RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS

Save this PDF as:
Size: px
Start display at page:

Download "RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS"

Transcription

1 Gammachirp based speech analysis for speaker identification MOUSLEM BOUCHAMEKH, BOUALEM BOUSSEKSOU, DAOUD BERKANI Signal and Communication Laboratory Electronics Department National Polytechnics School, 10 Avenue Hacen BADI Algiers, ALGERIA. Abstract: - Many modern speaker recognition systems use a bank of linear filters as the first step in performing frequency analysis of speech and extracting the acoustics parameters that allow characterizing the speaker identity. In this paper we illustrate the use of novel feature set extracted from speech signal. The new technique for extracting these parameters is based on the human auditory system characteristics and relies on the gammachirp to emulate asymmetric frequency response and level dependent frequency response. For evaluation a comparative study was operated with standard MFCC. Key-Words: - Speaker identification, MFCC, Gammachirp, triangular 1 Introduction Feature extraction is the key to the front-end process in speaker identification systems. The performance of the identification is highly dependent on the quality of the selected speech features. Most of the current proposed speaker identification systems use mel frequency cepstral coefficients (MFCC) and linear predictive cepstral coefficients (LPCC) as feature vectors. It is known that speech auditory frequency selectivity is largely determined by signal processing in cochlea [4, 5, and 7]. The basilar membrane inside the cochlea is usually conceived (in psychoacoustical auditory masking models) as a bank of band-pass filters that have increasing bandwidth. Irino and Patterson [4, 5] have developed a theoretically optimal auditory filter, the gammachirp, whose parameters can be chosen to fit observed physiological and psychoacoustical data. In this work, a new approach for speech analysis based on gammachirp filters is shown. After extracting parameters we are interested to compare their performance with standard MFCC for text-independent speaker identification system, the evaluation is conducted on a database of 168 speakers extracted from TIMIT. Our speaker identification system is based on Gaussian Mixture Model (GMM) classifier [1]. 2 The standard MFCC The spectral based features of the Mel-Frequency Cepstral Coefficients have been proven to provide an accurate depiction of the spectral information of the human vocal tract. The Mel-Cepstral features are calculated by taking the cosine transform of the real logarithm of the short-term energy spectrum expressed on a mel-frequency scale. Speech Pre-emphasising and windowing MFCC DFT Log. DFT (FFT) Triangular on mel scale Fig. 1: MFCC Extraction procedures. After pre-emphasizing the speech using a first order high pass filter and windowing the speech segments using a Hamming window of 20 ms length with 10 ms overlap, the Discrete Fourier Transform is taken of these segments. The magnitude of the Fourier Transform is then passed into a filter bank comprising of twenty five triangular filters. The start and end points of these filters were calculated firstly by evenly spacing the triangular filters on the Mel-Scale and then using equation 1 to convert these values back to the linear scale The resulting filters used in our experiments are shown in fig.2. ISSN: ISBN:

2 Fig. 2: Triangular Mel. Fig. 3: Example of gammachirp impulse response,.,,,. Lastly The Cepstral Coefficients were calculated from the log-energy outputs of these filters by the equation: Where is the number of the coefficients and is the log energy output of the filter. 3 Gammachirp filter The gammachirp filter is a gamma distribution modulated at central frequency f. It has as implulse response the following function [5]:. 3 With 0 : a parameter defining the order of the corresponding filter. : The frequency of modulation of the function gamma. : The initial phase. : Amplitude normalization parameter. The term. characterizes the equivalent rectangular bandwidth (ERB) of the filter and is a parameter defining the envelope of the gammachirp filter. The function is defined by the expression: : a factor introducing the asymmetry of this filter. Psychoacoustics studies show that c is strongly dependent on the signal power in the frequency bandwidth centered in. Fig. 4: The power spectrum of the gammachirp function. The Fourier spectrum of the gammachirp can be done by [5]: Γ Γ Γ. 2 ² 6. Where tan, and is the spectrum of corresponding gammatone function (obtained from for 0). 4 Gammachirp based Speech Analysis The analysis of speech signals is operated by using a gammachirp, in this work we use 35 gammachirp in each (of 4th order, n = 4), the is applied on the frequency band of 0 / 2 (where is the sampling frequency), the speech signal firstly framed and multiplied by hamming window of 20 ms time interval. Each gammachirp filtering is obtained across two steps, in the first step, the speech frame is filtered by the correspondent 4th order gammatone filter (obtained from for 0 ), and in the second step we estimate the speech power and calculate the asymmetry parameter c as shown in the following figure With is signal power. ISSN: ISBN:

3 Speech frame Hamming Amplitude normalisation Gammatone filter Ps estimation and calculate c for each sub-band Filter bank gammachirp Asymmetry function Fig. 5: Gammachirp based speech analysis Where M is the number of mixtures, is the feature vector, is the weight of the i-th mixture in the GMM, is the mean of the i-th mixture in the GMM, and Σ is the covariance matrix of the i-th mixture in the GMM. The Model parameters,, Σ characterize a speaker voice in the form of probability density function. They are determined by the Expectation maximization (EM) algorithm. In the identification phase, the log-likelihood scores of the incoming sequence of feature vectors as subjected to each speaker model are calculated by:, 8 Fig. 6: Example of 35 gammachirp. 5 Modeling by Gaussian Mixture Model (GMM) In the speaker identification system under investigation, each speaker enrolled in the system is represented by a Gaussian mixture model (GMM). The idea of GMM is to use a series of Gaussian functions to represent the probability density of the feature vectors produced by each speaker. The mathematical representation is [1]:,Σ 7 Where,,, is the sequence of speaker feature vectors, and M is the total number of feature vectors. A GMM that generates the highest, score is identified as the producer of the incoming speech signal. This decision method is called maximum likelihood (ML). 6 Experimental Evaluation Three experiments have been conducted on 168 speakers database extracted from TIMIT, the first experience is conducted on original speech sampled at 16 KHz, and the last two experiments are conducted on downsampled version of speech at 8 KHz, the downsampling is downe after filtring the speech in the band of [0 3400] Hz and applying a decimation of factor 2. The speech sigal was extracted by using an energy based algorithm (the silences durations are excluded). The analysis of speech signal was conducted over speech frames of 20 with overlapping of 10. In TIMIT, each speaker produces 10 sentences, 7 arbitrary sentences were used for training, and the last 3 sentences were used for testing, the average length of sentence is 3 seconds. In other word there was 21 seconds of speech for training and 9 seconds for 3 tests with 3 seconds for each test. The classification engine used in this work was based on 32 mixtures GMM classifier initialized by vector quantization [10]. The results obtained in the first exeriment are sumerized in table 1. Fig. 7: Speaker Gaussian Mixture model (GMM) Number of coefficients Mel triangular Gammachirp ISSN: ISBN:

4 Table 1 : Identification rate (%) obtained on 16 KHz database. As we can see in the following graphs, the identification rates are smaller than previously. Generally, we remark that with gammachirp the rates are slightly superior then Mel triangular. Fig. 9: Results for To evaluate the performances in case of presence of noise, in the third experiment we evaluate the speaker identification system on noisy database, our database is noised with additif white gaussian noise. The obtained results are summerized in the table 3. Fig. 8: Results for As it is shown in figure 8, the identification rate is increasing with the coefficients number for the both paramaters, standard MFCC and gammachirp based coefficients. We can also remark that for a number of coefficients lower then 12 the standard MFCC are slightly efficience, and contrairly for more then 12 cefficients. In the second experiment, the speech database is filtered in the band of [0, 3400] Hz, and downsampled to 8 by decimation. The identification results are summerized in table 2. Number of coefficients Mel triangular Gammachirp Table 2 : Identification rate (%) obtained on 8 KHz database. SNR (db) Mel Gammachirp Table 3 : Identification rates (%) for noisy speech. Fig. 10: Identification rate for noisy speech The identification rate increases with speech quality, for higher signal to noise ratio we have higher identification rate, the gammachirp based parameters are slightly more efficience than standard ISSN: ISBN:

5 MFCC for noisy speech (98.21% vs 96.62% for 30dB of SNR). 7 Conclusion In this paper we have exposed a new method of speech analysis based on the human auditory system characteristics and rely on the gammachirp filter. The extracted coefficients are evaluated using GMM classifier, and compared with standard MFCC parameters for text independent speaker identification. The obtained results show that the new technique is very useful for noisy speech, and get more good rates then standard MFCC. References [1] D.A. Reynolds and R. C. Rose, Robust Text- Independent Speaker Identification Using Gaussian Mixture Speaker Models, IEEE Transaction on SAP, vol. 3, pp , Jan, D. A. Reynolds, Experimental Evaluation of [2] Features for Robust Speaker Identification, IEEE Transaction on SAP, vol. 2, pp , October, Cambpbell J.P. and Jr. Speaker recognition: a [3] tutorial. Proceeding of the IEEE. Vol 85, pp Septembre, T. Irino, R. D. Patterson. Temporal asymmetry in [4] the auditory system. J. Acoust. Soc. Am. 99(4): [5] , April, T. Irino, D. Patterson. A time-domain, level dependent auditory filter: the gammachirp. J.Acoust Soc. Am. 101(1): , January, [6] T. Irino et M. Unoki. An analysis auditory based on an IIR implementation of the gammachirp. J. Acoust. Soc Japan. 20(6): , November, [7] T. Irino, R. D. Patterson. A compressive gammachirp auditory filter for both physiological and psychophysical data. J. Acoust Soc. Am. 109(5): , May [8] J. O. Smith III, J.S. Abel. Bark and ERB bilinear transforms, IEEE Tran. On speech and Audio Processing, Vol. 7, No. 6, November [9] J.E. Hawkins Jr. and S. S. Stevens The masking of pure tones and of speech by white noise J. Acoust. Soc. Am., 1950, vol. 22, pp [10] Linde Y., Buzo A., Gray, R. An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications. Vol. 28(1), Jan, ISSN: ISBN:

Human Emotion Recognition From Speech

Human Emotion Recognition From Speech RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

More information

Design Of An Automatic Speaker Recognition System Using MFCC, Vector Quantization And LBG Algorithm

Design Of An Automatic Speaker Recognition System Using MFCC, Vector Quantization And LBG Algorithm Design Of An Automatic Speaker Recognition System Using MFCC, Vector Quantization And LBG Algorithm Prof. Ch.Srinivasa Kumar Prof. and Head of department. Electronics and communication Nalanda Institute

More information

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 4, January - March 2012

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 4, January - March 2012 Text-independent Mono and Cross-lingual Speaker Identification with the Constraint of Limited Data Nagaraja B G and H S Jayanna Department of Information Science and Engineering Siddaganga Institute of

More information

WHEN THERE IS A mismatch between the acoustic

WHEN THERE IS A mismatch between the acoustic 808 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006 Optimization of Temporal Filters for Constructing Robust Features in Speech Recognition Jeih-Weih Hung, Member,

More information

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver.1 (Mar - Apr.2015), PP 55-61 www.iosrjournals.org Analysis of Emotion

More information

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037 Marek WIŚNIEWSKI *, Wiesława KUNISZYK-JÓŹKOWIAK *, Elżbieta SMOŁKA *, Waldemar SUSZYŃSKI * HMM, recognition, speech, disorders

More information

Speaker recognition using universal background model on YOHO database

Speaker recognition using universal background model on YOHO database Aalborg University Master Thesis project Speaker recognition using universal background model on YOHO database Author: Alexandre Majetniak Supervisor: Zheng-Hua Tan May 31, 2011 The Faculties of Engineering,

More information

Robust Speech Recognition using DNN-HMM Acoustic Model Combining Noise-aware training with Spectral Subtraction

Robust Speech Recognition using DNN-HMM Acoustic Model Combining Noise-aware training with Spectral Subtraction INTERSPEECH 2015 Robust Speech Recognition using DNN-HMM Acoustic Model Combining Noise-aware training with Spectral Subtraction Akihiro Abe, Kazumasa Yamamoto, Seiichi Nakagawa Department of Computer

More information

A Comparison of DHMM and DTW for Isolated Digits Recognition System of Arabic Language

A Comparison of DHMM and DTW for Isolated Digits Recognition System of Arabic Language A Comparison of DHMM and DTW for Isolated Digits Recognition System of Arabic Language Z.HACHKAR 1,3, A. FARCHI 2, B.MOUNIR 1, J. EL ABBADI 3 1 Ecole Supérieure de Technologie, Safi, Morocco. zhachkar2000@yahoo.fr.

More information

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Tomi Kinnunen and Ismo Kärkkäinen University of Joensuu, Department of Computer Science, P.O. Box 111, 80101 JOENSUU,

More information

Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

More information

Speech Synthesis in Noisy Environment by Enhancing Strength of Excitation and Formant Prominence

Speech Synthesis in Noisy Environment by Enhancing Strength of Excitation and Formant Prominence INTERSPEECH September,, San Francisco, USA Speech Synthesis in Noisy Environment by Enhancing Strength of Excitation and Formant Prominence Bidisha Sharma and S. R. Mahadeva Prasanna Department of Electronics

More information

A study of speaker adaptation for DNN-based speech synthesis

A study of speaker adaptation for DNN-based speech synthesis A study of speaker adaptation for DNN-based speech synthesis Zhizheng Wu, Pawel Swietojanski, Christophe Veaux, Steve Renals, Simon King The Centre for Speech Technology Research (CSTR) University of Edinburgh,

More information

Speaker Identification by Comparison of Smart Methods. Abstract

Speaker Identification by Comparison of Smart Methods. Abstract Journal of mathematics and computer science 10 (2014), 61-71 Speaker Identification by Comparison of Smart Methods Ali Mahdavi Meimand Amin Asadi Majid Mohamadi Department of Electrical Department of Computer

More information

Likelihood-Maximizing Beamforming for Robust Hands-Free Speech Recognition

Likelihood-Maximizing Beamforming for Robust Hands-Free Speech Recognition MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Likelihood-Maximizing Beamforming for Robust Hands-Free Speech Recognition Seltzer, M.L.; Raj, B.; Stern, R.M. TR2004-088 December 2004 Abstract

More information

Phonetic- and Speaker-Discriminant Features for Speaker Recognition. Research Project

Phonetic- and Speaker-Discriminant Features for Speaker Recognition. Research Project Phonetic- and Speaker-Discriminant Features for Speaker Recognition by Lara Stoll Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California

More information

Speaker Recognition. Speaker Diarization and Identification

Speaker Recognition. Speaker Diarization and Identification Speaker Recognition Speaker Diarization and Identification A dissertation submitted to the University of Manchester for the degree of Master of Science in the Faculty of Engineering and Physical Sciences

More information

ADVANCES IN DEEP NEURAL NETWORK APPROACHES TO SPEAKER RECOGNITION

ADVANCES IN DEEP NEURAL NETWORK APPROACHES TO SPEAKER RECOGNITION ADVANCES IN DEEP NEURAL NETWORK APPROACHES TO SPEAKER RECOGNITION Mitchell McLaren 1, Yun Lei 1, Luciana Ferrer 2 1 Speech Technology and Research Laboratory, SRI International, California, USA 2 Departamento

More information

Digital Signal Processing: Speaker Recognition Final Report (Complete Version)

Digital Signal Processing: Speaker Recognition Final Report (Complete Version) Digital Signal Processing: Speaker Recognition Final Report (Complete Version) Xinyu Zhou, Yuxin Wu, and Tiezheng Li Tsinghua University Contents 1 Introduction 1 2 Algorithms 2 2.1 VAD..................................................

More information

UTD-CRSS Systems for 2012 NIST Speaker Recognition Evaluation

UTD-CRSS Systems for 2012 NIST Speaker Recognition Evaluation UTD-CRSS Systems for 2012 NIST Speaker Recognition Evaluation Taufiq Hasan Gang Liu Seyed Omid Sadjadi Navid Shokouhi The CRSS SRE Team John H.L. Hansen Keith W. Godin Abhinav Misra Ali Ziaei Hynek Bořil

More information

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 3, MARCH

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 3, MARCH IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 3, MARCH 2009 423 Adaptive Multimodal Fusion by Uncertainty Compensation With Application to Audiovisual Speech Recognition George

More information

Speech Segmentation Using Probabilistic Phonetic Feature Hierarchy and Support Vector Machines

Speech Segmentation Using Probabilistic Phonetic Feature Hierarchy and Support Vector Machines Speech Segmentation Using Probabilistic Phonetic Feature Hierarchy and Support Vector Machines Amit Juneja and Carol Espy-Wilson Department of Electrical and Computer Engineering University of Maryland,

More information

Speech Recognition at ICSI: Broadcast News and beyond

Speech Recognition at ICSI: Broadcast News and beyond Speech Recognition at ICSI: Broadcast News and beyond Dan Ellis International Computer Science Institute, Berkeley CA Outline 1 2 3 The DARPA Broadcast News task Aspects of ICSI

More information

Segregation of Unvoiced Speech from Nonspeech Interference

Segregation of Unvoiced Speech from Nonspeech Interference Technical Report OSU-CISRC-8/7-TR63 Department of Computer Science and Engineering The Ohio State University Columbus, OH 4321-1277 FTP site: ftp.cse.ohio-state.edu Login: anonymous Directory: pub/tech-report/27

More information

Unvoiced Landmark Detection for Segment-based Mandarin Continuous Speech Recognition

Unvoiced Landmark Detection for Segment-based Mandarin Continuous Speech Recognition Unvoiced Landmark Detection for Segment-based Mandarin Continuous Speech Recognition Hua Zhang, Yun Tang, Wenju Liu and Bo Xu National Laboratory of Pattern Recognition Institute of Automation, Chinese

More information

Automatic Speaker Recognition: Modelling, Feature Extraction and Effects of Clinical Environment

Automatic Speaker Recognition: Modelling, Feature Extraction and Effects of Clinical Environment Automatic Speaker Recognition: Modelling, Feature Extraction and Effects of Clinical Environment A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Sheeraz Memon

More information

Noise-Adaptive Perceptual Weighting in the AMR-WB Encoder for Increased Speech Loudness in Adverse Far-End Noise Conditions

Noise-Adaptive Perceptual Weighting in the AMR-WB Encoder for Increased Speech Loudness in Adverse Far-End Noise Conditions 26 24th European Signal Processing Conference (EUSIPCO) Noise-Adaptive Perceptual Weighting in the AMR-WB Encoder for Increased Speech Loudness in Adverse Far-End Noise Conditions Emma Jokinen Department

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Body-Conducted Speech Recognition and its Application to Speech Support System

Body-Conducted Speech Recognition and its Application to Speech Support System Body-Conducted Speech Recognition and its Application to Speech Support System 4 Shunsuke Ishimitsu Hiroshima City University Japan 1. Introduction In recent years, speech recognition systems have been

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Speech Communication Session 2aSC: Linking Perception and Production

More information

Speech Recognition by Indexing and Sequencing

Speech Recognition by Indexing and Sequencing International Journal of Computer Information Systems and Industrial Management Applications. ISSN 215-7988 Volume 4 (212) pp. 358 365 c MIR Labs, www.mirlabs.net/ijcisim/index.html Speech Recognition

More information

Support Vector Machines for Speaker and Language Recognition

Support Vector Machines for Speaker and Language Recognition Support Vector Machines for Speaker and Language Recognition W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer, P. A. Torres-Carrasquillo MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA

More information

ACOUSTIC EVENT DETECTION IN REAL LIFE RECORDINGS

ACOUSTIC EVENT DETECTION IN REAL LIFE RECORDINGS ACOUSTIC EVENT DETECTION IN REAL LIFE RECORDINGS Annamaria Mesaros 1, Toni Heittola 1, Antti Eronen 2, Tuomas Virtanen 1 1 Department of Signal Processing Tampere University of Technology Korkeakoulunkatu

More information

DOMAIN MISMATCH COMPENSATION FOR SPEAKER RECOGNITION USING A LIBRARY OF WHITENERS. Elliot Singer and Douglas Reynolds

DOMAIN MISMATCH COMPENSATION FOR SPEAKER RECOGNITION USING A LIBRARY OF WHITENERS. Elliot Singer and Douglas Reynolds DOMAIN MISMATCH COMPENSATION FOR SPEAKER RECOGNITION USING A LIBRARY OF WHITENERS Elliot Singer and Douglas Reynolds Massachusetts Institute of Technology Lincoln Laboratory {es,dar}@ll.mit.edu ABSTRACT

More information

International Journal of Advanced Networking Applications (IJANA) ISSN No. :

International Journal of Advanced Networking Applications (IJANA) ISSN No. : International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 34 A Review on Dysarthric Speech Recognition Megha Rughani Department of Electronics and Communication, Marwadi Educational

More information

A NOVEL SCHEME FOR SPEAKER RECOGNITION USING A PHONETICALLY-AWARE DEEP NEURAL NETWORK. Yun Lei Nicolas Scheffer Luciana Ferrer Mitchell McLaren

A NOVEL SCHEME FOR SPEAKER RECOGNITION USING A PHONETICALLY-AWARE DEEP NEURAL NETWORK. Yun Lei Nicolas Scheffer Luciana Ferrer Mitchell McLaren A NOVEL SCHEME FOR SPEAKER RECOGNITION USING A PHONETICALLY-AWARE DEEP NEURAL NETWORK Yun Lei Nicolas Scheffer Luciana Ferrer Mitchell McLaren Speech Technology and Research Laboratory, SRI International,

More information

Speech Recognition using Acoustic Landmarks and Binary Phonetic Feature Classifiers

Speech Recognition using Acoustic Landmarks and Binary Phonetic Feature Classifiers Speech Recognition using Acoustic Landmarks and Binary Phonetic Feature Classifiers October 31, 2003 Amit Juneja Department of Electrical and Computer Engineering University of Maryland, College Park,

More information

Non intrusive multi-biometrics on a mobile device: a comparison of fusion techniques

Non intrusive multi-biometrics on a mobile device: a comparison of fusion techniques Non intrusive multi-biometrics on a mobile device: a comparison of fusion techniques Lorene Allano 1*1, Andrew C. Morris 2, Harin Sellahewa 3, Sonia Garcia-Salicetti 1, Jacques Koreman 2, Sabah Jassim

More information

Learning Methods in Multilingual Speech Recognition

Learning Methods in Multilingual Speech Recognition Learning Methods in Multilingual Speech Recognition Hui Lin Department of Electrical Engineering University of Washington Seattle, WA 98125 linhui@u.washington.edu Li Deng, Jasha Droppo, Dong Yu, and Alex

More information

BAUM-WELCH TRAINING FOR SEGMENT-BASED SPEECH RECOGNITION. Han Shu, I. Lee Hetherington, and James Glass

BAUM-WELCH TRAINING FOR SEGMENT-BASED SPEECH RECOGNITION. Han Shu, I. Lee Hetherington, and James Glass BAUM-WELCH TRAINING FOR SEGMENT-BASED SPEECH RECOGNITION Han Shu, I. Lee Hetherington, and James Glass Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Cambridge,

More information

BUILDING CONTEXT-DEPENDENT DNN ACOUSTIC MODELS USING KULLBACK-LEIBLER DIVERGENCE-BASED STATE TYING

BUILDING CONTEXT-DEPENDENT DNN ACOUSTIC MODELS USING KULLBACK-LEIBLER DIVERGENCE-BASED STATE TYING BUILDING CONTEXT-DEPENDENT DNN ACOUSTIC MODELS USING KULLBACK-LEIBLER DIVERGENCE-BASED STATE TYING Gábor Gosztolya 1, Tamás Grósz 1, László Tóth 1, David Imseng 2 1 MTA-SZTE Research Group on Artificial

More information

On the Formation of Phoneme Categories in DNN Acoustic Models

On the Formation of Phoneme Categories in DNN Acoustic Models On the Formation of Phoneme Categories in DNN Acoustic Models Tasha Nagamine Department of Electrical Engineering, Columbia University T. Nagamine Motivation Large performance gap between humans and state-

More information

Eli Yamamoto, Satoshi Nakamura, Kiyohiro Shikano. Graduate School of Information Science, Nara Institute of Science & Technology

Eli Yamamoto, Satoshi Nakamura, Kiyohiro Shikano. Graduate School of Information Science, Nara Institute of Science & Technology ISCA Archive SUBJECTIVE EVALUATION FOR HMM-BASED SPEECH-TO-LIP MOVEMENT SYNTHESIS Eli Yamamoto, Satoshi Nakamura, Kiyohiro Shikano Graduate School of Information Science, Nara Institute of Science & Technology

More information

The NICT/ATR speech synthesis system for the Blizzard Challenge 2008

The NICT/ATR speech synthesis system for the Blizzard Challenge 2008 The NICT/ATR speech synthesis system for the Blizzard Challenge 2008 Ranniery Maia 1,2, Jinfu Ni 1,2, Shinsuke Sakai 1,2, Tomoki Toda 1,3, Keiichi Tokuda 1,4 Tohru Shimizu 1,2, Satoshi Nakamura 1,2 1 National

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

Author's personal copy

Author's personal copy Speech Communication 49 (2007) 588 601 www.elsevier.com/locate/specom Abstract Subjective comparison and evaluation of speech enhancement Yi Hu, Philipos C. Loizou * Department of Electrical Engineering,

More information

Lip reading: Japanese vowel recognition by tracking temporal changes of lip shape

Lip reading: Japanese vowel recognition by tracking temporal changes of lip shape Lip reading: Japanese vowel recognition by tracking temporal changes of lip shape Koshi Odagiri 1, and Yoichi Muraoka 1 1 Graduate School of Fundamental/Computer Science and Engineering, Waseda University,

More information

A comparison of spectral smoothing methods for segment concatenation based speech synthesis

A comparison of spectral smoothing methods for segment concatenation based speech synthesis D.T. Chappell, J.H.L. Hansen, "Spectral Smoothing for Speech Segment Concatenation, Speech Communication, Volume 36, Issues 3-4, March 2002, Pages 343-373. A comparison of spectral smoothing methods for

More information

Calibration of Confidence Measures in Speech Recognition

Calibration of Confidence Measures in Speech Recognition Submitted to IEEE Trans on Audio, Speech, and Language, July 2010 1 Calibration of Confidence Measures in Speech Recognition Dong Yu, Senior Member, IEEE, Jinyu Li, Member, IEEE, Li Deng, Fellow, IEEE

More information

TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY

TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY Philippe Hamel, Matthew E. P. Davies, Kazuyoshi Yoshii and Masataka Goto National Institute

More information

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration INTERSPEECH 2013 Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration Yan Huang, Dong Yu, Yifan Gong, and Chaojun Liu Microsoft Corporation, One

More information

Voice conversion through vector quantization

Voice conversion through vector quantization J. Acoust. Soc. Jpn.(E)11, 2 (1990) Voice conversion through vector quantization Masanobu Abe, Satoshi Nakamura, Kiyohiro Shikano, and Hisao Kuwabara A TR Interpreting Telephony Research Laboratories,

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Feature Selection Technique Using Principal Component Analysis For Improving Fuzzy C-Mean

More information

Evolutive Neural Net Fuzzy Filtering: Basic Description

Evolutive Neural Net Fuzzy Filtering: Basic Description Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

More information

INPE São José dos Campos

INPE São José dos Campos INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

More information

A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation

A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation SLSP-2016 October 11-12 Natalia Tomashenko 1,2,3 natalia.tomashenko@univ-lemans.fr Yuri Khokhlov 3 khokhlov@speechpro.com Yannick

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

Affective Classification of Generic Audio Clips using Regression Models

Affective Classification of Generic Audio Clips using Regression Models Affective Classification of Generic Audio Clips using Regression Models Nikolaos Malandrakis 1, Shiva Sundaram, Alexandros Potamianos 3 1 Signal Analysis and Interpretation Laboratory (SAIL), USC, Los

More information

Automatic segmentation of continuous speech using minimum phase group delay functions

Automatic segmentation of continuous speech using minimum phase group delay functions Speech Communication 42 (24) 429 446 www.elsevier.com/locate/specom Automatic segmentation of continuous speech using minimum phase group delay functions V. Kamakshi Prasad, T. Nagarajan *, Hema A. Murthy

More information

Analysis of Speech Recognition Models for Real Time Captioning and Post Lecture Transcription

Analysis of Speech Recognition Models for Real Time Captioning and Post Lecture Transcription Analysis of Speech Recognition Models for Real Time Captioning and Post Lecture Transcription Wilny Wilson.P M.Tech Computer Science Student Thejus Engineering College Thrissur, India. Sindhu.S Computer

More information

Mandarin Lexical Tone Recognition: The Gating Paradigm

Mandarin Lexical Tone Recognition: The Gating Paradigm Kansas Working Papers in Linguistics, Vol. 0 (008), p. 8 Abstract Mandarin Lexical Tone Recognition: The Gating Paradigm Yuwen Lai and Jie Zhang University of Kansas Research on spoken word recognition

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

More information

Malicious User Suppression for Cooperative Spectrum Sensing in Cognitive Radio Networks using Dixon s Outlier Detection Method

Malicious User Suppression for Cooperative Spectrum Sensing in Cognitive Radio Networks using Dixon s Outlier Detection Method Malicious User Suppression for Cooperative Spectrum Sensing in Cognitive Radio Networks using Dixon s Outlier Detection Method Sanket S. Kalamkar and Adrish Banerjee Department of Electrical Engineering

More information

Quarterly Progress and Status Report. VCV-sequencies in a preliminary text-to-speech system for female speech

Quarterly Progress and Status Report. VCV-sequencies in a preliminary text-to-speech system for female speech Dept. for Speech, Music and Hearing Quarterly Progress and Status Report VCV-sequencies in a preliminary text-to-speech system for female speech Karlsson, I. and Neovius, L. journal: STL-QPSR volume: 35

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

On Developing Acoustic Models Using HTK. M.A. Spaans BSc.

On Developing Acoustic Models Using HTK. M.A. Spaans BSc. On Developing Acoustic Models Using HTK M.A. Spaans BSc. On Developing Acoustic Models Using HTK M.A. Spaans BSc. Delft, December 2004 Copyright c 2004 M.A. Spaans BSc. December, 2004. Faculty of Electrical

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

INVESTIGATION OF UNSUPERVISED ADAPTATION OF DNN ACOUSTIC MODELS WITH FILTER BANK INPUT

INVESTIGATION OF UNSUPERVISED ADAPTATION OF DNN ACOUSTIC MODELS WITH FILTER BANK INPUT INVESTIGATION OF UNSUPERVISED ADAPTATION OF DNN ACOUSTIC MODELS WITH FILTER BANK INPUT Takuya Yoshioka,, Anton Ragni, Mark J. F. Gales Cambridge University Engineering Department, Cambridge, UK NTT Communication

More information

Rhythm-typology revisited.

Rhythm-typology revisited. DFG Project BA 737/1: "Cross-language and individual differences in the production and perception of syllabic prominence. Rhythm-typology revisited." Rhythm-typology revisited. B. Andreeva & W. Barry Jacques

More information

BODY LANGUAGE ANIMATION SYNTHESIS FROM PROSODY AN HONORS THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE OF STANFORD UNIVERSITY

BODY LANGUAGE ANIMATION SYNTHESIS FROM PROSODY AN HONORS THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE OF STANFORD UNIVERSITY BODY LANGUAGE ANIMATION SYNTHESIS FROM PROSODY AN HONORS THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE OF STANFORD UNIVERSITY Sergey Levine Principal Adviser: Vladlen Koltun Secondary Adviser:

More information

Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

More information

Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

More information

1. REFLEXES: Ask questions about coughing, swallowing, of water as fast as possible (note! Not suitable for all

1. REFLEXES: Ask questions about coughing, swallowing, of water as fast as possible (note! Not suitable for all Human Communication Science Chandler House, 2 Wakefield Street London WC1N 1PF http://www.hcs.ucl.ac.uk/ ACOUSTICS OF SPEECH INTELLIGIBILITY IN DYSARTHRIA EUROPEAN MASTER S S IN CLINICAL LINGUISTICS UNIVERSITY

More information

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General Grade(s): None specified Unit: Creating a Community of Mathematical Thinkers Timeline: Week 1 The purpose of the Establishing a Community

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

A Biological Signal-Based Stress Monitoring Framework for Children Using Wearable Devices

A Biological Signal-Based Stress Monitoring Framework for Children Using Wearable Devices Article A Biological Signal-Based Stress Monitoring Framework for Children Using Wearable Devices Yerim Choi 1, Yu-Mi Jeon 2, Lin Wang 3, * and Kwanho Kim 2, * 1 Department of Industrial and Management

More information

JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD (410)

JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD (410) JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218. (410) 516 5728 wrightj@jhu.edu EDUCATION Harvard University 1993-1997. Ph.D., Economics (1997).

More information

Voiceless Stop Consonant Modelling and Synthesis Framework Based on MISO Dynamic System

Voiceless Stop Consonant Modelling and Synthesis Framework Based on MISO Dynamic System ARCHIVES OF ACOUSTICS Vol. 42, No. 3, pp. 375 383 (2017) Copyright c 2017 by PAN IPPT DOI: 10.1515/aoa-2017-0039 Voiceless Stop Consonant Modelling and Synthesis Framework Based on MISO Dynamic System

More information

COMPUTER INTERFACES FOR TEACHING THE NINTENDO GENERATION

COMPUTER INTERFACES FOR TEACHING THE NINTENDO GENERATION Session 3532 COMPUTER INTERFACES FOR TEACHING THE NINTENDO GENERATION Thad B. Welch, Brian Jenkins Department of Electrical Engineering U.S. Naval Academy, MD Cameron H. G. Wright Department of Electrical

More information

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

More information

Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models

Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models Navdeep Jaitly 1, Vincent Vanhoucke 2, Geoffrey Hinton 1,2 1 University of Toronto 2 Google Inc. ndjaitly@cs.toronto.edu,

More information

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade The third grade standards primarily address multiplication and division, which are covered in Math-U-See

More information

UNIDIRECTIONAL LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORK WITH RECURRENT OUTPUT LAYER FOR LOW-LATENCY SPEECH SYNTHESIS. Heiga Zen, Haşim Sak

UNIDIRECTIONAL LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORK WITH RECURRENT OUTPUT LAYER FOR LOW-LATENCY SPEECH SYNTHESIS. Heiga Zen, Haşim Sak UNIDIRECTIONAL LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORK WITH RECURRENT OUTPUT LAYER FOR LOW-LATENCY SPEECH SYNTHESIS Heiga Zen, Haşim Sak Google fheigazen,hasimg@google.com ABSTRACT Long short-term

More information

Rendezvous with Comet Halley Next Generation of Science Standards

Rendezvous with Comet Halley Next Generation of Science Standards Next Generation of Science Standards 5th Grade 6 th Grade 7 th Grade 8 th Grade 5-PS1-3 Make observations and measurements to identify materials based on their properties. MS-PS1-4 Develop a model that

More information

Spoofing and countermeasures for automatic speaker verification

Spoofing and countermeasures for automatic speaker verification INTERSPEECH 2013 Spoofing and countermeasures for automatic speaker verification Nicholas Evans 1, Tomi Kinnunen 2 and Junichi Yamagishi 3,4 1 EURECOM, Sophia Antipolis, France 2 University of Eastern

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

Vimala.C Project Fellow, Department of Computer Science Avinashilingam Institute for Home Science and Higher Education and Women Coimbatore, India

Vimala.C Project Fellow, Department of Computer Science Avinashilingam Institute for Home Science and Higher Education and Women Coimbatore, India World of Computer Science and Information Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 2, No. 1, 1-7, 2012 A Review on Challenges and Approaches Vimala.C Project Fellow, Department of Computer Science

More information

On-Line Data Analytics

On-Line Data Analytics International Journal of Computer Applications in Engineering Sciences [VOL I, ISSUE III, SEPTEMBER 2011] [ISSN: 2231-4946] On-Line Data Analytics Yugandhar Vemulapalli #, Devarapalli Raghu *, Raja Jacob

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Circuit Simulators: A Revolutionary E-Learning Platform

Circuit Simulators: A Revolutionary E-Learning Platform Circuit Simulators: A Revolutionary E-Learning Platform Mahi Itagi Padre Conceicao College of Engineering, Verna, Goa, India. itagimahi@gmail.com Akhil Deshpande Gogte Institute of Technology, Udyambag,

More information

OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

More information

Grade 6: Correlated to AGS Basic Math Skills

Grade 6: Correlated to AGS Basic Math Skills Grade 6: Correlated to AGS Basic Math Skills Grade 6: Standard 1 Number Sense Students compare and order positive and negative integers, decimals, fractions, and mixed numbers. They find multiples and

More information

Comparison of EM and Two-Step Cluster Method for Mixed Data: An Application

Comparison of EM and Two-Step Cluster Method for Mixed Data: An Application International Journal of Medical Science and Clinical Inventions 4(3): 2768-2773, 2017 DOI:10.18535/ijmsci/ v4i3.8 ICV 2015: 52.82 e-issn: 2348-991X, p-issn: 2454-9576 2017, IJMSCI Research Article Comparison

More information

Lecture 9: Speech Recognition

Lecture 9: Speech Recognition EE E6820: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 1 Recognizing speech 2 Feature calculation Dan Ellis Michael Mandel 3 Sequence

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Personalising speech-to-speech translation Citation for published version: Dines, J, Liang, H, Saheer, L, Gibson, M, Byrne, W, Oura, K, Tokuda, K, Yamagishi, J, King, S, Wester,

More information

P. Belsis, C. Sgouropoulou, K. Sfikas, G. Pantziou, C. Skourlas, J. Varnas

P. Belsis, C. Sgouropoulou, K. Sfikas, G. Pantziou, C. Skourlas, J. Varnas Exploiting Distance Learning Methods and Multimediaenhanced instructional content to support IT Curricula in Greek Technological Educational Institutes P. Belsis, C. Sgouropoulou, K. Sfikas, G. Pantziou,

More information