Word Sense Disambiguation

Size: px
Start display at page:

Download "Word Sense Disambiguation"

Transcription

1 + Word Sense Disambiguation CS4 pril, 206 Professor Meteer Thanks for Jurafsky & Martin & James Pustejovksy for slides

2 + Word Sense Disambiguation (WSD) n Given n word in context n fixed inventory of potential word senses n Decide which sense of the word this is n What set of senses n English-to-Spanish MT n Inventory is set of Spanish translations n Speech Synthesis n Inventory is homographs with different pronunciations like bass and bow n utomatic indexing of medical articles n MeSH (Medical Subject Headings) thesaurus entries n In general: n the senses in a thesaurus like WordNet

3 + Two variants of WSD task n Lexical Sample task n Small pre-selected set of target words (line, plant) n nd inventory of senses for each word n Supervised machine learning: train a classifier for each word n ll-words task n Every word in an entire text n lexicon with senses for each word n Data sparseness: can t train word-specific classifiers

4 + WSD Methods n Supervised Machine Learning 4 n Thesaurus/Dictionary Methods n Semi-Supervised Learning

5 + Supervised Machine Learning pproaches n Supervised machine learning approach: n a training corpus of words tagged in context with their sense n used to train a classifier that can tag words in new text n Summary of what we need: n the tag set ( sense inventory ) n the training corpus n set of features extracted from the training corpus n classifier

6 + Supervised WSD : WSD Tags n What s a tag dictionary sense n For example, for WordNet an instance of bass in a text has 8 possible tags or labels (bass through bass8).

7 + 8 senses of bass in WordNet. bass - (the lowest part of the musical range) 2. bass, bass part - (the lowest part in polyphonic music) 3. bass, basso - (an adult male singer with the lowest voice) 4. sea bass, bass - (flesh of lean-fleshed saltwater fish of the family Serranidae) 5. freshwater bass, bass - (any of various North merican lean-fleshed freshwater fishes especially of the genus Micropterus) 6. bass, bass voice, basso - (the lowest adult male singing voice) 7. bass - (the member with the lowest range of a family of musical instruments) 8. bass - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

8 + Inventory of sense tags for bass WordNet Spanish Roget Sense Translation Category Target Word in Context bass 4 lubina FISH/INSECT... fish as Pacific salmon and striped bass and... bass 4 lubina FISH/INSECT... produce filets of smoked bass or sturgeon... bass 7 bajo MUSIC... exciting jazz bass player since Ray Brown... bass 7 bajo MUSIC... play bass because he doesn t have to solo...

9 + Supervised WSD 2: Get a corpus n Lexical sample task: n Line-hard-serve corpus examples of each n Interest corpus sense-tagged examples n ll words: n Semantic concordance: a corpus in which each open-class word is labeled with a sense from a specific dictionary/ thesaurus. n SemCor: 234,000 words from Brown Corpus, manually tagged with WordNet senses n SENSEVL-3 competition corpora tagged word tokens

10 + SemCor <wf pos=prp>he</wf> 0 <wf pos=vb lemma=recognize wnsn=4 lexsn=2:3:00::>recognized</wf> <wf pos=dt>the</wf> <wf pos=nn lemma=gesture wnsn= lexsn=:04:00::>gesture</wf> <punc>.</punc>

11 + Supervised WSD 3: Extract feature vectors Intuition from Warren Weaver (955): If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine, one at a time, the meaning of the words But if one lengthens the slit in the opaque mask, until one can see not only the central word in question but also say N words on either side, then if N is large enough one can unambiguously decide the meaning of the central word The practical question is: What minimum value of N will, at least in a tolerable fraction of cases, lead to the correct choice of meaning for the central word

12 + Feature vectors n simple representation for each observation (each instance of a target word) n Vectors of sets of feature/value pairs n Represented as a ordered list of values n These vectors represent, e.g., the window of words around the target

13 + Two kinds of features in the vectors n Collocational features and bag-of-words features n Collocational n Features about words at specific positions near target word n Often limited to just word identity and POS n Bag-of-words n Features about words that occur anywhere in the window (regardless of position) n Typically limited to frequency counts

14 + Examples n Example text (WSJ): n electric guitar and bass player stand off to one side not really part of the scene n ssume a window of +/- 2 from the target

15 + Examples n Example text (WSJ) n electric guitar and bass player stand off to one side not really part of the scene, n ssume a window of +/- 2 from the target

16 + Collocational features n Position-specific information about the words and collocations in window guitar and bass player stand n word,2,3 grams in window of ±3 is common [w i 2,POS i 2,w i,pos i,w i+,pos i+,w i+2,pos i+2,w i i 2,wi+ i ] [guitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand]

17 + Bag-of-words features n an unordered set of words position ignored n Counts of words occur within the window. n First choose a vocabulary n Then count how often each of those terms occurs in a given window n sometimes just a binary indicator or 0

18 + Co-Occurrence Example n ssume we ve settled on a possible vocabulary of 2 words in bass sentences: [fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band] n The vector for: guitar and bass player stand [0,0,0,,0,0,0,0,0,0,,0]

19 + Classification: definition n Input: n a word w and some features f n a fixed set of classes C = {c, c 2,, c J } n Output: a predicted class c C

20 + Classification Methods: Supervised Machine Learning n Input: n a word w in a text window d (which we ll call a document ) n a fixed set of classes C = {c, c2,, cj} n training set of m hand-labeled text windows again called documents (d,c),...,(dm,cm) 20 n Output: n a learned classifier γ:d à c

21 + Classification Methods: Supervised Machine Learning n ny kind of classifier n Naive Bayes n Logistic regression n Neural Networks n Support-vector machines n k-nearest Neighbors n

22 + Classifiers n The choice of technique, in part, depends on the set of features that have been used n Some techniques work better/worse with features with numerical values n Some techniques work better/worse with features that have large numbers of possible values n For example, the feature the word to the left has a fairly large number of possible values

23 Naïve Bayes n Rewriting with Bayes n Removing denominator n assuming independence of the features: n Final: ˆ s = argmax s S ˆ s = argmax s S ˆ s = argmax s S ˆ s argmax s S P(s f ) P( f s) p(s) p( f ) P( f s)p(s) P( n f s) P( f j s) j= n j= P(s) P( f j s)

24 + pplying Naive Bayes to WSD n P(c) is the prior probability of that sense n Counting in a labeled training set. n P(w c) conditional probability of a word given a particular sense n P(w c) = count(w,c)/count(c) n We get both of these from a tagged corpus like SemCor n Can also generalize to look at other features besides words. n Then it would be P(f c) n Conditional probability of a feature given a sense

25 + ˆP(c) = N c N ˆP(w c) = count(w,c)+ count(c)+ V Doc Words Class 25 Training fish smoked fish f 2 fish line f 3 fish haul smoked f 4 guitar jazz line g Test 5 line guitar jazz jazz Priors: P(f)= 3 V = {fish, smoked, line, haul, guitar, jazz} 4 Choosing a class: P(g)= 4 P(f d5) 3/4 * 2/4 * (/4) 2 * / Condi.onal Probabili.es: P(line f) = (+) / (8+6) = 2/4 P(guitar f) = (0+) / (8+6) = /4 P(g d5) /4 * 2/9 * (2/9) 2 * 2/9 P(jazz f) = (0+) / (8+6) = / P(line g) = (+) / (3+6) = 2/9 P(guitar g) = (+) / (3+6) = 2/9 P(jazz g) = (+) / (3+6) = 2/9

26 + Word Sense Disambiguation EvaluaRons and Baselines

27 + WSD Evaluations and baselines n Best evaluation: extrinsic ( end-to-end, task-based ) evaluation n Embed WSD algorithm in a task and see if you can do the task better! n What we often do for convenience: intrinsic evaluation n Exact match sense accuracy n % of words tagged identically with the human-manual sense tags n Usually evaluate using held-out data from same labeled corpus n Baselines n Most frequent sense n The Lesk algorithm

28 + Most Frequent Sense n WordNet senses are ordered in frequency order n So most frequent sense in WordNet = take the first sense n Sense frequencies come from the SemCor corpus

29 + Ceiling n Human inter-annotator agreement n Compare annotations of two humans n On same data n Given same tagging guidelines n Human agreements on all-words corpora with WordNet style senses n 75%-80%

30 + Word Sense Disambiguation DicRonary and Thesaurus Methods

31 + The Simplified Lesk algorithm n Let s disambiguate bank in this sentence: The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities. n given the following two WordNet senses: bank Gloss: a financial institution that accepts deposits and channels the money into lending activities Examples: he cashed a check at the bank, that bank holds the mortgage on my home bank 2 Gloss: sloping land (especially the slope beside a body of water) Examples: they pulled the canoe up on the bank, he sat on the bank of the river and watched the currents

32 +The Simplified Lesk algorithm Choose sense with most word overlap between gloss and context (not counting function words) The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities. bank Gloss: a financial institution that accepts deposits and channels the money into lending activities Examples: he cashed a check at the bank, that bank holds the mortgage on my home bank 2 Gloss: sloping land (especially the slope beside a body of water) Examples: they pulled the canoe up on the bank, he sat on the bank of the river and watched the currents

33 + The Corpus Lesk algorithm n ssumes we have some sense-labeled data (like SemCor) n Take all the sentences with the relevant word sense: These short, "streamlined" meetings usually are sponsored by local banks, Chambers of Commerce, trade associations, or other civic organizations. n Now add these to the gloss + examples for each sense, call it the signature of a sense. n Choose sense with most word overlap between context and signature.

34 + Corpus Lesk: IDF weighting 34 n Instead of just removing function words n Weigh each word by its promiscuity across documents n Down-weights words that occur in every document (gloss, example, etc.) n These are generally function words, but is a more fine-grained measure n Weigh each overlapping word by inverse document frequency

35 + Corpus Lesk: IDF weighting 35 n Weigh each overlapping word by inverse document frequency n N is the total number of documents n df i = document frequency of word i n = # of documents with word i idf i = log! # # " N df i $ & & % score(sense i, context j ) = w overlap(signature, context ) i j idf w

36 + Graph-based methods 36 n First, WordNet can be viewed as a graph n senses are nodes n relations (hypernymy, meronymy) are edges n lso add edge between word and unambiguous gloss words helping n food n beverage n liquid n milk n sup v toast n 4 consume v drink n drink v sip v sip n consumer n drinker n drinking n consumption n potation n

37 + How to use the graph for WSD n Insert target word and words in its sentential context into the graph, with directed edges to their senses 37 n She drank some milk n Now choose the most central sense n dd some probability to drink and milk and compute node with highest pagerank drink v 2 drink v 3 drink v drink 4 v drink 5 v drink n milk n beverage n drinker n food n boozing n nutriment n drink milk 2 milk n 3 milk n milk 4 n

38 + Word Sense Disambiguation Semi-Supervised Learning

39 + Semi-Supervised Learning Problem: supervised and dicronary-based approaches require large hand-built resources What if you don t have so much training data Solu.on: Bootstrapping Generalize from a very small hand-labeled seed-set.

40 + Bootstrapping n For bass n Rely on One sense per collocation rule n word reoccurring in collocation with the same word will almost surely have the same sense. the word play occurs with the music sense of bass the word fish occurs with the fish sense of bass

41 + Sentences extracting using fish and play We need more good teachers right now, there are only a half a dozen who can play the free bass with ease. n electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps. The researchers said the worms spend part of their life cycle in such fish as Pacific salmon and striped bass and Pacific rockfish or snapper. nd it all started when fishermen decided the striped bass in Lake Mead were too skinny. Figure 6.0 Samples of bass sentences extracted from the WSJ by using the simple cor-

42 + Summary: generating seeds ) Hand labeling 2) One sense per collocaron : n word reoccurring in collocaron with the same word will almost surely have the same sense. 3) One sense per discourse : n The sense of a word is highly consistent within a document - Yarowsky (995) n (t least for non-funcron words, and especially topic-specific words)

43 + Stages in the Yarowsky bootstrapping algorithm for the word plant B B B B B B B B B B LIFE B B MNUFCTURING B B B B B B B B B B B B B B B B LIFE B B MNUFCTURING EQUIPMENT EMPLOYEE B B NIML MICROSCOPIC V 0 V Λ 0 Λ (a) (b)

44 + Summary n Word Sense Disambiguation: choosing correct sense in context 44 n pplications: MT, Q, etc. n Three classes of Methods n Supervised Machine Learning: Naive Bayes classifier n Thesaurus/Dictionary Methods n Semi-Supervised Learning n Main intuition n There is lots of information in a word s context n Simple algorithms based just on word counts can be surprisingly good

Word Sense Disambiguation

Word Sense Disambiguation Word Sense Disambiguation D. De Cao R. Basili Corso di Web Mining e Retrieval a.a. 2008-9 May 21, 2009 Excerpt of the R. Mihalcea and T. Pedersen AAAI 2005 Tutorial, at: http://www.d.umn.edu/ tpederse/tutorials/advances-in-wsd-aaai-2005.ppt

More information

A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

More information

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17.

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17. Semi-supervised methods of text processing, and an application to medical concept extraction Yacine Jernite Text-as-Data series September 17. 2015 What do we want from text? 1. Extract information 2. Link

More information

On document relevance and lexical cohesion between query terms

On document relevance and lexical cohesion between query terms Information Processing and Management 42 (2006) 1230 1247 www.elsevier.com/locate/infoproman On document relevance and lexical cohesion between query terms Olga Vechtomova a, *, Murat Karamuftuoglu b,

More information

Switchboard Language Model Improvement with Conversational Data from Gigaword

Switchboard Language Model Improvement with Conversational Data from Gigaword Katholieke Universiteit Leuven Faculty of Engineering Master in Artificial Intelligence (MAI) Speech and Language Technology (SLT) Switchboard Language Model Improvement with Conversational Data from Gigaword

More information

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases POS Tagging Problem Part-of-Speech Tagging L545 Spring 203 Given a sentence W Wn and a tagset of lexical categories, find the most likely tag T..Tn for each word in the sentence Example Secretariat/P is/vbz

More information

Cross Language Information Retrieval

Cross Language Information Retrieval Cross Language Information Retrieval RAFFAELLA BERNARDI UNIVERSITÀ DEGLI STUDI DI TRENTO P.ZZA VENEZIA, ROOM: 2.05, E-MAIL: BERNARDI@DISI.UNITN.IT Contents 1 Acknowledgment.............................................

More information

A Bayesian Learning Approach to Concept-Based Document Classification

A Bayesian Learning Approach to Concept-Based Document Classification Databases and Information Systems Group (AG5) Max-Planck-Institute for Computer Science Saarbrücken, Germany A Bayesian Learning Approach to Concept-Based Document Classification by Georgiana Ifrim Supervisors

More information

Multilingual Sentiment and Subjectivity Analysis

Multilingual Sentiment and Subjectivity Analysis Multilingual Sentiment and Subjectivity Analysis Carmen Banea and Rada Mihalcea Department of Computer Science University of North Texas rada@cs.unt.edu, carmen.banea@gmail.com Janyce Wiebe Department

More information

Web as Corpus. Corpus Linguistics. Web as Corpus 1 / 1. Corpus Linguistics. Web as Corpus. web.pl 3 / 1. Sketch Engine. Corpus Linguistics

Web as Corpus. Corpus Linguistics. Web as Corpus 1 / 1. Corpus Linguistics. Web as Corpus. web.pl 3 / 1. Sketch Engine. Corpus Linguistics (L615) Markus Dickinson Department of Linguistics, Indiana University Spring 2013 The web provides new opportunities for gathering data Viable source of disposable corpora, built ad hoc for specific purposes

More information

A Graph Based Authorship Identification Approach

A Graph Based Authorship Identification Approach A Graph Based Authorship Identification Approach Notebook for PAN at CLEF 2015 Helena Gómez-Adorno 1, Grigori Sidorov 1, David Pinto 2, and Ilia Markov 1 1 Center for Computing Research, Instituto Politécnico

More information

Leveraging Sentiment to Compute Word Similarity

Leveraging Sentiment to Compute Word Similarity Leveraging Sentiment to Compute Word Similarity Balamurali A.R., Subhabrata Mukherjee, Akshat Malu and Pushpak Bhattacharyya Dept. of Computer Science and Engineering, IIT Bombay 6th International Global

More information

! # %& ( ) ( + ) ( &, % &. / 0!!1 2/.&, 3 ( & 2/ &,

! # %& ( ) ( + ) ( &, % &. / 0!!1 2/.&, 3 ( & 2/ &, ! # %& ( ) ( + ) ( &, % &. / 0!!1 2/.&, 3 ( & 2/ &, 4 The Interaction of Knowledge Sources in Word Sense Disambiguation Mark Stevenson Yorick Wilks University of Shef eld University of Shef eld Word sense

More information

METHODS FOR EXTRACTING AND CLASSIFYING PAIRS OF COGNATES AND FALSE FRIENDS

METHODS FOR EXTRACTING AND CLASSIFYING PAIRS OF COGNATES AND FALSE FRIENDS METHODS FOR EXTRACTING AND CLASSIFYING PAIRS OF COGNATES AND FALSE FRIENDS Ruslan Mitkov (R.Mitkov@wlv.ac.uk) University of Wolverhampton ViktorPekar (v.pekar@wlv.ac.uk) University of Wolverhampton Dimitar

More information

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF)

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) Hans Christian 1 ; Mikhael Pramodana Agus 2 ; Derwin Suhartono 3 1,2,3 Computer Science Department,

More information

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words,

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words, A Language-Independent, Data-Oriented Architecture for Grapheme-to-Phoneme Conversion Walter Daelemans and Antal van den Bosch Proceedings ESCA-IEEE speech synthesis conference, New York, September 1994

More information

2.1 The Theory of Semantic Fields

2.1 The Theory of Semantic Fields 2 Semantic Domains In this chapter we define the concept of Semantic Domain, recently introduced in Computational Linguistics [56] and successfully exploited in NLP [29]. This notion is inspired by the

More information

Assessing System Agreement and Instance Difficulty in the Lexical Sample Tasks of SENSEVAL-2

Assessing System Agreement and Instance Difficulty in the Lexical Sample Tasks of SENSEVAL-2 Assessing System Agreement and Instance Difficulty in the Lexical Sample Tasks of SENSEVAL-2 Ted Pedersen Department of Computer Science University of Minnesota Duluth, MN, 55812 USA tpederse@d.umn.edu

More information

The taming of the data:

The taming of the data: The taming of the data: Using text mining in building a corpus for diachronic analysis Stefania Degaetano-Ortlieb, Hannah Kermes, Ashraf Khamis, Jörg Knappen, Noam Ordan and Elke Teich Background Big data

More information

A Comparison of Two Text Representations for Sentiment Analysis

A Comparison of Two Text Representations for Sentiment Analysis 010 International Conference on Computer Application and System Modeling (ICCASM 010) A Comparison of Two Text Representations for Sentiment Analysis Jianxiong Wang School of Computer Science & Educational

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

The MEANING Multilingual Central Repository

The MEANING Multilingual Central Repository The MEANING Multilingual Central Repository J. Atserias, L. Villarejo, G. Rigau, E. Agirre, J. Carroll, B. Magnini, P. Vossen January 27, 2004 http://www.lsi.upc.es/ nlp/meaning Jordi Atserias TALP Index

More information

Short Text Understanding Through Lexical-Semantic Analysis

Short Text Understanding Through Lexical-Semantic Analysis Short Text Understanding Through Lexical-Semantic Analysis Wen Hua #1, Zhongyuan Wang 2, Haixun Wang 3, Kai Zheng #4, Xiaofang Zhou #5 School of Information, Renmin University of China, Beijing, China

More information

Linking Task: Identifying authors and book titles in verbose queries

Linking Task: Identifying authors and book titles in verbose queries Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

More information

The stages of event extraction

The stages of event extraction The stages of event extraction David Ahn Intelligent Systems Lab Amsterdam University of Amsterdam ahn@science.uva.nl Abstract Event detection and recognition is a complex task consisting of multiple sub-tasks

More information

Combining a Chinese Thesaurus with a Chinese Dictionary

Combining a Chinese Thesaurus with a Chinese Dictionary Combining a Chinese Thesaurus with a Chinese Dictionary Ji Donghong Kent Ridge Digital Labs 21 Heng Mui Keng Terrace Singapore, 119613 dhji @krdl.org.sg Gong Junping Department of Computer Science Ohio

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Learning Methods in Multilingual Speech Recognition

Learning Methods in Multilingual Speech Recognition Learning Methods in Multilingual Speech Recognition Hui Lin Department of Electrical Engineering University of Washington Seattle, WA 98125 linhui@u.washington.edu Li Deng, Jasha Droppo, Dong Yu, and Alex

More information

Algebra 2- Semester 2 Review

Algebra 2- Semester 2 Review Name Block Date Algebra 2- Semester 2 Review Non-Calculator 5.4 1. Consider the function f x 1 x 2. a) Describe the transformation of the graph of y 1 x. b) Identify the asymptotes. c) What is the domain

More information

Multi-Lingual Text Leveling

Multi-Lingual Text Leveling Multi-Lingual Text Leveling Salim Roukos, Jerome Quin, and Todd Ward IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 {roukos,jlquinn,tward}@us.ibm.com Abstract. Determining the language proficiency

More information

Speech Recognition at ICSI: Broadcast News and beyond

Speech Recognition at ICSI: Broadcast News and beyond Speech Recognition at ICSI: Broadcast News and beyond Dan Ellis International Computer Science Institute, Berkeley CA Outline 1 2 3 The DARPA Broadcast News task Aspects of ICSI

More information

Twitter Sentiment Classification on Sanders Data using Hybrid Approach

Twitter Sentiment Classification on Sanders Data using Hybrid Approach IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

More information

Review in ICAME Journal, Volume 38, 2014, DOI: /icame

Review in ICAME Journal, Volume 38, 2014, DOI: /icame Review in ICAME Journal, Volume 38, 2014, DOI: 10.2478/icame-2014-0012 Gaëtanelle Gilquin and Sylvie De Cock (eds.). Errors and disfluencies in spoken corpora. Amsterdam: John Benjamins. 2013. 172 pp.

More information

SEMAFOR: Frame Argument Resolution with Log-Linear Models

SEMAFOR: Frame Argument Resolution with Log-Linear Models SEMAFOR: Frame Argument Resolution with Log-Linear Models Desai Chen or, The Case of the Missing Arguments Nathan Schneider SemEval July 16, 2010 Dipanjan Das School of Computer Science Carnegie Mellon

More information

Improving Machine Learning Input for Automatic Document Classification with Natural Language Processing

Improving Machine Learning Input for Automatic Document Classification with Natural Language Processing Improving Machine Learning Input for Automatic Document Classification with Natural Language Processing Jan C. Scholtes Tim H.W. van Cann University of Maastricht, Department of Knowledge Engineering.

More information

Cross-Lingual Text Categorization

Cross-Lingual Text Categorization Cross-Lingual Text Categorization Nuria Bel 1, Cornelis H.A. Koster 2, and Marta Villegas 1 1 Grup d Investigació en Lingüística Computacional Universitat de Barcelona, 028 - Barcelona, Spain. {nuria,tona}@gilc.ub.es

More information

CS 446: Machine Learning

CS 446: Machine Learning CS 446: Machine Learning Introduction to LBJava: a Learning Based Programming Language Writing classifiers Christos Christodoulopoulos Parisa Kordjamshidi Motivation 2 Motivation You still have not learnt

More information

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

More information

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Devendra Singh Chaplot, Eunhee Rhim, and Jihie Kim Samsung Electronics Co., Ltd. Seoul, South Korea {dev.chaplot,eunhee.rhim,jihie.kim}@samsung.com

More information

Bridging Lexical Gaps between Queries and Questions on Large Online Q&A Collections with Compact Translation Models

Bridging Lexical Gaps between Queries and Questions on Large Online Q&A Collections with Compact Translation Models Bridging Lexical Gaps between Queries and Questions on Large Online Q&A Collections with Compact Translation Models Jung-Tae Lee and Sang-Bum Kim and Young-In Song and Hae-Chang Rim Dept. of Computer &

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Using Web Searches on Important Words to Create Background Sets for LSI Classification

Using Web Searches on Important Words to Create Background Sets for LSI Classification Using Web Searches on Important Words to Create Background Sets for LSI Classification Sarah Zelikovitz and Marina Kogan College of Staten Island of CUNY 2800 Victory Blvd Staten Island, NY 11314 Abstract

More information

arxiv: v1 [cs.cl] 2 Apr 2017

arxiv: v1 [cs.cl] 2 Apr 2017 Word-Alignment-Based Segment-Level Machine Translation Evaluation using Word Embeddings Junki Matsuo and Mamoru Komachi Graduate School of System Design, Tokyo Metropolitan University, Japan matsuo-junki@ed.tmu.ac.jp,

More information

Chunk Parsing for Base Noun Phrases using Regular Expressions. Let s first let the variable s0 be the sentence tree of the first sentence.

Chunk Parsing for Base Noun Phrases using Regular Expressions. Let s first let the variable s0 be the sentence tree of the first sentence. NLP Lab Session Week 8 October 15, 2014 Noun Phrase Chunking and WordNet in NLTK Getting Started In this lab session, we will work together through a series of small examples using the IDLE window and

More information

Dublin City Schools Mathematics Graded Course of Study GRADE 4

Dublin City Schools Mathematics Graded Course of Study GRADE 4 I. Content Standard: Number, Number Sense and Operations Standard Students demonstrate number sense, including an understanding of number systems and reasonable estimates using paper and pencil, technology-supported

More information

Chinese Language Parsing with Maximum-Entropy-Inspired Parser

Chinese Language Parsing with Maximum-Entropy-Inspired Parser Chinese Language Parsing with Maximum-Entropy-Inspired Parser Heng Lian Brown University Abstract The Chinese language has many special characteristics that make parsing difficult. The performance of state-of-the-art

More information

Prediction of Maximal Projection for Semantic Role Labeling

Prediction of Maximal Projection for Semantic Role Labeling Prediction of Maximal Projection for Semantic Role Labeling Weiwei Sun, Zhifang Sui Institute of Computational Linguistics Peking University Beijing, 100871, China {ws, szf}@pku.edu.cn Haifeng Wang Toshiba

More information

Vocabulary Usage and Intelligibility in Learner Language

Vocabulary Usage and Intelligibility in Learner Language Vocabulary Usage and Intelligibility in Learner Language Emi Izumi, 1 Kiyotaka Uchimoto 1 and Hitoshi Isahara 1 1. Introduction In verbal communication, the primary purpose of which is to convey and understand

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

More information

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

More information

Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities

Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities Enhancing Unlexicalized Parsing Performance using a Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and EM-HMM-based Lexical Probabilities Yoav Goldberg Reut Tsarfaty Meni Adler Michael Elhadad Ben Gurion

More information

Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data

Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data Target Language Preposition Selection an Experiment with Transformation-Based Learning and Aligned Bilingual Data Ebba Gustavii Department of Linguistics and Philology, Uppsala University, Sweden ebbag@stp.ling.uu.se

More information

Wellness Committee Action Plan. Developed in compliance with the Child Nutrition and Women, Infant and Child (WIC) Reauthorization Act of 2004

Wellness Committee Action Plan. Developed in compliance with the Child Nutrition and Women, Infant and Child (WIC) Reauthorization Act of 2004 Wellness Committee Action Plan Developed in compliance with the Child Nutrition and Women, Infant and Child (WIC) Reauthorization Act of 2004 PREAMBLE Overweight children and adolescents have become a

More information

Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

More information

MULTILINGUAL INFORMATION ACCESS IN DIGITAL LIBRARY

MULTILINGUAL INFORMATION ACCESS IN DIGITAL LIBRARY MULTILINGUAL INFORMATION ACCESS IN DIGITAL LIBRARY Chen, Hsin-Hsi Department of Computer Science and Information Engineering National Taiwan University Taipei, Taiwan E-mail: hh_chen@csie.ntu.edu.tw Abstract

More information

Distant Supervised Relation Extraction with Wikipedia and Freebase

Distant Supervised Relation Extraction with Wikipedia and Freebase Distant Supervised Relation Extraction with Wikipedia and Freebase Marcel Ackermann TU Darmstadt ackermann@tk.informatik.tu-darmstadt.de Abstract In this paper we discuss a new approach to extract relational

More information

Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

More information

Stefan Engelberg (IDS Mannheim), Workshop Corpora in Lexical Research, Bucharest, Nov [Folie 1] 6.1 Type-token ratio

Stefan Engelberg (IDS Mannheim), Workshop Corpora in Lexical Research, Bucharest, Nov [Folie 1] 6.1 Type-token ratio Content 1. Empirical linguistics 2. Text corpora and corpus linguistics 3. Concordances 4. Application I: The German progressive 5. Part-of-speech tagging 6. Fequency analysis 7. Application II: Compounds

More information

Beyond the Pipeline: Discrete Optimization in NLP

Beyond the Pipeline: Discrete Optimization in NLP Beyond the Pipeline: Discrete Optimization in NLP Tomasz Marciniak and Michael Strube EML Research ggmbh Schloss-Wolfsbrunnenweg 33 69118 Heidelberg, Germany http://www.eml-research.de/nlp Abstract We

More information

Applications of memory-based natural language processing

Applications of memory-based natural language processing Applications of memory-based natural language processing Antal van den Bosch and Roser Morante ILK Research Group Tilburg University Prague, June 24, 2007 Current ILK members Principal investigator: Antal

More information

Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments

Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments Product Feature-based Ratings foropinionsummarization of E-Commerce Feedback Comments Vijayshri Ramkrishna Ingale PG Student, Department of Computer Engineering JSPM s Imperial College of Engineering &

More information

Robust Sense-Based Sentiment Classification

Robust Sense-Based Sentiment Classification Robust Sense-Based Sentiment Classification Balamurali A R 1 Aditya Joshi 2 Pushpak Bhattacharyya 2 1 IITB-Monash Research Academy, IIT Bombay 2 Dept. of Computer Science and Engineering, IIT Bombay Mumbai,

More information

Outline. Web as Corpus. Using Web Data for Linguistic Purposes. Ines Rehbein. NCLT, Dublin City University. nclt

Outline. Web as Corpus. Using Web Data for Linguistic Purposes. Ines Rehbein. NCLT, Dublin City University. nclt Outline Using Web Data for Linguistic Purposes NCLT, Dublin City University Outline Outline 1 Corpora as linguistic tools 2 Limitations of web data Strategies to enhance web data 3 Corpora as linguistic

More information

A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and

A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and Planning Overview Motivation for Analyses Analyses and

More information

EDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES. Maths Level 2. Chapter 4. Working with measures

EDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES. Maths Level 2. Chapter 4. Working with measures EDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES Maths Level 2 Chapter 4 Working with measures SECTION G 1 Time 2 Temperature 3 Length 4 Weight 5 Capacity 6 Conversion between metric units 7 Conversion

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Finding Translations in Scanned Book Collections

Finding Translations in Scanned Book Collections Finding Translations in Scanned Book Collections Ismet Zeki Yalniz Dept. of Computer Science University of Massachusetts Amherst, MA, 01003 zeki@cs.umass.edu R. Manmatha Dept. of Computer Science University

More information

The following information has been adapted from A guide to using AntConc.

The following information has been adapted from A guide to using AntConc. 1 7. Practical application of genre analysis in the classroom In this part of the workshop, we are going to analyse some of the texts from the discipline that you teach. Before we begin, we need to get

More information

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus Language Acquisition Fall 2010/Winter 2011 Lexical Categories Afra Alishahi, Heiner Drenhaus Computational Linguistics and Phonetics Saarland University Children s Sensitivity to Lexical Categories Look,

More information

The Internet as a Normative Corpus: Grammar Checking with a Search Engine

The Internet as a Normative Corpus: Grammar Checking with a Search Engine The Internet as a Normative Corpus: Grammar Checking with a Search Engine Jonas Sjöbergh KTH Nada SE-100 44 Stockholm, Sweden jsh@nada.kth.se Abstract In this paper some methods using the Internet as a

More information

Using dialogue context to improve parsing performance in dialogue systems

Using dialogue context to improve parsing performance in dialogue systems Using dialogue context to improve parsing performance in dialogue systems Ivan Meza-Ruiz and Oliver Lemon School of Informatics, Edinburgh University 2 Buccleuch Place, Edinburgh I.V.Meza-Ruiz@sms.ed.ac.uk,

More information

A Vector Space Approach for Aspect-Based Sentiment Analysis

A Vector Space Approach for Aspect-Based Sentiment Analysis A Vector Space Approach for Aspect-Based Sentiment Analysis by Abdulaziz Alghunaim B.S., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer

More information

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Read Online and Download Ebook ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Click link bellow and free register to download

More information

INPE São José dos Campos

INPE São José dos Campos INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

Ensemble Technique Utilization for Indonesian Dependency Parser

Ensemble Technique Utilization for Indonesian Dependency Parser Ensemble Technique Utilization for Indonesian Dependency Parser Arief Rahman Institut Teknologi Bandung Indonesia 23516008@std.stei.itb.ac.id Ayu Purwarianti Institut Teknologi Bandung Indonesia ayu@stei.itb.ac.id

More information

Syntax Parsing 1. Grammars and parsing 2. Top-down and bottom-up parsing 3. Chart parsers 4. Bottom-up chart parsing 5. The Earley Algorithm

Syntax Parsing 1. Grammars and parsing 2. Top-down and bottom-up parsing 3. Chart parsers 4. Bottom-up chart parsing 5. The Earley Algorithm Syntax Parsing 1. Grammars and parsing 2. Top-down and bottom-up parsing 3. Chart parsers 4. Bottom-up chart parsing 5. The Earley Algorithm syntax: from the Greek syntaxis, meaning setting out together

More information

Language Acquisition Chart

Language Acquisition Chart Language Acquisition Chart This chart was designed to help teachers better understand the process of second language acquisition. Please use this chart as a resource for learning more about the way people

More information

EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar

EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar Chung-Chi Huang Mei-Hua Chen Shih-Ting Huang Jason S. Chang Institute of Information Systems and Applications, National Tsing Hua University,

More information

LQVSumm: A Corpus of Linguistic Quality Violations in Multi-Document Summarization

LQVSumm: A Corpus of Linguistic Quality Violations in Multi-Document Summarization LQVSumm: A Corpus of Linguistic Quality Violations in Multi-Document Summarization Annemarie Friedrich, Marina Valeeva and Alexis Palmer COMPUTATIONAL LINGUISTICS & PHONETICS SAARLAND UNIVERSITY, GERMANY

More information

been each get other TASK #1 Fry Words TASK #2 Fry Words Write the following words in ABC order: Write the following words in ABC order:

been each get other TASK #1 Fry Words TASK #2 Fry Words Write the following words in ABC order: Write the following words in ABC order: TASK #1 Fry Words 1-100 been each called down about first TASK #2 Fry Words 1-100 get other long people number into TASK #3 Fry Words 1-100 could part more find now her TASK #4 Fry Words 1-100 for write

More information

RIVERS AND LAKES. MATERIA: GEOGRAFIA AUTORI Stefania Poggio Angela Renzi CONSULENZA: Cristina Fontana I.C. COMO-LORA-LIPOMO

RIVERS AND LAKES. MATERIA: GEOGRAFIA AUTORI Stefania Poggio Angela Renzi CONSULENZA: Cristina Fontana I.C. COMO-LORA-LIPOMO MATERIA: GEOGRAFIA AUTORI Stefania Poggio Angela Renzi CONSULENZA: Cristina Fontana I.C. COMO-LORA-LIPOMO RIVERS AND LAKES Destinatari: Lower Secondary School CLASSE: PRIMA (1 st year) Learning Unit Title

More information

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General Grade(s): None specified Unit: Creating a Community of Mathematical Thinkers Timeline: Week 1 The purpose of the Establishing a Community

More information

A Semantic Similarity Measure Based on Lexico-Syntactic Patterns

A Semantic Similarity Measure Based on Lexico-Syntactic Patterns A Semantic Similarity Measure Based on Lexico-Syntactic Patterns Alexander Panchenko, Olga Morozova and Hubert Naets Center for Natural Language Processing (CENTAL) Université catholique de Louvain Belgium

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Mexico (CONAFE) Dialogue and Discover Model, from the Community Courses Program

Mexico (CONAFE) Dialogue and Discover Model, from the Community Courses Program Mexico (CONAFE) Dialogue and Discover Model, from the Community Courses Program Dialogue and Discover manuals are used by Mexican community instructors (young people without professional teacher education

More information

Multivariate k-nearest Neighbor Regression for Time Series data -

Multivariate k-nearest Neighbor Regression for Time Series data - Multivariate k-nearest Neighbor Regression for Time Series data - a novel Algorithm for Forecasting UK Electricity Demand ISF 2013, Seoul, Korea Fahad H. Al-Qahtani Dr. Sven F. Crone Management Science,

More information

Memory-based grammatical error correction

Memory-based grammatical error correction Memory-based grammatical error correction Antal van den Bosch Peter Berck Radboud University Nijmegen Tilburg University P.O. Box 9103 P.O. Box 90153 NL-6500 HD Nijmegen, The Netherlands NL-5000 LE Tilburg,

More information

Graph Alignment for Semi-Supervised Semantic Role Labeling

Graph Alignment for Semi-Supervised Semantic Role Labeling Graph Alignment for Semi-Supervised Semantic Role Labeling Hagen Fürstenau Dept. of Computational Linguistics Saarland University Saarbrücken, Germany hagenf@coli.uni-saarland.de Mirella Lapata School

More information

Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language

Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language Nathaniel Hayes Department of Computer Science Simpson College 701 N. C. St. Indianola, IA, 50125 nate.hayes@my.simpson.edu

More information

Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments

Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments Cristina Vertan, Walther v. Hahn University of Hamburg, Natural Language Systems Division Hamburg,

More information

cmp-lg/ Jan 1998

cmp-lg/ Jan 1998 Identifying Discourse Markers in Spoken Dialog Peter A. Heeman and Donna Byron and James F. Allen Computer Science and Engineering Department of Computer Science Oregon Graduate Institute University of

More information

Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

More information

Human Emotion Recognition From Speech

Human Emotion Recognition From Speech RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

More information