Incorporating Semantic Information into Image Classifiers

Size: px
Start display at page:

Download "Incorporating Semantic Information into Image Classifiers"

Transcription

1 Incorporating Semantic Information into Image Classifiers Osbert Bastani and Hamsa Sridhar Advised by Richard Socher December 14, Introduction In this project, we are investigating the incorporation of semantic information into image classifiers. In particular, we are interested in the problem of using neural networks and techniques from natural language processing to train an image classifier that uses semantic information contained in word vectors that have already been trained in an unsupervised fashion. Traditional image classifiers ignore the semantic content of the names of the image classes. Especially when classifying fine grained image classes, it would be hugely beneficial to jointly train representations of the labels along with representations of the images. One can even imagine learning how to recognize a class when there are few or no training examples in that class, based solely on training on semantically similar words. For example, if the classifier can learn from training examples that boat and ship represent similar objects, then the classifier could learn to identify boat images using ship training examples. The goal of our project is to show that we can leverage semantic information when training image classifiers. We incorporate semantic information into deep learning algorithms, especially neural networks, to solve the classification problem. 1.1 Acknowledgements Osbert contributed a lot of the code on neural networks, while Hamsa contributed a lot of the code for preprocessing the images, scripting the training procedures, and visualizing the results. Most of the time was spent running the code and analyzing the results, which we performed jointly. Richard was incredibly helpful throughout the project, always suggesting new things to try whenever we ran into a wall. Submitting this project for both CS 224n and CS 229. Submitting this project for CS 229 only. 2 Background Collobert and Weston successfully used neural networks to solve various standard problems in NLP [1]. They achieve this by using unsupervised learning to learn representations of words in a high dimensional vector space. The neural networks they use to do so have k inputs, where k is the length of the window being used. The first layer of the neural network is a look up table that maps atomic words to word vectors, generally in R 50 or R 100. Next we have a layer that computes an affine transformation of the outputs from the previous layer, followed by a hard tanh transformation applied component-wise. The error function computed by the final layer in the neural network for a single k-word training phrase s is the pairwise ranking cost, i.e. the sum J(f; s) = max{0, 1 f(s) + f(s )}, s S c(s) where f : R n R is some function mapping word vectors to scores, usually taken to be a convolution of affine maps with a nonlinearity such as tanh. Here s is the window of the original k words, and S c (s) is the set of windows with the same k words as s except the middle word, which is replaced with another word. The idea is for f(s) to be significantly greater than f(s ), so the neural network is training word vectors that describe what words belong in a given window. The word vectors obtained by [1] tended to cluster words that had similar meanings since they could be replaced in the same context and preserve the meaning of the sentence. Our goal is to use the semantic information encoded in these word vectors to enhance the capabilities of image classifiers. Given a set of images I, where x I corresponds to a label l(x) L, the basic image classification problem is to predict l(x) given x based on previous training examples. We assume further that each label l L corresponds to a word vector w l that has been trained by the method outlined above to carry semantic information. The most ambitious goal would be to train a zeroshot classifier, which can classify images of a given label l that did not occur in the training set. For example, given training images of apples and carrots, we can imagine 1

2 classifying oranges without having seen an orange, given only the fact that apples and oranges are both spherical, and that carrots and oranges both have the same color. The hope is to identify semantic correspondences that yield similar intuitions that allow us to classify the class of oranges, without having seen a training example of an orange, with some nontrivial degree of accuracy. At a minimum, we hope to demonstrate that semantic information allows the classifier to learn a new class more quickly, akin to how a description of an object using synonyms would improve a human s ability to recognize it. 3 Methodology We implemented and tested image classifiers using neural networks that incorporate semantic information encoded by word vectors. Our first approach is an extension of the cross entropy method used in [1] to train word vectors, and the second computes a linear map from the image feature space to the word vector space, trained to map image features close to their labels. We additionally implemented and tested two more neural networks: (i) a map from image feature space to word vector space with a single hidden layer, and (ii) a map that also acts as a sort of autoencoder. However, these both performed poorly so we focused on the cross entropy classifier and the mapping classifier. Cross Entropy Classifier. Our first approach is to replace the the middle word in the input to the neural network by the image annotation, and to replace the remainder of the window by the input. This way, the score for a word describing the image will be significantly higher than the score for a word that doesn t at all describe the image. Let ( [ ) x f(x, l; W, U, b, c) = Ug W + b + c, wl] where g(z) is the sigmoid function applied coordinatewise. Then the error for a single training example is the same sum as before, except this time S c ranges over the image paired with incorrect labels: J(W, U, b, c; I, l) = J(W, U, b, c; x, l, l ) x I where l L l(x) + λ( U 2 + W 2 ), J(W, U, b, c; x, l, l ) = max{0, 1 f(x, l(x); W, U, b, c) + f(x, l ; W, U, b, c)} and L l(x) denotes the set of all labels L except for the label l(x) corresponding to x. The predicted label for a new image is then the label with the highest score, i.e. l pred (x) = arg max f(x, l; W, U, b, c). l L Since labels that are semantically similar will have similar word vectors, the hope is that training images can essentially be trained for multiple word vectors at the same time, since a higher score f(x, l) also results in a higher score f(x, l ) so long as w l w l is small. Mapping Classifier. Our second approach is to compute a mapping from the image feature space to the word vector space trained to map images close to their label vectors. The cost function is J(U, b; I, l) = x I w l(x) (Ux + b) 2 + λ U 2. The predicted label is that which is closest to Ux + b, i.e. l pred (x) = arg min l L w l (Ux + b) 2. The hope is that features map in some structured way so that unseen labels are also mapped approximately correctly. In addition to zero-shot learning, where we exclude all images with a given label in the training set, we see if including semantic information helps the neural network learn more efficiently. We include a small number of image features of the excluded class I d with the following cost function: J(..., I, I d, l) = J(..., I, l) + αj(..., I d, l). Furthermore, to analyze the usefulness of the included semantic information, we train both on word vectors w from [1] and on word vectors w U[0, 1] chosen uniformly randomly (and fixed for the duration of the tests). 4 Results In order to test and analyze the neural networks, we train the classifier on the CIFAR-10 dataset, which consists of ten categories of images: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. For our trails we used the preinitialized word vectors from [1].We implemented and tested the cross entropy classifier and the mapping classifier for various parameters. The basic parameters are given in Table 1. We deleted all cat images (label 4) from the training set in our attempt to achieve zero-shot learning. We also tested both the semantic word vectors from [1] and preinitialized randomized word vectors to compare performance. Unfortunately, as of now we have been unable to obtain good results on zero-shot learning, so we decided to focus on including a small number of cat images in 2

3 Parameter Value Hidden Layer Size 100 λ 10 3 Training Images 8093 Cat Images 807 Test Images 1000 α for cross entropy 0.05 α for mapping 1.0 Table 1: Neural network parameters. the training sets and comparing how performance scaled with training set size when using semantic word vectors versus randomized word vectors. We tuned the α parameter that weights the cat images independently, and found that 0.05 was a good value for the cross entropy classifier whereas 1.0 was a good value for the mapping classifier. We show only the accuracy, since that gives the most transparent explanation of what is happening. Results are shown in Table 2. Label (l) Mapping C. E. 1 w cat w l airplane automobile bird cat 31 0 deer dog frog horse ship truck Table 3: Distribution of predicted labels for cat vectors for the zero-shot classifiers, along with distances between each word vector and the cat vector. 5 Discussion While we failed to achieve zero-shot in our results, the mapping classifier did have a nonzero score for zero-shot learning. However, in both classifiers, we were still able to demonstrate the value of semantic word vectors vs. randomized word vectors. 5.1 Zero-Shot Learning We begin with a discussion of the results and issues with our attempt at zero-shot image classification. Mapping Classifier. The zero-shot mapping classifier achieved a score of 3.4 on the test set of cat images. Even though this is worse than random, a trained classifier would typically classify images only into the classes it has already seen, so this result while not promising is still noteworthy. One thing we noticed here is that when not testing for zero-shot learning, semantic information actually decreased performance, indicating that we need to further tune α. In Table 3, we give the distribution of the labels predicted by the zero-shot mapping classifier for cat vectors. We also computed the inverse distances between each word vector and the cat word vector, which measure the semantic similarity between two words, shown in 3 and plotted in Figure 1. It is clear from the plot that there is a correlation between the word vector and the number of misclassifications. As expected, there is a bias from the image features themselves, so cats are still often misclassified as dogs. This indicates that there is a signal in the data that Figure 1: Plot of the distribution of predicted labels for cat vectors for the zero-shot classifiers, along with inverse distances between each word vector and the cat vector. could be exploited for zero-shot learning, though more work must be done to extract the signal. Finally, in Figure 2, we give a visualization of the word vectors and the mapping of the image features into the word vector space. It shows a scatter plot of the first two principle components of the 50 dimensional vectors. The word vectors are red, and the image vectors are blue, and each class is represented by a different shape. Even with just two components, we can see the projected images cluster around the word vectors representing their label. Most significantly, this is even the case for the cat vector. This gives us an indication that if the mapping from image feature vector space to word vector space were computed with more labels, the accuracy of the mapping would improve and allow for zero-shot learning. It would also be helpful to include a nonlinearity in the mapping, though since we did not have enough image labels or training examples, including a nonlinearity led to overfitting. We are also investigating the possibility of using a one-shot classifier to better center the cat word vector. Cross Entropy Classifier. The cross entropy classifier completely failed at zero shot learning, but exhibited 3

4 Classifier Word Vectors # Cat Images Training Test Training Cats Test Cats C. E. Semantic C. E. Randomized C. E. Semantic C. E. Randomized C. E. Semantic C. E. Randomized Mapping Semantic Mapping Randomized Mapping Semantic Mapping Randomized Mapping Semantic Mapping Randomized Table 2: Results for various classifier configurations. Figure 2: Projection of the word vectors and mapped image features. the same correlation with inverse distance as the mapping classifier, as shown in Table 3 and Figure 1. We concluded that the mapping classifier was more promising and focused on that approach. While we failed to achieve zero-shot learning, we feel that we have some promising approaches that may at least lead to a one-shot classifier. 5.2 Semantic vs. Randomized Word Vectors While our focus was on understanding how to achieve zero-shot learning, we also performed some preliminary investigations as to how semantic information affects performance. Mapping Classifier. Once it had 10 cat images, the mapping classifier was at least performing on par with random, and at 100 training examples it was performing very well. Accuracy on the test set suffered, indicating that the effect of the examples of cat images was too strong, though this could be fixed with further tuning of α. Still, performance was sufficient for our purposes to show that semantic information helped the classifier learn to classify cat images more effectively. The effect was especially pronounced with only 10 cat images, where the randomized word vectors performed abysmally on the set of test cat images. We compare the misclassification of cat vectors when using semantic word vectors vs. randomized word vectors in Table 4. We noticed that in both cases, most cat vectors are misclassified as either birds or dogs, since birds and dogs especially look similar to cats. However, this effect is more pronounced in the case of semantic word vectors, indicating that in this case the semantic information is boosting the signal given by the images themselves. However, we have to be careful because the 4

5 semantic information also causes more dog and bird images to be misclassified as cats, indicating that semantic information makes the neural network more sensitive to overtraining. Since the randomized word vectors are uniformly distributed, rather than clustered by meaning, they are less likely to be overtrained. This indicates an interesting tradeoff between precision and recall, where semantic information improves recall at the cost of precision, which we did not have the chance to investigate. Label (l) Semantic Randomized airplane automobile 8 34 bird cat 31 0 deer dog frog horse ship truck Table 4: Distribution of predicted labels for cat vectors for the zero-shot mapping classifier with semantic and randomized word vectors. Cross Entropy Classifier. The cross entropy classifier was unable to pick up the cat signal, even after 100 training examples of cat images. As before, more fine tuning of α may be needed, though for the higher values of α we tested, performance on the test set suffered significantly. Still, on the training set, there was a noticable improvement moving from semantic vectors to randomized vectors. For the cross entropy classifier, there was noticable improvement going from randomized word vectors to semantic word vectors, indicating that semantic word vectors can improve performance. More importantly, there was a marked improvement in performance of the mapping classifier when trained on 10 cat vectors, showing that especially when training data is scarce, semantic information can be very valuable. 6 Conclusions In this project we were able to obtaining good classification results and demonstrate the value of semantic information to image classification. We are planning on continuing our investigation of the following: 1. Since we were focused on achieving zero-shot learning, we did not have time to investigate how performance was affect as we scaled to more images, so it would be interesting to investigate how performance scales with the size of the training set. 2. We would be interested in investigating how our techniques scale when more fine grained labels are available, though our initial attempts were not very successful because the baseline classifier performed poorly. There is an opprotunity to train multiple labels from a single training image based on semantic content here, both because there are fewer training examples per label and because there is greater chance for semantic correlation. 3. We hope to consider whether image information can be used to improve word vectors, since semantic information often misses visual information that could be useful in some semantic tasks. For example, it would allow identification of synonyms based on word vectors, since words that describe similar pictures are more likely to be synonyms, though this may only work for objects. 4. We plan to continue our project of building a zeroshot image classifier, and in particular find the mapping approach promising. 5. We hope to apply our techniques for cases where images are labeled by descriptions rather than single words. Websites like Flickr have a huge number of annotated images, and these annotations do not come in the simple binned labeling style required by traditional image classifiers. We are particularly excited about the possibility of classifying images for classes that have zero training examples, which would demonstrate the power of incorporating semantic features in the image classification task, though we also hope to continue to explore the possibility of using semantic information to augment traditional image classifiers. References [1] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuska, P. Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 12 pp , [2] Coates, A., Lee, H., Ng, A. An Analysis of Single- Layer Networks in Unsupervised Feature Learning. Advances in Neural Information Processing Systems,

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Knowledge Transfer in Deep Convolutional Neural Nets

Knowledge Transfer in Deep Convolutional Neural Nets Knowledge Transfer in Deep Convolutional Neural Nets Steven Gutstein, Olac Fuentes and Eric Freudenthal Computer Science Department University of Texas at El Paso El Paso, Texas, 79968, U.S.A. Abstract

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

More information

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

More information

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

More information

OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski

Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski Problem Statement and Background Given a collection of 8th grade science questions, possible answer

More information

Attributed Social Network Embedding

Attributed Social Network Embedding JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 1 Attributed Social Network Embedding arxiv:1705.04969v1 [cs.si] 14 May 2017 Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua Abstract Embedding

More information

Model Ensemble for Click Prediction in Bing Search Ads

Model Ensemble for Click Prediction in Bing Search Ads Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Microsoft Bing xiaoling@microsoft.com Hucheng Zhou Microsoft Research huzho@microsoft.com Weiwei Deng Microsoft Bing dedeng@microsoft.com

More information

arxiv: v1 [cs.cl] 2 Apr 2017

arxiv: v1 [cs.cl] 2 Apr 2017 Word-Alignment-Based Segment-Level Machine Translation Evaluation using Word Embeddings Junki Matsuo and Mamoru Komachi Graduate School of System Design, Tokyo Metropolitan University, Japan matsuo-junki@ed.tmu.ac.jp,

More information

Comment-based Multi-View Clustering of Web 2.0 Items

Comment-based Multi-View Clustering of Web 2.0 Items Comment-based Multi-View Clustering of Web 2.0 Items Xiangnan He 1 Min-Yen Kan 1 Peichu Xie 2 Xiao Chen 3 1 School of Computing, National University of Singapore 2 Department of Mathematics, National University

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

More information

Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

More information

Twitter Sentiment Classification on Sanders Data using Hybrid Approach

Twitter Sentiment Classification on Sanders Data using Hybrid Approach IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval Yelong Shen Microsoft Research Redmond, WA, USA yeshen@microsoft.com Xiaodong He Jianfeng Gao Li Deng Microsoft Research

More information

Deep search. Enhancing a search bar using machine learning. Ilgün Ilgün & Cedric Reichenbach

Deep search. Enhancing a search bar using machine learning. Ilgün Ilgün & Cedric Reichenbach #BaselOne7 Deep search Enhancing a search bar using machine learning Ilgün Ilgün & Cedric Reichenbach We are not researchers Outline I. Periscope: A search tool II. Goals III. Deep learning IV. Applying

More information

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17.

Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17. Semi-supervised methods of text processing, and an application to medical concept extraction Yacine Jernite Text-as-Data series September 17. 2015 What do we want from text? 1. Extract information 2. Link

More information

The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

More information

POS tagging of Chinese Buddhist texts using Recurrent Neural Networks

POS tagging of Chinese Buddhist texts using Recurrent Neural Networks POS tagging of Chinese Buddhist texts using Recurrent Neural Networks Longlu Qin Department of East Asian Languages and Cultures longlu@stanford.edu Abstract Chinese POS tagging, as one of the most important

More information

Calibration of Confidence Measures in Speech Recognition

Calibration of Confidence Measures in Speech Recognition Submitted to IEEE Trans on Audio, Speech, and Language, July 2010 1 Calibration of Confidence Measures in Speech Recognition Dong Yu, Senior Member, IEEE, Jinyu Li, Member, IEEE, Li Deng, Fellow, IEEE

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

arxiv: v2 [cs.cv] 3 Aug 2017

arxiv: v2 [cs.cv] 3 Aug 2017 Visual Relationship Detection with Internal and External Linguistic Knowledge Distillation Ruichi Yu, Ang Li, Vlad I. Morariu, Larry S. Davis University of Maryland, College Park Abstract Linguistic Knowledge

More information

Softprop: Softmax Neural Network Backpropagation Learning

Softprop: Softmax Neural Network Backpropagation Learning Softprop: Softmax Neural Networ Bacpropagation Learning Michael Rimer Computer Science Department Brigham Young University Provo, UT 84602, USA E-mail: mrimer@axon.cs.byu.edu Tony Martinez Computer Science

More information

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION

AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037 Marek WIŚNIEWSKI *, Wiesława KUNISZYK-JÓŹKOWIAK *, Elżbieta SMOŁKA *, Waldemar SUSZYŃSKI * HMM, recognition, speech, disorders

More information

A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention

A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention Damien Teney 1, Peter Anderson 2*, David Golub 4*, Po-Sen Huang 3, Lei Zhang 3, Xiaodong He 3, Anton van den Hengel 1 1

More information

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

More information

INPE São José dos Campos

INPE São José dos Campos INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

More information

Linking Task: Identifying authors and book titles in verbose queries

Linking Task: Identifying authors and book titles in verbose queries Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

Lecture 2: Quantifiers and Approximation

Lecture 2: Quantifiers and Approximation Lecture 2: Quantifiers and Approximation Case study: Most vs More than half Jakub Szymanik Outline Number Sense Approximate Number Sense Approximating most Superlative Meaning of most What About Counting?

More information

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Tomi Kinnunen and Ismo Kärkkäinen University of Joensuu, Department of Computer Science, P.O. Box 111, 80101 JOENSUU,

More information

Active Learning. Yingyu Liang Computer Sciences 760 Fall

Active Learning. Yingyu Liang Computer Sciences 760 Fall Active Learning Yingyu Liang Computer Sciences 760 Fall 2017 http://pages.cs.wisc.edu/~yliang/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,

More information

TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY

TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY TRANSFER LEARNING IN MIR: SHARING LEARNED LATENT REPRESENTATIONS FOR MUSIC AUDIO CLASSIFICATION AND SIMILARITY Philippe Hamel, Matthew E. P. Davies, Kazuyoshi Yoshii and Masataka Goto National Institute

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Using Web Searches on Important Words to Create Background Sets for LSI Classification

Using Web Searches on Important Words to Create Background Sets for LSI Classification Using Web Searches on Important Words to Create Background Sets for LSI Classification Sarah Zelikovitz and Marina Kogan College of Staten Island of CUNY 2800 Victory Blvd Staten Island, NY 11314 Abstract

More information

Go fishing! Responsibility judgments when cooperation breaks down

Go fishing! Responsibility judgments when cooperation breaks down Go fishing! Responsibility judgments when cooperation breaks down Kelsey Allen (krallen@mit.edu), Julian Jara-Ettinger (jjara@mit.edu), Tobias Gerstenberg (tger@mit.edu), Max Kleiman-Weiner (maxkw@mit.edu)

More information

arxiv: v1 [cs.lg] 15 Jun 2015

arxiv: v1 [cs.lg] 15 Jun 2015 Dual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy arxiv:1506.04477v1 [cs.lg] 15 Jun 2015 Sang-Woo Lee Min-Oh Heo School of Computer Science and

More information

Human Emotion Recognition From Speech

Human Emotion Recognition From Speech RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

More information

The stages of event extraction

The stages of event extraction The stages of event extraction David Ahn Intelligent Systems Lab Amsterdam University of Amsterdam ahn@science.uva.nl Abstract Event detection and recognition is a complex task consisting of multiple sub-tasks

More information

A Vector Space Approach for Aspect-Based Sentiment Analysis

A Vector Space Approach for Aspect-Based Sentiment Analysis A Vector Space Approach for Aspect-Based Sentiment Analysis by Abdulaziz Alghunaim B.S., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer

More information

Using dialogue context to improve parsing performance in dialogue systems

Using dialogue context to improve parsing performance in dialogue systems Using dialogue context to improve parsing performance in dialogue systems Ivan Meza-Ruiz and Oliver Lemon School of Informatics, Edinburgh University 2 Buccleuch Place, Edinburgh I.V.Meza-Ruiz@sms.ed.ac.uk,

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

More information

Copyright by Sung Ju Hwang 2013

Copyright by Sung Ju Hwang 2013 Copyright by Sung Ju Hwang 2013 The Dissertation Committee for Sung Ju Hwang certifies that this is the approved version of the following dissertation: Discriminative Object Categorization with External

More information

arxiv: v2 [cs.cv] 30 Mar 2017

arxiv: v2 [cs.cv] 30 Mar 2017 Domain Adaptation for Visual Applications: A Comprehensive Survey Gabriela Csurka arxiv:1702.05374v2 [cs.cv] 30 Mar 2017 Abstract The aim of this paper 1 is to give an overview of domain adaptation and

More information

Semantic Segmentation with Histological Image Data: Cancer Cell vs. Stroma

Semantic Segmentation with Histological Image Data: Cancer Cell vs. Stroma Semantic Segmentation with Histological Image Data: Cancer Cell vs. Stroma Adam Abdulhamid Stanford University 450 Serra Mall, Stanford, CA 94305 adama94@cs.stanford.edu Abstract With the introduction

More information

A study of speaker adaptation for DNN-based speech synthesis

A study of speaker adaptation for DNN-based speech synthesis A study of speaker adaptation for DNN-based speech synthesis Zhizheng Wu, Pawel Swietojanski, Christophe Veaux, Steve Renals, Simon King The Centre for Speech Technology Research (CSTR) University of Edinburgh,

More information

TRANSFER LEARNING OF WEAKLY LABELLED AUDIO. Aleksandr Diment, Tuomas Virtanen

TRANSFER LEARNING OF WEAKLY LABELLED AUDIO. Aleksandr Diment, Tuomas Virtanen TRANSFER LEARNING OF WEAKLY LABELLED AUDIO Aleksandr Diment, Tuomas Virtanen Tampere University of Technology Laboratory of Signal Processing Korkeakoulunkatu 1, 33720, Tampere, Finland firstname.lastname@tut.fi

More information

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF)

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) Hans Christian 1 ; Mikhael Pramodana Agus 2 ; Derwin Suhartono 3 1,2,3 Computer Science Department,

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

Speech Recognition at ICSI: Broadcast News and beyond

Speech Recognition at ICSI: Broadcast News and beyond Speech Recognition at ICSI: Broadcast News and beyond Dan Ellis International Computer Science Institute, Berkeley CA Outline 1 2 3 The DARPA Broadcast News task Aspects of ICSI

More information

arxiv: v2 [cs.ro] 3 Mar 2017

arxiv: v2 [cs.ro] 3 Mar 2017 Learning Feedback Terms for Reactive Planning and Control Akshara Rai 2,3,, Giovanni Sutanto 1,2,, Stefan Schaal 1,2 and Franziska Meier 1,2 arxiv:1610.03557v2 [cs.ro] 3 Mar 2017 Abstract With the advancement

More information

Chinese Language Parsing with Maximum-Entropy-Inspired Parser

Chinese Language Parsing with Maximum-Entropy-Inspired Parser Chinese Language Parsing with Maximum-Entropy-Inspired Parser Heng Lian Brown University Abstract The Chinese language has many special characteristics that make parsing difficult. The performance of state-of-the-art

More information

Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design

Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design Paper #3 Five Q-to-survey approaches: did they work? Job van Exel

More information

Detecting English-French Cognates Using Orthographic Edit Distance

Detecting English-French Cognates Using Orthographic Edit Distance Detecting English-French Cognates Using Orthographic Edit Distance Qiongkai Xu 1,2, Albert Chen 1, Chang i 1 1 The Australian National University, College of Engineering and Computer Science 2 National

More information

Learning to Rank with Selection Bias in Personal Search

Learning to Rank with Selection Bias in Personal Search Learning to Rank with Selection Bias in Personal Search Xuanhui Wang, Michael Bendersky, Donald Metzler, Marc Najork Google Inc. Mountain View, CA 94043 {xuanhui, bemike, metzler, najork}@google.com ABSTRACT

More information

An empirical study of learning speed in backpropagation

An empirical study of learning speed in backpropagation Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science 1988 An empirical study of learning speed in backpropagation networks Scott E. Fahlman Carnegie

More information

A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

More information

Reinforcement Learning by Comparing Immediate Reward

Reinforcement Learning by Comparing Immediate Reward Reinforcement Learning by Comparing Immediate Reward Punit Pandey DeepshikhaPandey Dr. Shishir Kumar Abstract This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate

More information

CSL465/603 - Machine Learning

CSL465/603 - Machine Learning CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

More information

Improvements to the Pruning Behavior of DNN Acoustic Models

Improvements to the Pruning Behavior of DNN Acoustic Models Improvements to the Pruning Behavior of DNN Acoustic Models Matthias Paulik Apple Inc., Infinite Loop, Cupertino, CA 954 mpaulik@apple.com Abstract This paper examines two strategies that positively influence

More information

Using focal point learning to improve human machine tacit coordination

Using focal point learning to improve human machine tacit coordination DOI 10.1007/s10458-010-9126-5 Using focal point learning to improve human machine tacit coordination InonZuckerman SaritKraus Jeffrey S. Rosenschein The Author(s) 2010 Abstract We consider an automated

More information

Corrective Feedback and Persistent Learning for Information Extraction

Corrective Feedback and Persistent Learning for Information Extraction Corrective Feedback and Persistent Learning for Information Extraction Aron Culotta a, Trausti Kristjansson b, Andrew McCallum a, Paul Viola c a Dept. of Computer Science, University of Massachusetts,

More information

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan Gong, Li Deng Department of Electrical and Computer Engineering,

More information

End-of-Module Assessment Task

End-of-Module Assessment Task Student Name Date 1 Date 2 Date 3 Topic E: Decompositions of 9 and 10 into Number Pairs Topic E Rubric Score: Time Elapsed: Topic F Topic G Topic H Materials: (S) Personal white board, number bond mat,

More information

arxiv: v1 [cs.cv] 10 May 2017

arxiv: v1 [cs.cv] 10 May 2017 Inferring and Executing Programs for Visual Reasoning Justin Johnson 1 Bharath Hariharan 2 Laurens van der Maaten 2 Judy Hoffman 1 Li Fei-Fei 1 C. Lawrence Zitnick 2 Ross Girshick 2 1 Stanford University

More information

Mathematics process categories

Mathematics process categories Mathematics process categories All of the UK curricula define multiple categories of mathematical proficiency that require students to be able to use and apply mathematics, beyond simple recall of facts

More information

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Read Online and Download Ebook ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Click link bellow and free register to download

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Feature Selection Technique Using Principal Component Analysis For Improving Fuzzy C-Mean

More information

arxiv: v1 [cs.cl] 20 Jul 2015

arxiv: v1 [cs.cl] 20 Jul 2015 How to Generate a Good Word Embedding? Siwei Lai, Kang Liu, Liheng Xu, Jun Zhao National Laboratory of Pattern Recognition (NLPR) Institute of Automation, Chinese Academy of Sciences, China {swlai, kliu,

More information

The role of word-word co-occurrence in word learning

The role of word-word co-occurrence in word learning The role of word-word co-occurrence in word learning Abdellah Fourtassi (a.fourtassi@ueuromed.org) The Euro-Mediterranean University of Fes FesShore Park, Fes, Morocco Emmanuel Dupoux (emmanuel.dupoux@gmail.com)

More information

Prediction of Maximal Projection for Semantic Role Labeling

Prediction of Maximal Projection for Semantic Role Labeling Prediction of Maximal Projection for Semantic Role Labeling Weiwei Sun, Zhifang Sui Institute of Computational Linguistics Peking University Beijing, 100871, China {ws, szf}@pku.edu.cn Haifeng Wang Toshiba

More information

Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning

Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning Hendrik Blockeel and Joaquin Vanschoren Computer Science Dept., K.U.Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

More information

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier

Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver.1 (Mar - Apr.2015), PP 55-61 www.iosrjournals.org Analysis of Emotion

More information

THE world surrounding us involves multiple modalities

THE world surrounding us involves multiple modalities 1 Multimodal Machine Learning: A Survey and Taxonomy Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency arxiv:1705.09406v2 [cs.lg] 1 Aug 2017 Abstract Our experience of the world is multimodal

More information

Statewide Framework Document for:

Statewide Framework Document for: Statewide Framework Document for: 270301 Standards may be added to this document prior to submission, but may not be removed from the framework to meet state credit equivalency requirements. Performance

More information

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration INTERSPEECH 2013 Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration Yan Huang, Dong Yu, Yifan Gong, and Chaojun Liu Microsoft Corporation, One

More information

On the Formation of Phoneme Categories in DNN Acoustic Models

On the Formation of Phoneme Categories in DNN Acoustic Models On the Formation of Phoneme Categories in DNN Acoustic Models Tasha Nagamine Department of Electrical Engineering, Columbia University T. Nagamine Motivation Large performance gap between humans and state-

More information

Lecture 1: Basic Concepts of Machine Learning

Lecture 1: Basic Concepts of Machine Learning Lecture 1: Basic Concepts of Machine Learning Cognitive Systems - Machine Learning Ute Schmid (lecture) Johannes Rabold (practice) Based on slides prepared March 2005 by Maximilian Röglinger, updated 2010

More information

Autoencoder and selectional preference Aki-Juhani Kyröläinen, Juhani Luotolahti, Filip Ginter

Autoencoder and selectional preference Aki-Juhani Kyröläinen, Juhani Luotolahti, Filip Ginter ESUKA JEFUL 2017, 8 2: 93 125 Autoencoder and selectional preference Aki-Juhani Kyröläinen, Juhani Luotolahti, Filip Ginter AN AUTOENCODER-BASED NEURAL NETWORK MODEL FOR SELECTIONAL PREFERENCE: EVIDENCE

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models

Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models Autoregressive product of multi-frame predictions can improve the accuracy of hybrid models Navdeep Jaitly 1, Vincent Vanhoucke 2, Geoffrey Hinton 1,2 1 University of Toronto 2 Google Inc. ndjaitly@cs.toronto.edu,

More information

Глубокие рекуррентные нейронные сети для аспектно-ориентированного анализа тональности отзывов пользователей на различных языках

Глубокие рекуррентные нейронные сети для аспектно-ориентированного анализа тональности отзывов пользователей на различных языках Глубокие рекуррентные нейронные сети для аспектно-ориентированного анализа тональности отзывов пользователей на различных языках Тарасов Д. С. (dtarasov3@gmail.com) Интернет-портал reviewdot.ru, Казань,

More information

HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION

HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION Atul Laxman Katole 1, Krishna Prasad Yellapragada 1, Amish Kumar Bedi 1, Sehaj Singh Kalra 1 and Mynepalli Siva Chaitanya 1 1 Samsung

More information

Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur)

Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) 1 Interviews, diary studies Start stats Thursday: Ethics/IRB Tuesday: More stats New homework is available

More information

Truth Inference in Crowdsourcing: Is the Problem Solved?

Truth Inference in Crowdsourcing: Is the Problem Solved? Truth Inference in Crowdsourcing: Is the Problem Solved? Yudian Zheng, Guoliang Li #, Yuanbing Li #, Caihua Shan, Reynold Cheng # Department of Computer Science, Tsinghua University Department of Computer

More information

Taxonomy-Regularized Semantic Deep Convolutional Neural Networks

Taxonomy-Regularized Semantic Deep Convolutional Neural Networks Taxonomy-Regularized Semantic Deep Convolutional Neural Networks Wonjoon Goo 1, Juyong Kim 1, Gunhee Kim 1, Sung Ju Hwang 2 1 Computer Science and Engineering, Seoul National University, Seoul, Korea 2

More information

Chapters 1-5 Cumulative Assessment AP Statistics November 2008 Gillespie, Block 4

Chapters 1-5 Cumulative Assessment AP Statistics November 2008 Gillespie, Block 4 Chapters 1-5 Cumulative Assessment AP Statistics Name: November 2008 Gillespie, Block 4 Part I: Multiple Choice This portion of the test will determine 60% of your overall test grade. Each question is

More information

WHEN THERE IS A mismatch between the acoustic

WHEN THERE IS A mismatch between the acoustic 808 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006 Optimization of Temporal Filters for Constructing Robust Features in Speech Recognition Jeih-Weih Hung, Member,

More information