incorporates a learning algorithm for like gradient descent and is used for tasks like classification, pattern recognition and regression. Figure 1: Illustration of SVM Source: Mathieu s log, A linear SVM creates a hyperplane which separates the n dimensional data. Figure 1 shows a trained SVM. 4.2 Naive Bayes Classifier Naive Bayes Classifier are a family of simple probabilistic classifiers based on applying Baye s theorem with strong (naive) independence assumptions between the features. Baye s theorem: P(A B) = P(A)P(B A) (1) P(B) 4.3 Decision Trees In these tree structures, leaves represent class labels and branches represent conjunctions of features of those features leading to those class labels. 3

5 Figure 2: A tree showing survival of passengers on Titatnic Source: Wikipedia 4.4 Logistic classifier A logistic classifier for a simple case where the output can take any two values 0 or 1 (True or False), can be modelled as below. P(Y = 1 X) = exp(w 0 + n i=1 w ix i ) P(Y = 0 X) = exp(w 0 + n i=1 w ix i ) 1 + exp(w 0 + n i=1 w ix i ) (2) (3) 4.5 Conditional Random Field A conditional random field is similar to a a Hidden Markov Model (HMM) apart from that the fact that in a HMM we give a feature and get an output, but in a CRF with the present feature, previous features are also passed to include context. Figure 3: Similarity between CRF and HMM Source: An Introduction to CRFs for Relational Learning by Charles Sutton, Andre McCallum, Univ. of Massachusetts 4

6 5 Methodology We have used a pipeline approach in this project[3]. It consists of the following three phases. 5.1 Language Identification This is the first problem that we need to come up. Also we desire a high accuracy in this part as all subsequent parts depend heavily on this. We tackle this problem in two scenarios When we do not include context into picture The state of the art technique for word level language identification was used here. We took a combination 1-5 character n grams as features and fed them to four different classifiers which are SVM, Logistic, Decision tree based and Naive Bayes classifiers. We chose the best performing classifier which was logistic based classifier. When we incorporate context too Although the only work in this field uses context switching probabilities to include context, we used a conditional random field. 5.2 Backtransliteration After the language identification we take consecutive English and Hindi words and group them. On the Hindi chunks we used the Google API for backtransliteration. This gave us the Hindi text in Devanagari. 5.3 POS Tagging Now we are ready to do our main task. We took each sentances and splited them into contiguous fragments of words called as chunks. Therefore all the words that corresponds to a chunk have same language either English (E) or Hindi (H) but not the combination. Then we applied CRF++ based Hindi POS tagger developed by IIT Kharagpur which is freely available from on the Hindi chunks. Similarly we applied the Twitter POS tagger (Owoputi et al., 2013)[5] on the English chunks. The reason for using Twitter POS tagger is that it has a inbuilt tokenizer and it can be used directly on unnormalized text. As we are using two different taggers, they have different tagsets. The Twitter POS tagset has its own POS tagset. The CRF++ based Hindi POS tagger has ILPOST tagset[1]. Therefore these POS tags remain conserved accross languages and hence to ensure uniformity, we mapped these POS tagsets to the Universal POS tagset[6] which has 12 POS tags. For Twitter POS tags a mapping exists which convert them to universal POStags 2 and for the Hindi POS tagger we ourselves defined the mapping 1. 5

7 ILPOSTS Common Noun(NC) Proper Noun(NP) Verbal Noun(NV) SpatioTemporal Noun(NST) Main Verb(VM) Auxiliary Verb(VA) Pronomial Pronoun(PPR) Reflexive Pronoun(PRF) Reciprocal Pronoun(PRC) Relative Pronoun(PRL) Wh Pronoun(PWH) Adjective Nominal Modifier(JJ) Quantifiers Nominal Modifier(JQ) Absolute Demonstrative(DAB) Relative Demonstrative(DRL) Wh Demonstrative(DWH) Manner Adverb(AMN) Location Adverb(ALC) Adjectival Participle(LRL) Adverbial Participle(LV) Nominal Participle(LN) Conditional Participle(LC) Postposition(PP) Coordinating Particles(CCD) Subordinating Particles(CSB) Classifier Particles(CCL) Interjection Particles(CIN) Other Particles(CX) Punctuation(PU) Foreign Word Residual(RDF) Symbol Residual(RDS) Other Residual(RDX) Universal POSTS Verb(VERB) Verb(VERB) Pronoun(PRON) Pronoun(PRON) Pronoun(PRON) Pronoun(PRON) Pronoun(PRON) Adjectives(ADJ) Adjectives(ADJ) Adjectives(ADJ) Adjectives(ADJ) Adjectives(ADJ) Adverbs(ADV) Adverbs(ADV) Adverbs(ADV) Adverbs(ADV) Adverbs(ADV) Adverbs(ADV) Adpositions(ADP) Punctuation(.) Table 1: Map from ILPOSTS to Universal POSTS 6

8 Twitter POSTS Interjection(!) Topic Category(#) Numeral($) Coordinating Conjunction(&) Punctuation(,) Adjective(A) Determiner(D) Emoticon(E) Other Abbreviation(G) Nominal + Verb(L) Proper Noun + Verb(M) Common Noun(N) Pronoun(personal/WH; not possessive)(o) Pre-Post Position(P) Adverb(R) Nominal + Possessive(S) Verb Particle(T) Url or address(u) Verb Auxiliaries(V) Predeterminers(X) Verbal Predeterminers(Y) Proper + possesive Noun(Z) Proper Noun(ˆ) Discourse Marker( ) Universal POSTS Cardinal Numbers(NUM) Conjunction(CONJ) Punctuation(.) Adjective(ADJ) Determiners(DET) Pronoun(PRON) Adposition(ADP) Adverb(ADV Verb(VERB) Table 2: Map from Twitter POSTS to Universal POSTS 7

9 6 Results 1. Language Identification: (i) We tested for the best feature by trying different combinations of 1-5 character n grams and found that a combination of all of them gave best results. In the figure below 6 on x-axis represents the combination of all 1-5 character grams. Figure 4: Comparison among the features (ii) We then also tested for the best performing classifier among Logistic, Naive Bayes, SVM and Decision Tree. Logistic classifier outperformed all other classifiers. Figure 5: Comparison among the classifiers 8

10 (iii) The confusion matrix obtained after the language identification were as follows: Figure 6: Confusion matrix from n-gram model Figure 7: Confusion matrix from CRF model (iv) The POS tagging of a code mixed corpus depend greatly on the accuracy of language identification. So we performed POS tagging in the following three different scenarios: Figure 8: Case A: Confusion matrix when language identification was done using n-gram based features 9

11 Figure 9: Case B: Confusion matrix when conditional random field was used Figure 10: Case C: Confusion matrix when language of each word is known precisely Some of the features of our data in all of the above three cases is presented below. Figure 11: Characteristics of the data 10

12 7 Error Analysis and Conclusions The best feature was the combination of 1-5 gram character vectors which was also established result. The best performing classifier was Logistic classifier or the maximum entropy classifier The accuracy of the classifier with char n-grams as features is 90.95% which is lower due to the fact that there were features in the test set which were not there in the training. This was due to the fact that there were less training examples were used which was due to the computational limits of our system. The accuracy of classifier using the CRF model 84.48%. We believe that taking context into account must improve the accuracy. The skewed result is due to the fact that we have very less training and testing data. Also the number of English words in out training data were very less compared to that of Hindi words. That is why CRF is classifying only 3 correct English words, rest 27 it classified as Hindi. Classification as a whole is limited by the availability of corpus and use of nonstandard spellings. We do not have a measure to evaluate the back-transliteration part. Although we know are assured that Google API uses the state of the art for back-transliteratiion. When using the char n-gram for identification the number of correctly POS-tagged sentences were 6 out of 90. This goes up to 15 out of 93 when CRF is used. The very less number of full correctly POS tagged sentence is due to the fact that we were limited by corpus, the approach proposed does not take into account the complexity and underlying grammar.also the identification accuracy and the back transliteration plays a major role in the final POS-tagging, which is established by the increase of correctly POS-tag from 6 to Acknowledgement We sincerely thank Prof. Amitabha Mukherjee for his able guidance throughout the course of this project. He has helped us at each and every stage with his valuable suggestions and ideas. 11

13 References [1] BASKARAN, S., BALI, K., BHATTACHARYA, T., BHATTACHARYYA, P., JHA, G. N., ET AL. A common parts-of-speech tagset framework for indian languages. In In Proc. of LREC 2008 (2008), Citeseer. [2] DEWAELE, J.-M. Emotions in multiple languages. [3] GELLA, S., SHARMA, J., AND BALI, K. Query word labeling and back transliteration for indian languages: Shared task system description. FIRE Working Notes (2013). [4] HIDAYAT, T. An Analysis of Code Switching Used by Facebookers (a case study in a social network site). PhD thesis, BA Thesis, English Education Study Program, College of Teaching and Education (STKIP), Bandung, Indonesia, October, [5] OWOPUTI, O., O CONNOR, B., DYER, C., GIMPEL, K., SCHNEIDER, N., AND SMITH, N. A. Improved part-of-speech tagging for online conversational text with word clusters. Association for Computational Linguistics. [6] PETROV, S., DAS, D., AND MCDONALD, R. A universal part-of-speech tagset. arxiv preprint arxiv: (2011). [7] VYAS, Y., GELLA, S., SHARMA, J., BALI, K., AND CHOUDHURY, M. Pos tagging of english-hindi code-mixed social media content. In Proceedings of the First Workshop on Codeswitching, EMNLP (2014). 12

Twitter Sentiment Classification on Sanders Data using Hybrid Approach

Twitter Sentiment Classification on Sanders Data using Hybrid Approach IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF)

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) Hans Christian 1 ; Mikhael Pramodana Agus 2 ; Derwin Suhartono 3 1,2,3 Computer Science Department,

More information

Experiments with Cross-lingual Systems for Synthesis of Code-Mixed Text

Experiments with Cross-lingual Systems for Synthesis of Code-Mixed Text Experiments with Cross-lingual Systems for Synthesis of Code-Mixed Text Sunayana Sitaram 1, Sai Krishna Rallabandi 1, Shruti Rijhwani 1 Alan W Black 2 1 Microsoft Research India 2 Carnegie Mellon University

More information

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

More information

Linking Task: Identifying authors and book titles in verbose queries

Linking Task: Identifying authors and book titles in verbose queries Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments

Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments Vijayshri Ramkrishna Ingale PG Student, Department of Computer Engineering JSPM s Imperial College of Engineering &

More information

Named Entity Recognition: A Survey for the Indian Languages

Named Entity Recognition: A Survey for the Indian Languages Named Entity Recognition: A Survey for the Indian Languages Padmaja Sharma Dept. of CSE Tezpur University Assam, India 784028 psharma@tezu.ernet.in Utpal Sharma Dept.of CSE Tezpur University Assam, India

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

Switchboard Language Model Improvement with Conversational Data from Gigaword

Switchboard Language Model Improvement with Conversational Data from Gigaword Katholieke Universiteit Leuven Faculty of Engineering Master in Artificial Intelligence (MAI) Speech and Language Technology (SLT) Switchboard Language Model Improvement with Conversational Data from Gigaword

More information

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17.

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17. Semi-supervised methods of text processing, and an application to medical concept extraction Yacine Jernite Text-as-Data series September 17. 2015 What do we want from text? 1. Extract information 2. Link

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Devendra Singh Chaplot, Eunhee Rhim, and Jihie Kim Samsung Electronics Co., Ltd. Seoul, South Korea {dev.chaplot,eunhee.rhim,jihie.kim}@samsung.com

More information

POS tagging of Chinese Buddhist texts using Recurrent Neural Networks

POS tagging of Chinese Buddhist texts using Recurrent Neural Networks POS tagging of Chinese Buddhist texts using Recurrent Neural Networks Longlu Qin Department of East Asian Languages and Cultures longlu@stanford.edu Abstract Chinese POS tagging, as one of the most important

More information

Using dialogue context to improve parsing performance in dialogue systems

Using dialogue context to improve parsing performance in dialogue systems Using dialogue context to improve parsing performance in dialogue systems Ivan Meza-Ruiz and Oliver Lemon School of Informatics, Edinburgh University 2 Buccleuch Place, Edinburgh I.V.Meza-Ruiz@sms.ed.ac.uk,

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Netpix: A Method of Feature Selection Leading. to Accurate Sentiment-Based Classification Models

Netpix: A Method of Feature Selection Leading. to Accurate Sentiment-Based Classification Models Netpix: A Method of Feature Selection Leading to Accurate Sentiment-Based Classification Models 1 Netpix: A Method of Feature Selection Leading to Accurate Sentiment-Based Classification Models James B.

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

Multi-Lingual Text Leveling

Multi-Lingual Text Leveling Multi-Lingual Text Leveling Salim Roukos, Jerome Quin, and Todd Ward IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 {roukos,jlquinn,tward}@us.ibm.com Abstract. Determining the language proficiency

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

CS 446: Machine Learning

CS 446: Machine Learning CS 446: Machine Learning Introduction to LBJava: a Learning Based Programming Language Writing classifiers Christos Christodoulopoulos Parisa Kordjamshidi Motivation 2 Motivation You still have not learnt

More information

Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling

Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Notebook for PAN at CLEF 2013 Andrés Alfonso Caurcel Díaz 1 and José María Gómez Hidalgo 2 1 Universidad

More information

CSL465/603 - Machine Learning

CSL465/603 - Machine Learning CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

More information

The Internet as a Normative Corpus: Grammar Checking with a Search Engine

The Internet as a Normative Corpus: Grammar Checking with a Search Engine The Internet as a Normative Corpus: Grammar Checking with a Search Engine Jonas Sjöbergh KTH Nada SE-100 44 Stockholm, Sweden jsh@nada.kth.se Abstract In this paper some methods using the Internet as a

More information

Chunk Parsing for Base Noun Phrases using Regular Expressions. Let s first let the variable s0 be the sentence tree of the first sentence.

Chunk Parsing for Base Noun Phrases using Regular Expressions. Let s first let the variable s0 be the sentence tree of the first sentence. NLP Lab Session Week 8 October 15, 2014 Noun Phrase Chunking and WordNet in NLTK Getting Started In this lab session, we will work together through a series of small examples using the IDLE window and

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

More information

Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski

Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski Problem Statement and Background Given a collection of 8th grade science questions, possible answer

More information

Distant Supervised Relation Extraction with Wikipedia and Freebase

Distant Supervised Relation Extraction with Wikipedia and Freebase Distant Supervised Relation Extraction with Wikipedia and Freebase Marcel Ackermann TU Darmstadt ackermann@tk.informatik.tu-darmstadt.de Abstract In this paper we discuss a new approach to extract relational

More information

A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

More information

Corrective Feedback and Persistent Learning for Information Extraction

Corrective Feedback and Persistent Learning for Information Extraction Corrective Feedback and Persistent Learning for Information Extraction Aron Culotta a, Trausti Kristjansson b, Andrew McCallum a, Paul Viola c a Dept. of Computer Science, University of Massachusetts,

More information

Ensemble Technique Utilization for Indonesian Dependency Parser

Ensemble Technique Utilization for Indonesian Dependency Parser Ensemble Technique Utilization for Indonesian Dependency Parser Arief Rahman Institut Teknologi Bandung Indonesia 23516008@std.stei.itb.ac.id Ayu Purwarianti Institut Teknologi Bandung Indonesia ayu@stei.itb.ac.id

More information

Online Updating of Word Representations for Part-of-Speech Tagging

Online Updating of Word Representations for Part-of-Speech Tagging Online Updating of Word Representations for Part-of-Speech Tagging Wenpeng Yin LMU Munich wenpeng@cis.lmu.de Tobias Schnabel Cornell University tbs49@cornell.edu Hinrich Schütze LMU Munich inquiries@cislmu.org

More information

Linguistic Variation across Sports Category of Press Reportage from British Newspapers: a Diachronic Multidimensional Analysis

Linguistic Variation across Sports Category of Press Reportage from British Newspapers: a Diachronic Multidimensional Analysis International Journal of Arts Humanities and Social Sciences (IJAHSS) Volume 1 Issue 1 ǁ August 216. www.ijahss.com Linguistic Variation across Sports Category of Press Reportage from British Newspapers:

More information

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

More information

Chinese Language Parsing with Maximum-Entropy-Inspired Parser

Chinese Language Parsing with Maximum-Entropy-Inspired Parser Chinese Language Parsing with Maximum-Entropy-Inspired Parser Heng Lian Brown University Abstract The Chinese language has many special characteristics that make parsing difficult. The performance of state-of-the-art

More information

Grammars & Parsing, Part 1:

Grammars & Parsing, Part 1: Grammars & Parsing, Part 1: Rules, representations, and transformations- oh my! Sentence VP The teacher Verb gave the lecture 2015-02-12 CS 562/662: Natural Language Processing Game plan for today: Review

More information

CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH

CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH ISSN: 0976-3104 Danti and Bhushan. ARTICLE OPEN ACCESS CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH Ajit Danti 1 and SN Bharath Bhushan 2* 1 Department

More information

ESSLLI 2010: Resource-light Morpho-syntactic Analysis of Highly

ESSLLI 2010: Resource-light Morpho-syntactic Analysis of Highly ESSLLI 2010: Resource-light Morpho-syntactic Analysis of Highly Inflected Languages Classical Approaches to Tagging The slides are posted on the web. The url is http://chss.montclair.edu/~feldmana/esslli10/.

More information

Loughton School s curriculum evening. 28 th February 2017

Loughton School s curriculum evening. 28 th February 2017 Loughton School s curriculum evening 28 th February 2017 Aims of this session Share our approach to teaching writing, reading, SPaG and maths. Share resources, ideas and strategies to support children's

More information

A Comparison of Two Text Representations for Sentiment Analysis

A Comparison of Two Text Representations for Sentiment Analysis 010 International Conference on Computer Application and System Modeling (ICCASM 010) A Comparison of Two Text Representations for Sentiment Analysis Jianxiong Wang School of Computer Science & Educational

More information

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases POS Tagging Problem Part-of-Speech Tagging L545 Spring 203 Given a sentence W Wn and a tagset of lexical categories, find the most likely tag T..Tn for each word in the sentence Example Secretariat/P is/vbz

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

Web as Corpus. Corpus Linguistics. Web as Corpus 1 / 1. Corpus Linguistics. Web as Corpus. web.pl 3 / 1. Sketch Engine. Corpus Linguistics

Web as Corpus. Corpus Linguistics. Web as Corpus 1 / 1. Corpus Linguistics. Web as Corpus. web.pl 3 / 1. Sketch Engine. Corpus Linguistics (L615) Markus Dickinson Department of Linguistics, Indiana University Spring 2013 The web provides new opportunities for gathering data Viable source of disposable corpora, built ad hoc for specific purposes

More information

Training and evaluation of POS taggers on the French MULTITAG corpus

Training and evaluation of POS taggers on the French MULTITAG corpus Training and evaluation of POS taggers on the French MULTITAG corpus A. Allauzen, H. Bonneau-Maynard LIMSI/CNRS; Univ Paris-Sud, Orsay, F-91405 {allauzen,maynard}@limsi.fr Abstract The explicit introduction

More information

Multilingual Sentiment and Subjectivity Analysis

Multilingual Sentiment and Subjectivity Analysis Multilingual Sentiment and Subjectivity Analysis Carmen Banea and Rada Mihalcea Department of Computer Science University of North Texas rada@cs.unt.edu, carmen.banea@gmail.com Janyce Wiebe Department

More information

Human Emotion Recognition From Speech

Human Emotion Recognition From Speech RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

More information

The Karlsruhe Institute of Technology Translation Systems for the WMT 2011

The Karlsruhe Institute of Technology Translation Systems for the WMT 2011 The Karlsruhe Institute of Technology Translation Systems for the WMT 2011 Teresa Herrmann, Mohammed Mediani, Jan Niehues and Alex Waibel Karlsruhe Institute of Technology Karlsruhe, Germany firstname.lastname@kit.edu

More information

THE ROLE OF DECISION TREES IN NATURAL LANGUAGE PROCESSING

THE ROLE OF DECISION TREES IN NATURAL LANGUAGE PROCESSING SISOM & ACOUSTICS 2015, Bucharest 21-22 May THE ROLE OF DECISION TREES IN NATURAL LANGUAGE PROCESSING MarilenaăLAZ R 1, Diana MILITARU 2 1 Military Equipment and Technologies Research Agency, Bucharest,

More information

Using Web Searches on Important Words to Create Background Sets for LSI Classification

Using Web Searches on Important Words to Create Background Sets for LSI Classification Using Web Searches on Important Words to Create Background Sets for LSI Classification Sarah Zelikovitz and Marina Kogan College of Staten Island of CUNY 2800 Victory Blvd Staten Island, NY 11314 Abstract

More information

Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

More information

Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data

Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data Ebba Gustavii Department of Linguistics and Philology, Uppsala University, Sweden ebbag@stp.ling.uu.se

More information

knarrator: A Model For Authors To Simplify Authoring Process Using Natural Language Processing To Portuguese

knarrator: A Model For Authors To Simplify Authoring Process Using Natural Language Processing To Portuguese knarrator: A Model For Authors To Simplify Authoring Process Using Natural Language Processing To Portuguese Adriano Kerber Daniel Camozzato Rossana Queiroz Vinícius Cassol Universidade do Vale do Rio

More information

Myths, Legends, Fairytales and Novels (Writing a Letter)

Myths, Legends, Fairytales and Novels (Writing a Letter) Assessment Focus This task focuses on Communication through the mode of Writing at Levels 3, 4 and 5. Two linked tasks (Hot Seating and Character Study) that use the same context are available to assess

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Learning Methods in Multilingual Speech Recognition

Learning Methods in Multilingual Speech Recognition Learning Methods in Multilingual Speech Recognition Hui Lin Department of Electrical Engineering University of Washington Seattle, WA 98125 linhui@u.washington.edu Li Deng, Jasha Droppo, Dong Yu, and Alex

More information

Memory-based grammatical error correction

Memory-based grammatical error correction Memory-based grammatical error correction Antal van den Bosch Peter Berck Radboud University Nijmegen Tilburg University P.O. Box 9103 P.O. Box 90153 NL-6500 HD Nijmegen, The Netherlands NL-5000 LE Tilburg,

More information

Beyond the Pipeline: Discrete Optimization in NLP

Beyond the Pipeline: Discrete Optimization in NLP Beyond the Pipeline: Discrete Optimization in NLP Tomasz Marciniak and Michael Strube EML Research ggmbh Schloss-Wolfsbrunnenweg 33 69118 Heidelberg, Germany http://www.eml-research.de/nlp Abstract We

More information

THE VERB ARGUMENT BROWSER

THE VERB ARGUMENT BROWSER THE VERB ARGUMENT BROWSER Bálint Sass sass.balint@itk.ppke.hu Péter Pázmány Catholic University, Budapest, Hungary 11 th International Conference on Text, Speech and Dialog 8-12 September 2008, Brno PREVIEW

More information

Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

More information

Finding Translations in Scanned Book Collections

Finding Translations in Scanned Book Collections Finding Translations in Scanned Book Collections Ismet Zeki Yalniz Dept. of Computer Science University of Massachusetts Amherst, MA, 01003 zeki@cs.umass.edu R. Manmatha Dept. of Computer Science University

More information

Detecting English-French Cognates Using Orthographic Edit Distance

Detecting English-French Cognates Using Orthographic Edit Distance Detecting English-French Cognates Using Orthographic Edit Distance Qiongkai Xu 1,2, Albert Chen 1, Chang i 1 1 The Australian National University, College of Engineering and Computer Science 2 National

More information

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus Language Acquisition Fall 2010/Winter 2011 Lexical Categories Afra Alishahi, Heiner Drenhaus Computational Linguistics and Phonetics Saarland University Children s Sensitivity to Lexical Categories Look,

More information

Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities

Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities Yoav Goldberg Reut Tsarfaty Meni Adler Michael Elhadad Ben Gurion

More information

Exposé for a Master s Thesis

Exposé for a Master s Thesis Exposé for a Master s Thesis Stefan Selent January 21, 2017 Working Title: TF Relation Mining: An Active Learning Approach Introduction The amount of scientific literature is ever increasing. Especially

More information

Calibration of Confidence Measures in Speech Recognition

Calibration of Confidence Measures in Speech Recognition Submitted to IEEE Trans on Audio, Speech, and Language, July 2010 1 Calibration of Confidence Measures in Speech Recognition Dong Yu, Senior Member, IEEE, Jinyu Li, Member, IEEE, Li Deng, Fellow, IEEE

More information

Cross Language Information Retrieval

Cross Language Information Retrieval Cross Language Information Retrieval RAFFAELLA BERNARDI UNIVERSITÀ DEGLI STUDI DI TRENTO P.ZZA VENEZIA, ROOM: 2.05, E-MAIL: BERNARDI@DISI.UNITN.IT Contents 1 Acknowledgment.............................................

More information

Heuristic Sample Selection to Minimize Reference Standard Training Set for a Part-Of-Speech Tagger

Heuristic Sample Selection to Minimize Reference Standard Training Set for a Part-Of-Speech Tagger Page 1 of 35 Heuristic Sample Selection to Minimize Reference Standard Training Set for a Part-Of-Speech Tagger Kaihong Liu, MD, MS, Wendy Chapman, PhD, Rebecca Hwa, PhD, and Rebecca S. Crowley, MD, MS

More information

A Vector Space Approach for Aspect-Based Sentiment Analysis

A Vector Space Approach for Aspect-Based Sentiment Analysis A Vector Space Approach for Aspect-Based Sentiment Analysis by Abdulaziz Alghunaim B.S., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer

More information

Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

More information

The stages of event extraction

The stages of event extraction The stages of event extraction David Ahn Intelligent Systems Lab Amsterdam University of Amsterdam ahn@science.uva.nl Abstract Event detection and recognition is a complex task consisting of multiple sub-tasks

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Dialog Act Classification Using N-Gram Algorithms

Dialog Act Classification Using N-Gram Algorithms Dialog Act Classification Using N-Gram Algorithms Max Louwerse and Scott Crossley Institute for Intelligent Systems University of Memphis {max, scrossley } @ mail.psyc.memphis.edu Abstract Speech act classification

More information

Analyzing sentiments in tweets for Tesla Model 3 using SAS Enterprise Miner and SAS Sentiment Analysis Studio

Analyzing sentiments in tweets for Tesla Model 3 using SAS Enterprise Miner and SAS Sentiment Analysis Studio SCSUG Student Symposium 2016 Analyzing sentiments in tweets for Tesla Model 3 using SAS Enterprise Miner and SAS Sentiment Analysis Studio Praneth Guggilla, Tejaswi Jha, Goutam Chakraborty, Oklahoma State

More information

A Bayesian Learning Approach to Concept-Based Document Classification

A Bayesian Learning Approach to Concept-Based Document Classification Databases and Information Systems Group (AG5) Max-Planck-Institute for Computer Science Saarbrücken, Germany A Bayesian Learning Approach to Concept-Based Document Classification by Georgiana Ifrim Supervisors

More information

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT PRACTICAL APPLICATIONS OF RANDOM SAMPLING IN ediscovery By Matthew Verga, J.D. INTRODUCTION Anyone who spends ample time working

More information

Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language

Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language Nathaniel Hayes Department of Computer Science Simpson College 701 N. C. St. Indianola, IA, 50125 nate.hayes@my.simpson.edu

More information

Leveraging Sentiment to Compute Word Similarity

Leveraging Sentiment to Compute Word Similarity Leveraging Sentiment to Compute Word Similarity Balamurali A.R., Subhabrata Mukherjee, Akshat Malu and Pushpak Bhattacharyya Dept. of Computer Science and Engineering, IIT Bombay 6th International Global

More information

Role of Pausing in Text-to-Speech Synthesis for Simultaneous Interpretation

Role of Pausing in Text-to-Speech Synthesis for Simultaneous Interpretation Role of Pausing in Text-to-Speech Synthesis for Simultaneous Interpretation Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas Bangalore, Alistair Conkie AT&T abs - Research 180 Park Avenue, Florham Park,

More information

Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

More information

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

First Grade Curriculum Highlights: In alignment with the Common Core Standards

First Grade Curriculum Highlights: In alignment with the Common Core Standards First Grade Curriculum Highlights: In alignment with the Common Core Standards ENGLISH LANGUAGE ARTS Foundational Skills Print Concepts Demonstrate understanding of the organization and basic features

More information

Parsing of part-of-speech tagged Assamese Texts

Parsing of part-of-speech tagged Assamese Texts IJCSI International Journal of Computer Science Issues, Vol. 6, No. 1, 2009 ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 28 Parsing of part-of-speech tagged Assamese Texts Mirzanur Rahman 1, Sufal

More information

Intra-talker Variation: Audience Design Factors Affecting Lexical Selections

Intra-talker Variation: Audience Design Factors Affecting Lexical Selections Tyler Perrachione LING 451-0 Proseminar in Sound Structure Prof. A. Bradlow 17 March 2006 Intra-talker Variation: Audience Design Factors Affecting Lexical Selections Abstract Although the acoustic and

More information

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver.1 (Mar - Apr.2015), PP 55-61 www.iosrjournals.org Analysis of Emotion

More information

1 st Quarter (September, October, November) August/September Strand Topic Standard Notes Reading for Literature

1 st Quarter (September, October, November) August/September Strand Topic Standard Notes Reading for Literature 1 st Grade Curriculum Map Common Core Standards Language Arts 2013 2014 1 st Quarter (September, October, November) August/September Strand Topic Standard Notes Reading for Literature Key Ideas and Details

More information

Applications of data mining algorithms to analysis of medical data

Applications of data mining algorithms to analysis of medical data Master Thesis Software Engineering Thesis no: MSE-2007:20 August 2007 Applications of data mining algorithms to analysis of medical data Dariusz Matyja School of Engineering Blekinge Institute of Technology

More information

ARNE - A tool for Namend Entity Recognition from Arabic Text

ARNE - A tool for Namend Entity Recognition from Arabic Text 24 ARNE - A tool for Namend Entity Recognition from Arabic Text Carolin Shihadeh DFKI Stuhlsatzenhausweg 3 66123 Saarbrücken, Germany carolin.shihadeh@dfki.de Günter Neumann DFKI Stuhlsatzenhausweg 3 66123

More information

BYLINE [Heng Ji, Computer Science Department, New York University,

BYLINE [Heng Ji, Computer Science Department, New York University, INFORMATION EXTRACTION BYLINE [Heng Ji, Computer Science Department, New York University, hengji@cs.nyu.edu] SYNONYMS NONE DEFINITION Information Extraction (IE) is a task of extracting pre-specified types

More information

An Evaluation of POS Taggers for the CHILDES Corpus

An Evaluation of POS Taggers for the CHILDES Corpus City University of New York (CUNY) CUNY Academic Works Dissertations, Theses, and Capstone Projects Graduate Center 9-30-2016 An Evaluation of POS Taggers for the CHILDES Corpus Rui Huang The Graduate

More information

Extracting Opinion Expressions and Their Polarities Exploration of Pipelines and Joint Models

Extracting Opinion Expressions and Their Polarities Exploration of Pipelines and Joint Models Extracting Opinion Expressions and Their Polarities Exploration of Pipelines and Joint Models Richard Johansson and Alessandro Moschitti DISI, University of Trento Via Sommarive 14, 38123 Trento (TN),

More information

ScienceDirect. Malayalam question answering system

ScienceDirect. Malayalam question answering system Available online at www.sciencedirect.com ScienceDirect Procedia Technology 24 (2016 ) 1388 1392 International Conference on Emerging Trends in Engineering, Science and Technology (ICETEST - 2015) Malayalam

More information

Disambiguation of Thai Personal Name from Online News Articles

Disambiguation of Thai Personal Name from Online News Articles Disambiguation of Thai Personal Name from Online News Articles Phaisarn Sutheebanjard Graduate School of Information Technology Siam University Bangkok, Thailand mr.phaisarn@gmail.com Abstract Since online

More information

Semi-Supervised Face Detection

Semi-Supervised Face Detection Semi-Supervised Face Detection Nicu Sebe, Ira Cohen 2, Thomas S. Huang 3, Theo Gevers Faculty of Science, University of Amsterdam, The Netherlands 2 HP Research Labs, USA 3 Beckman Institute, University

More information

Article A Novel, Gradient Boosting Framework for Sentiment Analysis in Languages where NLP Resources Are Not Plentiful: A Case Study for Modern Greek

Article A Novel, Gradient Boosting Framework for Sentiment Analysis in Languages where NLP Resources Are Not Plentiful: A Case Study for Modern Greek Article A Novel, Gradient Boosting Framework for Sentiment Analysis in Languages where NLP Resources Are Not Plentiful: A Case Study for Modern Greek Vasileios Athanasiou and Manolis Maragoudakis * Artificial

More information

Exploiting Wikipedia as External Knowledge for Named Entity Recognition

Exploiting Wikipedia as External Knowledge for Named Entity Recognition Exploiting Wikipedia as External Knowledge for Named Entity Recognition Jun ichi Kazama and Kentaro Torisawa Japan Advanced Institute of Science and Technology (JAIST) Asahidai 1-1, Nomi, Ishikawa, 923-1292

More information

Advanced Grammar in Use

Advanced Grammar in Use Advanced Grammar in Use A self-study reference and practice book for advanced learners of English Third Edition with answers and CD-ROM cambridge university press cambridge, new york, melbourne, madrid,

More information

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Nuanwan Soonthornphisaj 1 and Boonserm Kijsirikul 2 Machine Intelligence and Knowledge Discovery Laboratory Department of Computer

More information