Machine Learning for NLP

Size: px
Start display at page:

Download "Machine Learning for NLP"

Transcription

1 Natural Language Processing SoSe 2014 Machine Learning for NLP Dr. Mariana Neves April 30th, 2014 (based on the slides of Dr. Saeedeh Momtazi)

2 Introduction Field of study that gives computers the ability to learn without being explicitly programmed Arthur Samuel, 1959 Learning Methods Supervised learning 2 Active learning Unsupervised learning Semi-supervised learning Reinforcement learning Natural Language Processing Machine Learning for NLP

3 Outline 3 Supervised Learning Semi-supervised learning Unsupervised learning Natural Language Processing Machine Learning for NLP

4 Outline 4 Supervised Learning Semi-supervised learning Unsupervised learning Natural Language Processing Machine Learning for NLP

5 Supervised Learning Example: mortgage credit decision Age Income 5 Natural Language Processing Machine Learning for NLP

6 Supervised Learning age? income 6 Natural Language Processing Machine Learning for NLP

7 Classification Training T1 T2 Tn C1 C2 Cn F1 F2 Fn Model(F,C) Testing Tn+1 7? Fn+1 Natural Language Processing Machine Learning for NLP Cn+1

8 Applications Problems POS tagging Named entity recognition Word sense disambiguation Spam mail detection Language identification Text categorization Information retrieval 8 Natural Language Processing Machine Learning for NLP Items Word Word Word Document Document Document Document Categories POS Named entity Word's sense Spam/Not Spam Language Topic Relevant/Not relevant

9 Part-of-speech tagging 9 Natural Language Processing Machine Learning for NLP

10 Named entity recognition 10 Natural Language Processing Machine Learning for NLP

11 Word sense disambiguation 11 Natural Language Processing Machine Learning for NLP

12 Spam mail detection 12 Natural Language Processing Machine Learning for NLP

13 Language identification 13 Natural Language Processing Machine Learning for NLP

14 Text categorization 14 Natural Language Processing Machine Learning for NLP

15 Classification Training T1 T2 Tn C1 C2 Cn F1 F2 Fn Model(F,C) Testing Tn+1? Fn+1 15 Natural Language Processing Machine Learning for NLP Cn+1

16 Classification algorithms K Nearest Neighbor Support Vector Machines Naïve Bayes Maximum Entropy Linear Regression Logistic Regression Neural Networks Decision Trees Boosting Natural Language Processing Machine Learning for NLP

17 Classification algorithms K Nearest Neighbor Support Vector Machines Naïve Bayes Maximum Entropy Linear Regression Logistic Regression Neural Networks Decision Trees Boosting Natural Language Processing Machine Learning for NLP

18 K Nearest Neighbor? 18 Natural Language Processing Machine Learning for NLP

19 K Nearest Neighbor? 19 Natural Language Processing Machine Learning for NLP

20 K Nearest Neighbor 1-nearest neighbor 20 Natural Language Processing Machine Learning for NLP

21 K Nearest Neighbor 3-nearest neighbors? 21 Natural Language Processing Machine Learning for NLP

22 K Nearest Neighbor 3-nearest neighbors 22 Natural Language Processing Machine Learning for NLP

23 Classification algorithms K Nearest Neighbor Support Vector Machines Naïve Bayes Maximum Entropy Linear Regression Logistic Regression Neural Networks Decision Trees Boosting Natural Language Processing Machine Learning for NLP

24 Support vector machines 24 Natural Language Processing Machine Learning for NLP

25 Support vector machines Find a hyperplane in the vector space that separates the items of the two categories 25 Natural Language Processing Machine Learning for NLP

26 Support vector machines There might be more than one possible separating hyperplane 26 Natural Language Processing Machine Learning for NLP

27 Support vector machines Find the hyperplane with maximum margin Vectors at the margins are called support vectors 27 Natural Language Processing Machine Learning for NLP

28 Classification algorithms K Nearest Neighbor Support Vector Machines Naïve Bayes Maximum Entropy Linear Regression Logistic Regression Neural Networks Decision Trees Boosting Natural Language Processing Machine Learning for NLP

29 Naïve Bayes Selecting the class with highest probability Minimizing the number of items with wrong labels c =argmax c P (c i ) i Probability should depend on the to be classified data (d) P(c i d ) 29 Natural Language Processing Machine Learning for NLP

30 Naïve Bayes c =argmax c P (c i ) i c =argmax c P (c i d ) i P (d c i ) P (c i ) c =argmax c P (d ) i c =argmax c P (d c i ) P (c i ) i 30 Natural Language Processing Machine Learning for NLP

31 Naïve Bayes c =argmax c P (d c i ) P (c i ) i Prior probability Likelihood probability 31 Natural Language Processing Machine Learning for NLP

32 Classification Training T1 T2 Tn C1 C2 Cn F1 F2 Fn Model(F,C) Testing Tn+1? Fn+1 32 Natural Language Processing Machine Learning for NLP Cn+1

33 Spam mail detection Features: - words - sender's - contains links - contains attachments - contains money amounts Natural Language Processing Machine Learning for NLP

34 Feature selection Bag-of-words: Each document can be represented by the set of words that appear in the document Result is a high dimensional feature space The process is computationally expensive Solution Using a feature selection method to select informative words 34 Natural Language Processing Machine Learning for NLP

35 Feature selection methods Information gain Mutual information χ-square 35 Natural Language Processing Machine Learning for NLP

36 Information gain Measuring the number of bits required for category prediction w.r.t. the presence or absence of a term in the document Removing words whose information gain is less than a predefined threshold IG (w)= i=1 K P (c i ) log P(ci ) + P( w) i=1 + P( w ) i=1 36 Natural Language Processing Machine Learning for NLP K P (c i w ) log P (ci w) K P (c i w ) log P (ci w )

37 Information gain N = # docs N i = # docs in category ci N w = # docs containing w N w = # docs not containing w N iw = # docs in category ci containing w N i w = # docs in category ci not containing w Ni P(c i )= N Nw P( w)= N P(c i w)= N iw Ni N w P( w )= N P(c i w )= N i w Ni 37 Natural Language Processing Machine Learning for NLP

38 Mutual information Measuring the effect of each word in predicting the category How much does its presence or absence in a document contribute to category prediction? P (w, c i ) MI ( w, c i )=log P (w) P (c i ) Removing words whose mutual information is less than a predefined threshold MI ( w)=max i MI ( w, c i ) MI ( w)= i P (c i ) MI ( w, c i ) 38 Natural Language Processing Machine Learning for NLP

39 χ-square Measuring the dependencies between words and categories 2 N ( N iw N iw N i w N i w ) χ 2 (w, c i )= ( N iw + N i w ) ( N i w + N iw ) ( N iw + N i w ) ( N i w + N iw ) Ranking words based on their χ-square measure χ 2 (w)= i=1 K P (c i ) χ 2 (w, ci ) Selecting the top words as features 39 Natural Language Processing Machine Learning for NLP

40 Feature selection These models perform well for document-level classification Spam Mail Detection Language Identification Text Categorization Word-level Classification might need another types of features Part-of-speech tagging Named Entity Recognition 40 Natural Language Processing Machine Learning for NLP

41 Supervised learning Shortcoming Relies heavily on annotated data Time consuming and expensive task Solution Active learning Using a minimum amount of annotated data Annotating further data by human, if they are very informative 41 Natural Language Processing Machine Learning for NLP

42 Active learning 42 Natural Language Processing Machine Learning for NLP

43 Active learning - Annotating a small amount of data 43 Natural Language Processing Machine Learning for NLP

44 Active learning - Calculating the confidence score of the classifier on unlabeled data H L M L 44 Natural Language Processing Machine Learning for NLP

45 Active learning - Finding the informative unlabeled data (data with lowest confidence) H L M L - manually annotating the informative data 45 Natural Language Processing Machine Learning for NLP

46 Outline Supervised Learning Semi-supervised learning Unsupervised learning 46 Natural Language Processing Machine Learning for NLP

47 Semi-supervised learning Annotating data is a time consuming and expensive task Solution Using a minimum amount of annotated data Annotating further data automatically 47 Natural Language Processing Machine Learning for NLP

48 Semi-supervised learning - A small amount of labeled data 48 Natural Language Processing Machine Learning for NLP

49 Semi-supervised learning - A large amount of unlabeled data 49 Natural Language Processing Machine Learning for NLP

50 Semi-supervised learning - Finding the similarity between the labeled and unlabeled data - Predicting the labels of the unlabeled data 50 Natural Language Processing Machine Learning for NLP

51 Semi-supervised learning - Training the classifier using labeled data and predicted labels of unlabeled data 51 Natural Language Processing Machine Learning for NLP

52 Semi-supervised learning - Introducing a lot of noisy data to the system - Adding unlabeled data to the training set, if the predicted label has a high confidence 52 Natural Language Processing Machine Learning for NLP

53 Outline Supervised Learning Semi-supervised learning Unsupervised learning 53 Natural Language Processing Machine Learning for NLP

54 Supervised Learning age? income 54 Natural Language Processing Machine Learning for NLP

55 Unsupervised Learning age income 55 Natural Language Processing Machine Learning for NLP

56 Unsupervised Learning age income 56 Natural Language Processing Machine Learning for NLP

57 Clustering Calculating similarities between the data items Assigning similar data items to the same cluster 57 Natural Language Processing Machine Learning for NLP

58 Applications Word clustering Speech recognition Machine translation Named entity recognition Information retrieval... Document clustering Text classification Information retrieval Natural Language Processing Machine Learning for NLP

59 Speech recognition Computers can recognize a speeech. Computers can wreck a nice peach. recognition speech named-entity hand-writing 59 Natural Language Processing Machine Learning for NLP wreck ball ship

60 Machine translation The cat eats... Die Katze frisst... Die Katze isst... Katze fressen Hund laufen 60 Natural Language Processing Machine Learning for NLP essen Jung Mann

61 Language modelling I have a meeting on Moday evening. You should work on Wednesday afternoon. The next session is on Thursday morning. The talk is on Monday morning. The talk is on Monday molding. Monday Thursday Friday Sunday Saturday Tuesday morning afternoon evening night Tuesday 61 Natural Language Processing Machine Learning for NLP

62 Clustering algorithms Flat K-means Hierarchical Top-Down (Divisive) Bottom-Up (Agglomerative) Single-link Complete-link Average-link 62 Natural Language Processing Machine Learning for NLP

63 K-means The best known clustering algorithm Works well for many cases Used as default/baseline for clustering documents Defining each cluster center as the mean or centroid of the items in the cluster 1 μ = x c x c Minimizing the average squared Euclidean distance of the items from their cluster centers 63 Natural Language Processing Machine Learning for NLP

64 K-means Initialization: Randomly choose k items as initial centroids while stopping criterion has not been met do for each item do Find the nearest centroid Assign the item to the cluster associated with the nearest centroid end for for each cluster do Update the centroid of the cluster based on the average of all items in the cluster end for end while Iterating two steps: Re-assignment Assigning each vector to its closest centroid Re-computation Computing each centroid as the average of the vectors that were assigned to it in re-assignment 64 Natural Language Processing Machine Learning for NLP

65 K-means 65 Natural Language Processing Machine Learning for NLP

66 Hierarchical Agglomerative Clustering (HAC) Creating a hierarchy in the form of a binary tree 66 Natural Language Processing Machine Learning for NLP

67 Hierarchical Agglomerative Clustering (HAC) Creating a hierarchy in the form of a binary tree 67 Natural Language Processing Machine Learning for NLP

68 Hierarchical Agglomerative Clustering (HAC) Initial Mapping: Put a single item in each cluster while reaching the predefined number of clusters do for each pair of clusters do Measure the similarity of two clusters end for Merge the two clusters that are most similar end while Measuring the similarity in three ways: Single-link Complete-link Average-link 68 Natural Language Processing Machine Learning for NLP

69 Hierarchical Agglomerative Clustering (HAC) Single-link / single-linkage clustering Based on the similarity of the most similar members 69 Natural Language Processing Machine Learning for NLP

70 Hierarchical Agglomerative Clustering (HAC) Complete-link / complete-linkage clustering Based on the similarity of the most dissimilar members 70 Natural Language Processing Machine Learning for NLP

71 Hierarchical Agglomerative Clustering (HAC) Average-link / average-linkage clustering Based on the average of all similarities between the members 71 Natural Language Processing Machine Learning for NLP

72 Hierarchical Agglomerative Clustering (HAC) 72 Natural Language Processing Machine Learning for NLP

73 This is no clustering...just word frequencies 73 Natural Language Processing Machine Learning for NLP

74 Further reading 74 Natural Language Processing Machine Learning for NLP

75 Further reading 75 Natural Language Processing Machine Learning for NLP

76 Further reading 76 Natural Language Processing Machine Learning for NLP

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

CS 446: Machine Learning

CS 446: Machine Learning CS 446: Machine Learning Introduction to LBJava: a Learning Based Programming Language Writing classifiers Christos Christodoulopoulos Parisa Kordjamshidi Motivation 2 Motivation You still have not learnt

More information

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17.

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17. Semi-supervised methods of text processing, and an application to medical concept extraction Yacine Jernite Text-as-Data series September 17. 2015 What do we want from text? 1. Extract information 2. Link

More information

Switchboard Language Model Improvement with Conversational Data from Gigaword

Switchboard Language Model Improvement with Conversational Data from Gigaword Katholieke Universiteit Leuven Faculty of Engineering Master in Artificial Intelligence (MAI) Speech and Language Technology (SLT) Switchboard Language Model Improvement with Conversational Data from Gigaword

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Nuanwan Soonthornphisaj 1 and Boonserm Kijsirikul 2 Machine Intelligence and Knowledge Discovery Laboratory Department of Computer

More information

Issues in the Mining of Heart Failure Datasets

Issues in the Mining of Heart Failure Datasets International Journal of Automation and Computing 11(2), April 2014, 162-179 DOI: 10.1007/s11633-014-0778-5 Issues in the Mining of Heart Failure Datasets Nongnuch Poolsawad 1 Lisa Moore 1 Chandrasekhar

More information

CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH

CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH ISSN: 0976-3104 Danti and Bhushan. ARTICLE OPEN ACCESS CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH Ajit Danti 1 and SN Bharath Bhushan 2* 1 Department

More information

Using Web Searches on Important Words to Create Background Sets for LSI Classification

Using Web Searches on Important Words to Create Background Sets for LSI Classification Using Web Searches on Important Words to Create Background Sets for LSI Classification Sarah Zelikovitz and Marina Kogan College of Staten Island of CUNY 2800 Victory Blvd Staten Island, NY 11314 Abstract

More information

Large-Scale Web Page Classification. Sathi T Marath. Submitted in partial fulfilment of the requirements. for the degree of Doctor of Philosophy

Large-Scale Web Page Classification. Sathi T Marath. Submitted in partial fulfilment of the requirements. for the degree of Doctor of Philosophy Large-Scale Web Page Classification by Sathi T Marath Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia November 2010

More information

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

More information

CSL465/603 - Machine Learning

CSL465/603 - Machine Learning CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

More information

A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and

A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and Planning Overview Motivation for Analyses Analyses and

More information

OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

More information

Active Learning. Yingyu Liang Computer Sciences 760 Fall

Active Learning. Yingyu Liang Computer Sciences 760 Fall Active Learning Yingyu Liang Computer Sciences 760 Fall 2017 http://pages.cs.wisc.edu/~yliang/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,

More information

Twitter Sentiment Classification on Sanders Data using Hybrid Approach

Twitter Sentiment Classification on Sanders Data using Hybrid Approach IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

More information

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

More information

Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

More information

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

More information

CS 1103 Computer Science I Honors. Fall Instructor Muller. Syllabus

CS 1103 Computer Science I Honors. Fall Instructor Muller. Syllabus CS 1103 Computer Science I Honors Fall 2016 Instructor Muller Syllabus Welcome to CS1103. This course is an introduction to the art and science of computer programming and to some of the fundamental concepts

More information

Re-envisioning library opening hours: University of the Western Cape library 24/7 Pilot Study

Re-envisioning library opening hours: University of the Western Cape library 24/7 Pilot Study Re-envisioning library opening hours: University of the Western Cape library 24/7 Pilot Study Anwa Adriaanse www.lib.uwc.ac.za Overview About UWC Background to 24/7 library services Levels of service Costs

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

The stages of event extraction

The stages of event extraction The stages of event extraction David Ahn Intelligent Systems Lab Amsterdam University of Amsterdam ahn@science.uva.nl Abstract Event detection and recognition is a complex task consisting of multiple sub-tasks

More information

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus Language Acquisition Fall 2010/Winter 2011 Lexical Categories Afra Alishahi, Heiner Drenhaus Computational Linguistics and Phonetics Saarland University Children s Sensitivity to Lexical Categories Look,

More information

Decision Making. Unsure about how to decide which sorority to join? Review this presentation to learn more about the mutual selection process!

Decision Making. Unsure about how to decide which sorority to join? Review this presentation to learn more about the mutual selection process! Decision Making Unsure about how to decide which sorority to join? Review this presentation to learn more about the mutual selection process! Mutual Selection Method utilized during recruitment in which

More information

Human Emotion Recognition From Speech

Human Emotion Recognition From Speech RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

More information

Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

More information

Linking Task: Identifying authors and book titles in verbose queries

Linking Task: Identifying authors and book titles in verbose queries Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

More information

Learning Methods in Multilingual Speech Recognition

Learning Methods in Multilingual Speech Recognition Learning Methods in Multilingual Speech Recognition Hui Lin Department of Electrical Engineering University of Washington Seattle, WA 98125 linhui@u.washington.edu Li Deng, Jasha Droppo, Dong Yu, and Alex

More information

4 th Grade Number and Operations in Base Ten. Set 3. Daily Practice Items And Answer Keys

4 th Grade Number and Operations in Base Ten. Set 3. Daily Practice Items And Answer Keys 4 th Grade Number and Operations in Base Ten Set 3 Daily Practice Items And Answer Keys NUMBER AND OPERATIONS IN BASE TEN: OVERVIEW Resources: PRACTICE ITEMS Attached you will find practice items for Number

More information

Memory-based grammatical error correction

Memory-based grammatical error correction Memory-based grammatical error correction Antal van den Bosch Peter Berck Radboud University Nijmegen Tilburg University P.O. Box 9103 P.O. Box 90153 NL-6500 HD Nijmegen, The Netherlands NL-5000 LE Tilburg,

More information

A Comparison of Two Text Representations for Sentiment Analysis

A Comparison of Two Text Representations for Sentiment Analysis 010 International Conference on Computer Application and System Modeling (ICCASM 010) A Comparison of Two Text Representations for Sentiment Analysis Jianxiong Wang School of Computer Science & Educational

More information

arxiv:cmp-lg/ v1 22 Aug 1994

arxiv:cmp-lg/ v1 22 Aug 1994 arxiv:cmp-lg/94080v 22 Aug 994 DISTRIBUTIONAL CLUSTERING OF ENGLISH WORDS Fernando Pereira AT&T Bell Laboratories 600 Mountain Ave. Murray Hill, NJ 07974 pereira@research.att.com Abstract We describe and

More information

Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur)

Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) 1 Interviews, diary studies Start stats Thursday: Ethics/IRB Tuesday: More stats New homework is available

More information

Data Integration through Clustering and Finding Statistical Relations - Validation of Approach

Data Integration through Clustering and Finding Statistical Relations - Validation of Approach Data Integration through Clustering and Finding Statistical Relations - Validation of Approach Marek Jaszuk, Teresa Mroczek, and Barbara Fryc University of Information Technology and Management, ul. Sucharskiego

More information

Semi-Supervised Face Detection

Semi-Supervised Face Detection Semi-Supervised Face Detection Nicu Sebe, Ira Cohen 2, Thomas S. Huang 3, Theo Gevers Faculty of Science, University of Amsterdam, The Netherlands 2 HP Research Labs, USA 3 Beckman Institute, University

More information

arxiv: v2 [cs.cv] 30 Mar 2017

arxiv: v2 [cs.cv] 30 Mar 2017 Domain Adaptation for Visual Applications: A Comprehensive Survey Gabriela Csurka arxiv:1702.05374v2 [cs.cv] 30 Mar 2017 Abstract The aim of this paper 1 is to give an overview of domain adaptation and

More information

Applications of memory-based natural language processing

Applications of memory-based natural language processing Applications of memory-based natural language processing Antal van den Bosch and Roser Morante ILK Research Group Tilburg University Prague, June 24, 2007 Current ILK members Principal investigator: Antal

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

A Bayesian Learning Approach to Concept-Based Document Classification

A Bayesian Learning Approach to Concept-Based Document Classification Databases and Information Systems Group (AG5) Max-Planck-Institute for Computer Science Saarbrücken, Germany A Bayesian Learning Approach to Concept-Based Document Classification by Georgiana Ifrim Supervisors

More information

arxiv: v1 [cs.lg] 3 May 2013

arxiv: v1 [cs.lg] 3 May 2013 Feature Selection Based on Term Frequency and T-Test for Text Categorization Deqing Wang dqwang@nlsde.buaa.edu.cn Hui Zhang hzhang@nlsde.buaa.edu.cn Rui Liu, Weifeng Lv {liurui,lwf}@nlsde.buaa.edu.cn arxiv:1305.0638v1

More information

CS 101 Computer Science I Fall Instructor Muller. Syllabus

CS 101 Computer Science I Fall Instructor Muller. Syllabus CS 101 Computer Science I Fall 2013 Instructor Muller Syllabus Welcome to CS101. This course is an introduction to the art and science of computer programming and to some of the fundamental concepts of

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Universidade do Minho Escola de Engenharia

Universidade do Minho Escola de Engenharia Universidade do Minho Escola de Engenharia Universidade do Minho Escola de Engenharia Dissertação de Mestrado Knowledge Discovery is the nontrivial extraction of implicit, previously unknown, and potentially

More information

Disambiguation of Thai Personal Name from Online News Articles

Disambiguation of Thai Personal Name from Online News Articles Disambiguation of Thai Personal Name from Online News Articles Phaisarn Sutheebanjard Graduate School of Information Technology Siam University Bangkok, Thailand mr.phaisarn@gmail.com Abstract Since online

More information

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Tomi Kinnunen and Ismo Kärkkäinen University of Joensuu, Department of Computer Science, P.O. Box 111, 80101 JOENSUU,

More information

International Seminar: Dates, Locations, and Course Descriptions

International Seminar: Dates, Locations, and Course Descriptions International Seminar: Dates, Locations, and Course Descriptions The Executive MBA Programs at Columbia Business School offer several International Seminar course options in different international locations.

More information

Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

More information

Web as Corpus. Corpus Linguistics. Web as Corpus 1 / 1. Corpus Linguistics. Web as Corpus. web.pl 3 / 1. Sketch Engine. Corpus Linguistics

Web as Corpus. Corpus Linguistics. Web as Corpus 1 / 1. Corpus Linguistics. Web as Corpus. web.pl 3 / 1. Sketch Engine. Corpus Linguistics (L615) Markus Dickinson Department of Linguistics, Indiana University Spring 2013 The web provides new opportunities for gathering data Viable source of disposable corpora, built ad hoc for specific purposes

More information

CS4491/CS 7265 BIG DATA ANALYTICS INTRODUCTION TO THE COURSE. Mingon Kang, PhD Computer Science, Kennesaw State University

CS4491/CS 7265 BIG DATA ANALYTICS INTRODUCTION TO THE COURSE. Mingon Kang, PhD Computer Science, Kennesaw State University CS4491/CS 7265 BIG DATA ANALYTICS INTRODUCTION TO THE COURSE Mingon Kang, PhD Computer Science, Kennesaw State University Self Introduction Mingon Kang, PhD Homepage: http://ksuweb.kennesaw.edu/~mkang9

More information

Improving Machine Learning Input for Automatic Document Classification with Natural Language Processing

Improving Machine Learning Input for Automatic Document Classification with Natural Language Processing Improving Machine Learning Input for Automatic Document Classification with Natural Language Processing Jan C. Scholtes Tim H.W. van Cann University of Maastricht, Department of Knowledge Engineering.

More information

BYLINE [Heng Ji, Computer Science Department, New York University,

BYLINE [Heng Ji, Computer Science Department, New York University, INFORMATION EXTRACTION BYLINE [Heng Ji, Computer Science Department, New York University, hengji@cs.nyu.edu] SYNONYMS NONE DEFINITION Information Extraction (IE) is a task of extracting pre-specified types

More information

GAT General (Analytical Reasoning Section) NOTE: This is GAT-C where: English-40%, Analytical Reasoning-30%, Quantitative-30% GAT

GAT General (Analytical Reasoning Section) NOTE: This is GAT-C where: English-40%, Analytical Reasoning-30%, Quantitative-30% GAT GAT General (Analytical Reasoning Section) NOTE: This is GAT-C where: English-40%, Analytical Reasoning-30%, Quantitative-30% GAT GAT Part-II (Analytical Reasoning Section) 41. If A B, B A and C B (A)

More information

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037 Marek WIŚNIEWSKI *, Wiesława KUNISZYK-JÓŹKOWIAK *, Elżbieta SMOŁKA *, Waldemar SUSZYŃSKI * HMM, recognition, speech, disorders

More information

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver.1 (Mar - Apr.2015), PP 55-61 www.iosrjournals.org Analysis of Emotion

More information

Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

More information

Indian Institute of Technology, Kanpur

Indian Institute of Technology, Kanpur Indian Institute of Technology, Kanpur Course Project - CS671A POS Tagging of Code Mixed Text Ayushman Sisodiya (12188) {ayushmn@iitk.ac.in} Donthu Vamsi Krishna (15111016) {vamsi@iitk.ac.in} Sandeep Kumar

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

Beyond the Pipeline: Discrete Optimization in NLP

Beyond the Pipeline: Discrete Optimization in NLP Beyond the Pipeline: Discrete Optimization in NLP Tomasz Marciniak and Michael Strube EML Research ggmbh Schloss-Wolfsbrunnenweg 33 69118 Heidelberg, Germany http://www.eml-research.de/nlp Abstract We

More information

A Vector Space Approach for Aspect-Based Sentiment Analysis

A Vector Space Approach for Aspect-Based Sentiment Analysis A Vector Space Approach for Aspect-Based Sentiment Analysis by Abdulaziz Alghunaim B.S., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer

More information

Mathematics Success Grade 7

Mathematics Success Grade 7 T894 Mathematics Success Grade 7 [OBJECTIVE] The student will find probabilities of compound events using organized lists, tables, tree diagrams, and simulations. [PREREQUISITE SKILLS] Simple probability,

More information

Multilingual Sentiment and Subjectivity Analysis

Multilingual Sentiment and Subjectivity Analysis Multilingual Sentiment and Subjectivity Analysis Carmen Banea and Rada Mihalcea Department of Computer Science University of North Texas rada@cs.unt.edu, carmen.banea@gmail.com Janyce Wiebe Department

More information

Feature Selection based on Sampling and C4.5 Algorithm to Improve the Quality of Text Classification using Naïve Bayes

Feature Selection based on Sampling and C4.5 Algorithm to Improve the Quality of Text Classification using Naïve Bayes Feature Selection based on Sampling and C4.5 Algorithm to Improve the Quality of Text Classification using Naïve Bayes Viviana Molano 1, Carlos Cobos 1, Martha Mendoza 1, Enrique Herrera-Viedma 2, and

More information

Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees

Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees Mariusz Łapczy ski 1 and Bartłomiej Jefma ski 2 1 The Chair of Market Analysis and Marketing Research,

More information

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

More information

Improving Simple Bayes. Abstract. The simple Bayesian classier (SBC), sometimes called

Improving Simple Bayes. Abstract. The simple Bayesian classier (SBC), sometimes called Improving Simple Bayes Ron Kohavi Barry Becker Dan Sommereld Data Mining and Visualization Group Silicon Graphics, Inc. 2011 N. Shoreline Blvd. Mountain View, CA 94043 fbecker,ronnyk,sommdag@engr.sgi.com

More information

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Read Online and Download Ebook ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Click link bellow and free register to download

More information

Basic Parsing with Context-Free Grammars. Some slides adapted from Julia Hirschberg and Dan Jurafsky 1

Basic Parsing with Context-Free Grammars. Some slides adapted from Julia Hirschberg and Dan Jurafsky 1 Basic Parsing with Context-Free Grammars Some slides adapted from Julia Hirschberg and Dan Jurafsky 1 Announcements HW 2 to go out today. Next Tuesday most important for background to assignment Sign up

More information

The University of Amsterdam s Concept Detection System at ImageCLEF 2011

The University of Amsterdam s Concept Detection System at ImageCLEF 2011 The University of Amsterdam s Concept Detection System at ImageCLEF 2011 Koen E. A. van de Sande and Cees G. M. Snoek Intelligent Systems Lab Amsterdam, University of Amsterdam Software available from:

More information

STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point.

STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point. STT 231 Test 1 Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point. 1. A professor has kept records on grades that students have earned in his class. If he

More information

UMass at TDT Similarity functions 1. BASIC SYSTEM Detection algorithms. set globally and apply to all clusters.

UMass at TDT Similarity functions 1. BASIC SYSTEM Detection algorithms. set globally and apply to all clusters. UMass at TDT James Allan, Victor Lavrenko, David Frey, and Vikas Khandelwal Center for Intelligent Information Retrieval Department of Computer Science University of Massachusetts Amherst, MA 3 We spent

More information

Preference Learning in Recommender Systems

Preference Learning in Recommender Systems Preference Learning in Recommender Systems Marco de Gemmis, Leo Iaquinta, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and Giovanni Semeraro Department of Computer Science University of Bari Aldo

More information

Design Of An Automatic Speaker Recognition System Using MFCC, Vector Quantization And LBG Algorithm

Design Of An Automatic Speaker Recognition System Using MFCC, Vector Quantization And LBG Algorithm Design Of An Automatic Speaker Recognition System Using MFCC, Vector Quantization And LBG Algorithm Prof. Ch.Srinivasa Kumar Prof. and Head of department. Electronics and communication Nalanda Institute

More information

Comparison of EM and Two-Step Cluster Method for Mixed Data: An Application

Comparison of EM and Two-Step Cluster Method for Mixed Data: An Application International Journal of Medical Science and Clinical Inventions 4(3): 2768-2773, 2017 DOI:10.18535/ijmsci/ v4i3.8 ICV 2015: 52.82 e-issn: 2348-991X, p-issn: 2454-9576 2017, IJMSCI Research Article Comparison

More information

Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

Business 4 exchange academic guide

Business 4 exchange academic guide Business 4 exchange academic guide KdG exchange programme for Business Academic year 2017-2018 Karel de Grote University College Campus of Business Management and Administration Nationalestraat 5 B-2000

More information

Using dialogue context to improve parsing performance in dialogue systems

Using dialogue context to improve parsing performance in dialogue systems Using dialogue context to improve parsing performance in dialogue systems Ivan Meza-Ruiz and Oliver Lemon School of Informatics, Edinburgh University 2 Buccleuch Place, Edinburgh I.V.Meza-Ruiz@sms.ed.ac.uk,

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

TCC Jim Bolen Math Competition Rules and Facts. Rules:

TCC Jim Bolen Math Competition Rules and Facts. Rules: TCC Jim Bolen Math Competition Rules and Facts Rules: The Jim Bolen Math Competition is composed of two one hour multiple choice pre-calculus tests. The first test is scheduled on Friday, November 8, 2013

More information

Phonetic- and Speaker-Discriminant Features for Speaker Recognition. Research Project

Phonetic- and Speaker-Discriminant Features for Speaker Recognition. Research Project Phonetic- and Speaker-Discriminant Features for Speaker Recognition by Lara Stoll Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California

More information

Data Fusion Through Statistical Matching

Data Fusion Through Statistical Matching A research and education initiative at the MIT Sloan School of Management Data Fusion Through Statistical Matching Paper 185 Peter Van Der Puttan Joost N. Kok Amar Gupta January 2002 For more information,

More information

Course Syllabus for Math

Course Syllabus for Math Course Syllabus for Math 1090-003 Instructor: Stefano Filipazzi Class Time: Mondays, Wednesdays and Fridays, 9.40 a.m. - 10.30 a.m. Class Place: LCB 225 Office hours: Wednesdays, 2.00 p.m. - 3.00 p.m.,

More information

Graduate Calendar. Graduate Calendar. Fall Semester 2015

Graduate Calendar. Graduate Calendar. Fall Semester 2015 Graduate Calendar Graduate Calendar Fall Semester 2015 August 31, Monday September 14, Monday Thesis/Dissertation Committee Approval form due to the Graduate School September 10, Thursday Graduate Council

More information

Optimizing to Arbitrary NLP Metrics using Ensemble Selection

Optimizing to Arbitrary NLP Metrics using Ensemble Selection Optimizing to Arbitrary NLP Metrics using Ensemble Selection Art Munson, Claire Cardie, Rich Caruana Department of Computer Science Cornell University Ithaca, NY 14850 {mmunson, cardie, caruana}@cs.cornell.edu

More information

AQUA: An Ontology-Driven Question Answering System

AQUA: An Ontology-Driven Question Answering System AQUA: An Ontology-Driven Question Answering System Maria Vargas-Vera, Enrico Motta and John Domingue Knowledge Media Institute (KMI) The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom.

More information

Cross-Lingual Text Categorization

Cross-Lingual Text Categorization Cross-Lingual Text Categorization Nuria Bel 1, Cornelis H.A. Koster 2, and Marta Villegas 1 1 Grup d Investigació en Lingüística Computacional Universitat de Barcelona, 028 - Barcelona, Spain. {nuria,tona}@gilc.ub.es

More information

Vocabulary Usage and Intelligibility in Learner Language

Vocabulary Usage and Intelligibility in Learner Language Vocabulary Usage and Intelligibility in Learner Language Emi Izumi, 1 Kiyotaka Uchimoto 1 and Hitoshi Isahara 1 1. Introduction In verbal communication, the primary purpose of which is to convey and understand

More information

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT

WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT WE GAVE A LAWYER BASIC MATH SKILLS, AND YOU WON T BELIEVE WHAT HAPPENED NEXT PRACTICAL APPLICATIONS OF RANDOM SAMPLING IN ediscovery By Matthew Verga, J.D. INTRODUCTION Anyone who spends ample time working

More information

Model Ensemble for Click Prediction in Bing Search Ads

Model Ensemble for Click Prediction in Bing Search Ads Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Microsoft Bing xiaoling@microsoft.com Hucheng Zhou Microsoft Research huzho@microsoft.com Weiwei Deng Microsoft Bing dedeng@microsoft.com

More information

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email Marilyn A. Walker Jeanne C. Fromer Shrikanth Narayanan walker@research.att.com jeannie@ai.mit.edu shri@research.att.com

More information

Matching Similarity for Keyword-Based Clustering

Matching Similarity for Keyword-Based Clustering Matching Similarity for Keyword-Based Clustering Mohammad Rezaei and Pasi Fränti University of Eastern Finland {rezaei,franti}@cs.uef.fi Abstract. Semantic clustering of objects such as documents, web

More information

TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY

TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY Philippe Hamel, Matthew E. P. Davies, Kazuyoshi Yoshii and Masataka Goto National Institute

More information

Cross-lingual Short-Text Document Classification for Facebook Comments

Cross-lingual Short-Text Document Classification for Facebook Comments 2014 International Conference on Future Internet of Things and Cloud Cross-lingual Short-Text Document Classification for Facebook Comments Mosab Faqeeh, Nawaf Abdulla, Mahmoud Al-Ayyoub, Yaser Jararweh

More information

Word learning as Bayesian inference

Word learning as Bayesian inference Word learning as Bayesian inference Joshua B. Tenenbaum Department of Psychology Stanford University jbt@psych.stanford.edu Fei Xu Department of Psychology Northeastern University fxu@neu.edu Abstract

More information