# Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Size: px
Start display at page:

Download "Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition"

Transcription

1 Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University

2 Outline Introduction Bias and variance problems The Netflix Prize Success of ensemble methods in the Netflix Prize Why Ensemble Methods Work Algorithms AdaBoost BrownBoost Random forests

3 1-Slide Intro to Supervised Learning We want to approximate a function, Given examples, Find a function h among a fixed subclass of functions for which the error E(h) is minimal, Independent of h The distance from of f Variance of the predictions

4 Bias and Variance Bias Problem The hypothesis space made available by a particular classification method does not include sufficient hypotheses Variance Problem The hypothesis space made available is too large for the training data, and the selected hypothesis may not be accurate on unseen data

5 Bias and Variance Decision Trees Small trees have high bias. Large trees have high variance. Why? from Elder, John. From Trees to Forests and Rule Sets - A Unified Overview of Ensemble Methods

6 Definition Ensemble Classification Aggregation of predictions of multiple classifiers with the goal of improving accuracy.

7 Teaser: How good are ensemble methods? Let s look at the Netflix Prize Competition

8 Began October 2006 Supervised learning task Training data is a set of users and ratings (1,2,3,4,5 stars) those users have given to movies. Construct a classifier that given a user and an unrated movie, correctly classifies that movie as either 1, 2, 3, 4, or 5 stars \$1 million prize for a 10% improvement over Netflix s current movie recommender/classifier (MSE = )

9 Just three weeks after it began, at least 40 teams had bested the Netflix classifier. Top teams showed about 5% improvement.

10 However, improvement slowed from

11 Today, the top team has posted a 8.5% improvement. Ensemble methods are the best performers

12 Rookies Thanks to Paul Harrison's collaboration, a simple mix of our solutions improved our result from 6.31 to 6.75

13 Arek Paterek My approach is to combine the results of many methods (also twoway interactions between them) using linear regression on the test set. The best method in my ensemble is regularized SVD with biases, post processed with kernel ridge regression

14 U of Toronto When the predictions of multiple RBM models and multiple SVD models are linearly combined, we achieve an error rate that is well over 6% better than the score of Netflix s own system.

16 When Gravity and Dinosaurs Unite Our common team blends the result of team Gravity and team Dinosaur Planet. Might have guessed from the name

17 BellKor / KorBell And, yes, the top team which is from AT&T Our final solution (RMSE=0.8712) consists of blending 107 individual results.

18 Some Intuitions on Why Ensemble Methods Work

19 Intuitions Utility of combining diverse, independent opinions in human decision-making Protective Mechanism (e.g. stock portfolio diversity) Violation of Ockham s Razor Identifying the best model requires identifying the proper "model complexity" See Domingos, P. Occam s two razors: the sharp and the blunt. KDD

20 Intuitions Majority vote Suppose we have 5 completely independent classifiers If accuracy is 70% for each 10 (.7^3)(.3^2)+5(.7^4)(.3)+(.7^5) 83.7% majority vote accuracy 101 such classifiers 99.9% majority vote accuracy

21 Strategies Boosting Make examples currently misclassified more important (or less, in some cases) Bagging Use different samples or attributes of the examples to generate diverse classifiers

22 Boosting Make examples currently misclassified more important (or less, if lots of noise). Then combine the hypotheses given Types AdaBoost BrownBoost

23 AdaBoost Algorithm 1. Initialize Weights 2. Construct a classifier. Compute the error. 3. Update the weights, and repeat step Finally, sum hypotheses

24 Classifications (colors) and Weights (size) after 1 iteration Of AdaBoost 3 iterations 20 iterations from Elder, John. From Trees to Forests and Rule Sets - A Unified Overview of Ensemble Methods

26 BrownBoost Reduce the weight given to misclassified example Good (only) for very noisy data.

27 Bagging (Constructing for Diversity) 1. Use random samples of the examples to construct the classifiers 2. Use random attribute sets to construct the classifiers Random Decision Forests Leo Breiman

28 Random forests At every level, choose a random subset of the attributes (not examples) and choose the best split among those attributes Doesn t overfit

29 Random forests Let the number of training cases be M, and the number of variables in the classifier be N. For each tree, 1. Choose a training set by choosing N times with replacement from all N available training cases. 2. For each node, randomly choose n variables on which to base the decision at that node. Calculate the best split based on these.

30 Breiman, Leo (2001). "Random Forests". Machine Learning 45 (1), 5-32

32 Sources David Mease. Statistical Aspects of Data Mining. Lecture &q=stats+202+engEDU&total=13&start=0&num=10&so=0&type=search&plindex=8 Dietterich, T. G. Ensemble Learning. In The Handbook of Brain Theory and Neural Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press, Elder, John and Seni Giovanni. From Trees to Forests and Rule Sets - A Unified Overview of Ensemble Methods. KDD videolectures.net/kdd07_elder_ftfr/ Netflix Prize. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press

### Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

### Python Machine Learning

Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

### CS Machine Learning

CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

### Lecture 1: Machine Learning Basics

1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

### Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

### Universidade do Minho Escola de Engenharia

Universidade do Minho Escola de Engenharia Universidade do Minho Escola de Engenharia Dissertação de Mestrado Knowledge Discovery is the nontrivial extraction of implicit, previously unknown, and potentially

### Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

(Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

### Active Learning. Yingyu Liang Computer Sciences 760 Fall

Active Learning Yingyu Liang Computer Sciences 760 Fall 2017 http://pages.cs.wisc.edu/~yliang/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,

### CSL465/603 - Machine Learning

CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

### Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

### Twitter Sentiment Classification on Sanders Data using Hybrid Approach

IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

### Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

Algebra 1, Quarter 3, Unit 3.1 Line of Best Fit Overview Number of instructional days 6 (1 day assessment) (1 day = 45 minutes) Content to be learned Analyze scatter plots and construct the line of best

### Lecture 1: Basic Concepts of Machine Learning

Lecture 1: Basic Concepts of Machine Learning Cognitive Systems - Machine Learning Ute Schmid (lecture) Johannes Rabold (practice) Based on slides prepared March 2005 by Maximilian Röglinger, updated 2010

### Softprop: Softmax Neural Network Backpropagation Learning

Softprop: Softmax Neural Networ Bacpropagation Learning Michael Rimer Computer Science Department Brigham Young University Provo, UT 84602, USA E-mail: mrimer@axon.cs.byu.edu Tony Martinez Computer Science

### Generative models and adversarial training

Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

### Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

### Probability and Statistics Curriculum Pacing Guide

Unit 1 Terms PS.SPMJ.3 PS.SPMJ.5 Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods

### Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

### Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems

Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems Ajith Abraham School of Business Systems, Monash University, Clayton, Victoria 3800, Australia. Email: ajith.abraham@ieee.org

### Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees

Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees Mariusz Łapczy ski 1 and Bartłomiej Jefma ski 2 1 The Chair of Market Analysis and Marketing Research,

### Chapter 2 Rule Learning in a Nutshell

Chapter 2 Rule Learning in a Nutshell This chapter gives a brief overview of inductive rule learning and may therefore serve as a guide through the rest of the book. Later chapters will expand upon the

### Applications of data mining algorithms to analysis of medical data

Master Thesis Software Engineering Thesis no: MSE-2007:20 August 2007 Applications of data mining algorithms to analysis of medical data Dariusz Matyja School of Engineering Blekinge Institute of Technology

### Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

### Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

### Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning

Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning Hendrik Blockeel and Joaquin Vanschoren Computer Science Dept., K.U.Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

### The Boosting Approach to Machine Learning An Overview

Nonlinear Estimation and Classification, Springer, 2003. The Boosting Approach to Machine Learning An Overview Robert E. Schapire AT&T Labs Research Shannon Laboratory 180 Park Avenue, Room A203 Florham

### OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

### A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

### Truth Inference in Crowdsourcing: Is the Problem Solved?

Truth Inference in Crowdsourcing: Is the Problem Solved? Yudian Zheng, Guoliang Li #, Yuanbing Li #, Caihua Shan, Reynold Cheng # Department of Computer Science, Tsinghua University Department of Computer

### QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

### An Empirical Comparison of Supervised Ensemble Learning Approaches

An Empirical Comparison of Supervised Ensemble Learning Approaches Mohamed Bibimoune 1,2, Haytham Elghazel 1, Alex Aussem 1 1 Université de Lyon, CNRS Université Lyon 1, LIRIS UMR 5205, F-69622, France

### Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

### Mining Association Rules in Student s Assessment Data

www.ijcsi.org 211 Mining Association Rules in Student s Assessment Data Dr. Varun Kumar 1, Anupama Chadha 2 1 Department of Computer Science and Engineering, MVN University Palwal, Haryana, India 2 Anupama

### The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

### The lab is designed to remind you how to work with scientific data (including dealing with uncertainty) and to review experimental design.

Name: Partner(s): Lab #1 The Scientific Method Due 6/25 Objective The lab is designed to remind you how to work with scientific data (including dealing with uncertainty) and to review experimental design.

### Algebra 2- Semester 2 Review

Name Block Date Algebra 2- Semester 2 Review Non-Calculator 5.4 1. Consider the function f x 1 x 2. a) Describe the transformation of the graph of y 1 x. b) Identify the asymptotes. c) What is the domain

### STAT 220 Midterm Exam, Friday, Feb. 24

STAT 220 Midterm Exam, Friday, Feb. 24 Name Please show all of your work on the exam itself. If you need more space, use the back of the page. Remember that partial credit will be awarded when appropriate.

### Abstractions and the Brain

Abstractions and the Brain Brian D. Josephson Department of Physics, University of Cambridge Cavendish Lab. Madingley Road Cambridge, UK. CB3 OHE bdj10@cam.ac.uk http://www.tcm.phy.cam.ac.uk/~bdj10 ABSTRACT

### System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

### Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

### The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

### Team Formation for Generalized Tasks in Expertise Social Networks

IEEE International Conference on Social Computing / IEEE International Conference on Privacy, Security, Risk and Trust Team Formation for Generalized Tasks in Expertise Social Networks Cheng-Te Li Graduate

### FRAMEWORK FOR IDENTIFYING THE MOST LIKELY SUCCESSFUL UNDERPRIVILEGED TERTIARY STUDY BURSARY APPLICANTS

South African Journal of Industrial Engineering August 2017 Vol 28(2), pp 59-77 FRAMEWORK FOR IDENTIFYING THE MOST LIKELY SUCCESSFUL UNDERPRIVILEGED TERTIARY STUDY BURSARY APPLICANTS R. Steynberg 1 * #,

### Multi-Lingual Text Leveling

Multi-Lingual Text Leveling Salim Roukos, Jerome Quin, and Todd Ward IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 {roukos,jlquinn,tward}@us.ibm.com Abstract. Determining the language proficiency

### School Competition and Efficiency with Publicly Funded Catholic Schools David Card, Martin D. Dooley, and A. Abigail Payne

School Competition and Efficiency with Publicly Funded Catholic Schools David Card, Martin D. Dooley, and A. Abigail Payne Web Appendix See paper for references to Appendix Appendix 1: Multiple Schools

### A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

### Learning Distributed Linguistic Classes

In: Proceedings of CoNLL-2000 and LLL-2000, pages -60, Lisbon, Portugal, 2000. Learning Distributed Linguistic Classes Stephan Raaijmakers Netherlands Organisation for Applied Scientific Research (TNO)

### Switchboard Language Model Improvement with Conversational Data from Gigaword

Katholieke Universiteit Leuven Faculty of Engineering Master in Artificial Intelligence (MAI) Speech and Language Technology (SLT) Switchboard Language Model Improvement with Conversational Data from Gigaword

### Individual Differences & Item Effects: How to test them, & how to test them well

Individual Differences & Item Effects: How to test them, & how to test them well Individual Differences & Item Effects Properties of subjects Cognitive abilities (WM task scores, inhibition) Gender Age

### A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and

A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and Planning Overview Motivation for Analyses Analyses and

### STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point.

STT 231 Test 1 Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point. 1. A professor has kept records on grades that students have earned in his class. If he

### Multivariate k-nearest Neighbor Regression for Time Series data -

Multivariate k-nearest Neighbor Regression for Time Series data - a novel Algorithm for Forecasting UK Electricity Demand ISF 2013, Seoul, Korea Fahad H. Al-Qahtani Dr. Sven F. Crone Management Science,

### Unit: Human Impact Differentiated (Tiered) Task How Does Human Activity Impact Soil Erosion?

The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

### have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words,

A Language-Independent, Data-Oriented Architecture for Grapheme-to-Phoneme Conversion Walter Daelemans and Antal van den Bosch Proceedings ESCA-IEEE speech synthesis conference, New York, September 1994

### arxiv: v1 [cs.lg] 15 Jun 2015

Dual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy arxiv:1506.04477v1 [cs.lg] 15 Jun 2015 Sang-Woo Lee Min-Oh Heo School of Computer Science and

### Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017

Instructor Syed Zahid Ali Room No. 247 Economics Wing First Floor Office Hours Email szahid@lums.edu.pk Telephone Ext. 8074 Secretary/TA TA Office Hours Course URL (if any) Suraj.lums.edu.pk FINN 321 Econometrics

### Model Ensemble for Click Prediction in Bing Search Ads

Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Microsoft Bing xiaoling@microsoft.com Hucheng Zhou Microsoft Research huzho@microsoft.com Weiwei Deng Microsoft Bing dedeng@microsoft.com

### IT Students Workshop within Strategic Partnership of Leibniz University and Peter the Great St. Petersburg Polytechnic University

IT Students Workshop within Strategic Partnership of Leibniz University and Peter the Great St. Petersburg Polytechnic University 06.11.16 13.11.16 Hannover Our group from Peter the Great St. Petersburg

### Notes on The Sciences of the Artificial Adapted from a shorter document written for course (Deciding What to Design) 1

Notes on The Sciences of the Artificial Adapted from a shorter document written for course 17-652 (Deciding What to Design) 1 Ali Almossawi December 29, 2005 1 Introduction The Sciences of the Artificial

### Using focal point learning to improve human machine tacit coordination

DOI 10.1007/s10458-010-9126-5 Using focal point learning to improve human machine tacit coordination InonZuckerman SaritKraus Jeffrey S. Rosenschein The Author(s) 2010 Abstract We consider an automated

### Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

### SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

### Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study

Purdue Data Summit 2017 Communication of Big Data Analytics New SAT Predictive Validity Case Study Paul M. Johnson, Ed.D. Associate Vice President for Enrollment Management, Research & Enrollment Information

### COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS

COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS L. Descalço 1, Paula Carvalho 1, J.P. Cruz 1, Paula Oliveira 1, Dina Seabra 2 1 Departamento de Matemática, Universidade de Aveiro (PORTUGAL)

### Data Stream Processing and Analytics

Data Stream Processing and Analytics Vincent Lemaire Thank to Alexis Bondu, EDF Outline Introduction on data-streams Supervised Learning Conclusion 2 3 Big Data what does that mean? Big Data Analytics?

### Running head: DELAY AND PROSPECTIVE MEMORY 1

Running head: DELAY AND PROSPECTIVE MEMORY 1 In Press at Memory & Cognition Effects of Delay of Prospective Memory Cues in an Ongoing Task on Prospective Memory Task Performance Dawn M. McBride, Jaclyn

### Cooperative evolutive concept learning: an empirical study

Cooperative evolutive concept learning: an empirical study Filippo Neri University of Piemonte Orientale Dipartimento di Scienze e Tecnologie Avanzate Piazza Ambrosoli 5, 15100 Alessandria AL, Italy Abstract

### Australian Journal of Basic and Applied Sciences

AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Feature Selection Technique Using Principal Component Analysis For Improving Fuzzy C-Mean

### Lecture 15: Test Procedure in Engineering Design

MECH 350 Engineering Design I University of Victoria Dept. of Mechanical Engineering Lecture 15: Test Procedure in Engineering Design 1 Outline: INTRO TO TESTING DESIGN OF EXPERIMENTS DOCUMENTING TESTS

### A Bootstrapping Model of Frequency and Context Effects in Word Learning

Cognitive Science 41 (2017) 590 622 Copyright 2016 Cognitive Science Society, Inc. All rights reserved. ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/cogs.12353 A Bootstrapping Model of Frequency

### Version Space. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Version Space Term 2012/ / 18

Version Space Javier Béjar cbea LSI - FIB Term 2012/2013 Javier Béjar cbea (LSI - FIB) Version Space Term 2012/2013 1 / 18 Outline 1 Learning logical formulas 2 Version space Introduction Search strategy

### Shockwheat. Statistics 1, Activity 1

Statistics 1, Activity 1 Shockwheat Students require real experiences with situations involving data and with situations involving chance. They will best learn about these concepts on an intuitive or informal

MYCIN Developed at Stanford University in 1972 Regarded as the first true expert system Assists physicians in the treatment of blood infections Many revisions and extensions over the years The MYCIN Task

### Using EEG to Improve Massive Open Online Courses Feedback Interaction

Using EEG to Improve Massive Open Online Courses Feedback Interaction Haohan Wang, Yiwei Li, Xiaobo Hu, Yucong Yang, Zhu Meng, Kai-min Chang Language Technologies Institute School of Computer Science Carnegie

### Using dialogue context to improve parsing performance in dialogue systems

Using dialogue context to improve parsing performance in dialogue systems Ivan Meza-Ruiz and Oliver Lemon School of Informatics, Edinburgh University 2 Buccleuch Place, Edinburgh I.V.Meza-Ruiz@sms.ed.ac.uk,

### An Empirical and Computational Test of Linguistic Relativity

An Empirical and Computational Test of Linguistic Relativity Kathleen M. Eberhard* (eberhard.1@nd.edu) Matthias Scheutz** (mscheutz@cse.nd.edu) Michael Heilman** (mheilman@nd.edu) *Department of Psychology,

### An OO Framework for building Intelligence and Learning properties in Software Agents

An OO Framework for building Intelligence and Learning properties in Software Agents José A. R. P. Sardinha, Ruy L. Milidiú, Carlos J. P. Lucena, Patrick Paranhos Abstract Software agents are defined as

### Machine Learning from Garden Path Sentences: The Application of Computational Linguistics

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics http://dx.doi.org/10.3991/ijet.v9i6.4109 J.L. Du 1, P.F. Yu 1 and M.L. Li 2 1 Guangdong University of Foreign Studies,

### IS FINANCIAL LITERACY IMPROVED BY PARTICIPATING IN A STOCK MARKET GAME?

21 JOURNAL FOR ECONOMIC EDUCATORS, 10(1), SUMMER 2010 IS FINANCIAL LITERACY IMPROVED BY PARTICIPATING IN A STOCK MARKET GAME? Cynthia Harter and John F.R. Harter 1 Abstract This study investigates the

### Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language

Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language Nathaniel Hayes Department of Computer Science Simpson College 701 N. C. St. Indianola, IA, 50125 nate.hayes@my.simpson.edu

### Optimizing to Arbitrary NLP Metrics using Ensemble Selection

Optimizing to Arbitrary NLP Metrics using Ensemble Selection Art Munson, Claire Cardie, Rich Caruana Department of Computer Science Cornell University Ithaca, NY 14850 {mmunson, cardie, caruana}@cs.cornell.edu

### Artificial Neural Networks written examination

1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

### Statistical Analysis of Climate Change, Renewable Energies, and Sustainability An Independent Investigation for Introduction to Statistics

5/22/2012 Statistical Analysis of Climate Change, Renewable Energies, and Sustainability An Independent Investigation for Introduction to Statistics College of Menominee Nation & University of Wisconsin

### Combining Proactive and Reactive Predictions for Data Streams

Combining Proactive and Reactive Predictions for Data Streams Ying Yang School of Computer Science and Software Engineering, Monash University Melbourne, VIC 38, Australia yyang@csse.monash.edu.au Xindong

### Calibration of Confidence Measures in Speech Recognition

Submitted to IEEE Trans on Audio, Speech, and Language, July 2010 1 Calibration of Confidence Measures in Speech Recognition Dong Yu, Senior Member, IEEE, Jinyu Li, Member, IEEE, Li Deng, Fellow, IEEE

### Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

### Mandarin Lexical Tone Recognition: The Gating Paradigm

Kansas Working Papers in Linguistics, Vol. 0 (008), p. 8 Abstract Mandarin Lexical Tone Recognition: The Gating Paradigm Yuwen Lai and Jie Zhang University of Kansas Research on spoken word recognition

### Why Did My Detector Do That?!

Why Did My Detector Do That?! Predicting Keystroke-Dynamics Error Rates Kevin Killourhy and Roy Maxion Dependable Systems Laboratory Computer Science Department Carnegie Mellon University 5000 Forbes Ave,

### The Value of Visualization

stanford / cs448b The Value of Visualization Jeffrey Heer assistant: Jason Chuang 7 January 2009 http://cs448b.stanford.edu Set A Set B Set C Set D X Y X Y X Y X Y 10 8.04 10 9.14 10 7.46 8 6.58 8 6.95

### What Different Kinds of Stratification Can Reveal about the Generalizability of Data-Mined Skill Assessment Models

What Different Kinds of Stratification Can Reveal about the Generalizability of Data-Mined Skill Assessment Models Michael A. Sao Pedro Worcester Polytechnic Institute 100 Institute Rd. Worcester, MA 01609

### Evaluating and Comparing Classifiers: Review, Some Recommendations and Limitations

Evaluating and Comparing Classifiers: Review, Some Recommendations and Limitations Katarzyna Stapor (B) Institute of Computer Science, Silesian Technical University, Gliwice, Poland katarzyna.stapor@polsl.pl

### Handling Concept Drifts Using Dynamic Selection of Classifiers

Handling Concept Drifts Using Dynamic Selection of Classifiers Paulo R. Lisboa de Almeida, Luiz S. Oliveira, Alceu de Souza Britto Jr. and and Robert Sabourin Universidade Federal do Paraná, DInf, Curitiba,

### *Net Perceptions, Inc West 78th Street Suite 300 Minneapolis, MN

From: AAAI Technical Report WS-98-08. Compilation copyright 1998, AAAI (www.aaai.org). All rights reserved. Recommender Systems: A GroupLens Perspective Joseph A. Konstan *t, John Riedl *t, AI Borchers,

### A Version Space Approach to Learning Context-free Grammars

Machine Learning 2: 39~74, 1987 1987 Kluwer Academic Publishers, Boston - Manufactured in The Netherlands A Version Space Approach to Learning Context-free Grammars KURT VANLEHN (VANLEHN@A.PSY.CMU.EDU)

### Business Analytics and Information Tech COURSE NUMBER: 33:136:494 COURSE TITLE: Data Mining and Business Intelligence

Business Analytics and Information Tech COURSE NUMBER: 33:136:494 COURSE TITLE: Data Mining and Business Intelligence COURSE DESCRIPTION This course presents computing tools and concepts for all stages

### Constructive Induction-based Learning Agents: An Architecture and Preliminary Experiments

Proceedings of the First International Workshop on Intelligent Adaptive Systems (IAS-95) Ibrahim F. Imam and Janusz Wnek (Eds.), pp. 38-51, Melbourne Beach, Florida, 1995. Constructive Induction-based