Monte Carlo is important in practice

Size: px
Start display at page:

Download "Monte Carlo is important in practice"

Transcription

1 Monte Carlo is important in practice Absolutely When there are just a few possibilities to value, out of a large state space, Monte Carlo is a big win Backgammon, Go, R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

2 Chapter 6: emporal Difference Learning Objectives of this chapter: Introduce emporal Difference (D) learning Focus first on policy evaluation, or prediction, methods hen extend to control methods R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

3 D Prediction Policy Evaluation (the prediction problem): for a given policy p, compute the state-value function V p Recall: Simple every - visit Monte Carlo method : V(s t ) V(s t ) R t V(s t ) target: the actual return after time t he simplest D method, D(0): V(s t ) V(s t ) r t 1 V(s t 1 ) V(s t ) target: an estimate of the return R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

4 Simple Monte Carlo V(s t ) V(s t ) R t V(s t ) where R t is the actual return following state s t. s t R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

5 Simplest D Method V(s t ) V(s t ) r t 1 V(s t 1 ) V(s t ) s t s t 1 r t 1 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

6 cf. Dynamic Programming V(s t ) E p r t 1 V(s t ) s t r t 1 s t 1 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

7 D methods bootstrap and sample Bootstrapping: update involves an estimate MC does not bootstrap DP bootstraps D bootstraps Sampling: update does not involve an expected value MC samples DP does not sample D samples R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

8 Example: Driving Home State Elapsed ime Predicted Predicted (minutes) ime to Go otal ime leaving o ffice reach car, raining exit highway behind truck home street arrive home (5) (15) (10) (10) (3) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

9 Driving Home Changes recommended by Monte Carlo methods ( =1) Changes recommended by D methods ( =1) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

10 Advantages of D Learning D methods do not require a model of the environment, only experience D, but not MC, methods can be fully incremental You can learn before knowing the final outcome Less memory Less peak computation You can learn without the final outcome From incomplete sequences Both MC and D converge (under certain assumptions to be detailed later), but which is faster? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

11 Random Walk Example Values learned by D(0) after various numbers of episodes R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

12 D and MC on the Random Walk Data averaged over 100 sequences of episodes R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

13 Optimality of D(0) Batch Updating: train completely on a finite amount of data, e.g., train repeatedly on 10 episodes until convergence. Compute updates according to D(0), but only update estimates after each complete pass through the data. For any finite Markov prediction task, under batch updating, D(0) converges for sufficiently small. Constant- MC also converges under these conditions, but to a difference answer! R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

14 Random Walk under Batch Updating After each new episode, all previous episodes were treated as a batch, and algorithm was trained until convergence. All repeated 100 times. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

15 You are the Predictor Suppose you observe the following 8 episodes: A, 0, B, 0 B, 1 B, 1 B, 1 B, 1 B, 1 B, 1 B, 0 V(A)? V(B)? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

16 You are the Predictor V(A)? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

17 You are the Predictor he prediction that best matches the training data is V(A)=0 his minimizes the mean-square-error on the training set his is what a batch Monte Carlo method gets If we consider the sequentiality of the problem, then we would set V(A)=.75 his is correct for the maximum likelihood estimate of a Markov model generating the data i.e, if we do a best fit Markov model, and assume it is exactly correct, and then compute what it predicts (how?) his is called the certainty-equivalence estimate his is what D(0) gets R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

18 Learning An Action-Value Function Estimate Q p for the current behavior policy p. After every transition from a nonterminal state s t, do this: Q( s t, a t Q( s t, a t r t 1 Q( s t 1,a t 1 Q( s t,a t If s t 1 is terminal, then Q(s t 1, a t 1 ) 0. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

19 Sarsa: On-Policy D Control urn this into a control method by always updating the policy to be greedy with respect to the current estimate: R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

20 Windy Gridworld undiscounted, episodic, reward = 1 until goal R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

21 Results of Sarsa on the Windy Gridworld R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

22 Q-Learning: Off-Policy D Control One - step Q- learning : Q( s t, a t Q( s t, a t r t 1 max Q( s t 1, a Q( s t, a t a R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

23 Cliffwalking e greedy, e = 0.1 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

24 he Book Part I: he Problem Introduction Evaluative Feedback he Reinforcement Learning Problem Part II: Elementary Solution Methods Dynamic Programming Monte Carlo Methods emporal Difference Learning Part III: A Unified View Eligibility races Generalization and Function Approximation Planning and Learning Dimensions of Reinforcement Learning Case Studies R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

25 Unified View R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

26 Actor-Critic Methods Explicit representation of policy as well as value function Minimal computation to select actions Can learn an explicit stochastic policy Can put constraints on policies Appealing as psychological and neural models R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

27 Actor-Critic Details D- error is used to evaluate actions : t r t 1 V(s t 1 ) V(s t ) If actions are determined by preferences, p(s,a), as follows: p t (s,a) Pr a t a s t s ep(s, a) e b p(s,b) then you can update the preferences like this: p(s t, a t ) p(s t,a t ) t, R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

28 Dopamine Neurons and D Error W. Schultz et al. Universite de Fribourg R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

29 Average Reward Per ime Step Average expected reward per time step under policy p : 1 p lim n n n E p r t the same for each state if ergodic t 1 Value of a state relative to p : V p ( s E p r t k p s t s k 1 Value of a state - action pair relative to p : Q p ( s, a E p r t k p s t s,a t a k 1 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 29

30 R-Learning R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

31 Access-Control Queuing ask n servers Customers have four different priorities, which pay reward of 1, 2, 4, or 8, if served At each time step, customer at head of queue is accepted (assigned to a server) or removed from the queue Proportion of randomly distributed high priority customers in queue is h Busy server becomes free with probability p on each time step Statistics of arrivals and departures are unknown Apply R-learning n=10, h=.5, p=.06 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

32 Afterstates Usually, a state-value function evaluates states in which the agent can take an action. But sometimes it is useful to evaluate states after agent has acted, as in tic-tac-toe. Why is this useful? What is this in general? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

33 Summary D prediction Introduced one-step tabular model-free D methods Extend prediction to control by employing some form of GPI On-policy control: Sarsa Off-policy control: Q-learning and R-learning hese methods bootstrap and sample, combining aspects of DP and MC methods R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

34 Questions What can I tell you about RL? What is common to all three classes of methods? DP, MC, D What are the principle strengths and weaknesses of each? In what sense is our RL view complete? In what senses is it incomplete? What are the principal things missing? he broad applicability of these ideas What does the term bootstrapping refer to? What is the relationship between DP and learning? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Proceedings of 28 ISFA 28 International Symposium on Flexible Automation Atlanta, GA, USA June 23-26, 28 ISFA28U_12 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Amit Gil, Helman Stern, Yael Edan, and

More information

Reinforcement Learning by Comparing Immediate Reward

Reinforcement Learning by Comparing Immediate Reward Reinforcement Learning by Comparing Immediate Reward Punit Pandey DeepshikhaPandey Dr. Shishir Kumar Abstract This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate

More information

TD(λ) and Q-Learning Based Ludo Players

TD(λ) and Q-Learning Based Ludo Players TD(λ) and Q-Learning Based Ludo Players Majed Alhajry, Faisal Alvi, Member, IEEE and Moataz Ahmed Abstract Reinforcement learning is a popular machine learning technique whose inherent self-learning ability

More information

Lecture 10: Reinforcement Learning

Lecture 10: Reinforcement Learning Lecture 1: Reinforcement Learning Cognitive Systems II - Machine Learning SS 25 Part III: Learning Programs and Strategies Q Learning, Dynamic Programming Lecture 1: Reinforcement Learning p. Motivation

More information

Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

FF+FPG: Guiding a Policy-Gradient Planner

FF+FPG: Guiding a Policy-Gradient Planner FF+FPG: Guiding a Policy-Gradient Planner Olivier Buffet LAAS-CNRS University of Toulouse Toulouse, France firstname.lastname@laas.fr Douglas Aberdeen National ICT australia & The Australian National University

More information

Georgetown University at TREC 2017 Dynamic Domain Track

Georgetown University at TREC 2017 Dynamic Domain Track Georgetown University at TREC 2017 Dynamic Domain Track Zhiwen Tang Georgetown University zt79@georgetown.edu Grace Hui Yang Georgetown University huiyang@cs.georgetown.edu Abstract TREC Dynamic Domain

More information

High-level Reinforcement Learning in Strategy Games

High-level Reinforcement Learning in Strategy Games High-level Reinforcement Learning in Strategy Games Christopher Amato Department of Computer Science University of Massachusetts Amherst, MA 01003 USA camato@cs.umass.edu Guy Shani Department of Computer

More information

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email Marilyn A. Walker Jeanne C. Fromer Shrikanth Narayanan walker@research.att.com jeannie@ai.mit.edu shri@research.att.com

More information

The Evolution of Random Phenomena

The Evolution of Random Phenomena The Evolution of Random Phenomena A Look at Markov Chains Glen Wang glenw@uchicago.edu Splash! Chicago: Winter Cascade 2012 Lecture 1: What is Randomness? What is randomness? Can you think of some examples

More information

A Reinforcement Learning Variant for Control Scheduling

A Reinforcement Learning Variant for Control Scheduling A Reinforcement Learning Variant for Control Scheduling Aloke Guha Honeywell Sensor and System Development Center 3660 Technology Drive Minneapolis MN 55417 Abstract We present an algorithm based on reinforcement

More information

Introduction to Simulation

Introduction to Simulation Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Speeding Up Reinforcement Learning with Behavior Transfer

Speeding Up Reinforcement Learning with Behavior Transfer Speeding Up Reinforcement Learning with Behavior Transfer Matthew E. Taylor and Peter Stone Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188 {mtaylor, pstone}@cs.utexas.edu

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Varun Raj Kompella, Marijn Stollenga, Matthew Luciw, Juergen Schmidhuber The Swiss AI Lab IDSIA, USI

More information

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology Tiancheng Zhao CMU-LTI-16-006 Language Technologies Institute School of Computer Science Carnegie Mellon

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

Improving Action Selection in MDP s via Knowledge Transfer

Improving Action Selection in MDP s via Knowledge Transfer In Proc. 20th National Conference on Artificial Intelligence (AAAI-05), July 9 13, 2005, Pittsburgh, USA. Improving Action Selection in MDP s via Knowledge Transfer Alexander A. Sherstov and Peter Stone

More information

AI Agent for Ice Hockey Atari 2600

AI Agent for Ice Hockey Atari 2600 AI Agent for Ice Hockey Atari 2600 Emman Kabaghe (emmank@stanford.edu) Rajarshi Roy (rroy@stanford.edu) 1 Introduction In the reinforcement learning (RL) problem an agent autonomously learns a behavior

More information

An OO Framework for building Intelligence and Learning properties in Software Agents

An OO Framework for building Intelligence and Learning properties in Software Agents An OO Framework for building Intelligence and Learning properties in Software Agents José A. R. P. Sardinha, Ruy L. Milidiú, Carlos J. P. Lucena, Patrick Paranhos Abstract Software agents are defined as

More information

Learning Prospective Robot Behavior

Learning Prospective Robot Behavior Learning Prospective Robot Behavior Shichao Ou and Rod Grupen Laboratory for Perceptual Robotics Computer Science Department University of Massachusetts Amherst {chao,grupen}@cs.umass.edu Abstract This

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

A Comparison of Annealing Techniques for Academic Course Scheduling

A Comparison of Annealing Techniques for Academic Course Scheduling A Comparison of Annealing Techniques for Academic Course Scheduling M. A. Saleh Elmohamed 1, Paul Coddington 2, and Geoffrey Fox 1 1 Northeast Parallel Architectures Center Syracuse University, Syracuse,

More information

How long did... Who did... Where was... When did... How did... Which did...

How long did... Who did... Where was... When did... How did... Which did... (Past Tense) Who did... Where was... How long did... When did... How did... 1 2 How were... What did... Which did... What time did... Where did... What were... Where were... Why did... Who was... How many

More information

AMULTIAGENT system [1] can be defined as a group of

AMULTIAGENT system [1] can be defined as a group of 156 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 2, MARCH 2008 A Comprehensive Survey of Multiagent Reinforcement Learning Lucian Buşoniu, Robert Babuška,

More information

CS/SE 3341 Spring 2012

CS/SE 3341 Spring 2012 CS/SE 3341 Spring 2012 Probability and Statistics in Computer Science & Software Engineering (Section 001) Instructor: Dr. Pankaj Choudhary Meetings: TuTh 11 30-12 45 p.m. in ECSS 2.412 Office: FO 2.408-B

More information

The Strong Minimalist Thesis and Bounded Optimality

The Strong Minimalist Thesis and Bounded Optimality The Strong Minimalist Thesis and Bounded Optimality DRAFT-IN-PROGRESS; SEND COMMENTS TO RICKL@UMICH.EDU Richard L. Lewis Department of Psychology University of Michigan 27 March 2010 1 Purpose of this

More information

Regret-based Reward Elicitation for Markov Decision Processes

Regret-based Reward Elicitation for Markov Decision Processes 444 REGAN & BOUTILIER UAI 2009 Regret-based Reward Elicitation for Markov Decision Processes Kevin Regan Department of Computer Science University of Toronto Toronto, ON, CANADA kmregan@cs.toronto.edu

More information

Adaptive Generation in Dialogue Systems Using Dynamic User Modeling

Adaptive Generation in Dialogue Systems Using Dynamic User Modeling Adaptive Generation in Dialogue Systems Using Dynamic User Modeling Srinivasan Janarthanam Heriot-Watt University Oliver Lemon Heriot-Watt University We address the problem of dynamically modeling and

More information

Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design

Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design Paper #3 Five Q-to-survey approaches: did they work? Job van Exel

More information

Intelligent Agents. Chapter 2. Chapter 2 1

Intelligent Agents. Chapter 2. Chapter 2 1 Intelligent Agents Chapter 2 Chapter 2 1 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types The structure of agents Chapter 2 2 Agents

More information

Human-like Natural Language Generation Using Monte Carlo Tree Search

Human-like Natural Language Generation Using Monte Carlo Tree Search Human-like Natural Language Generation Using Monte Carlo Tree Search Kaori Kumagai Ichiro Kobayashi Daichi Mochihashi Ochanomizu University The Institute of Statistical Mathematics {kaori.kumagai,koba}@is.ocha.ac.jp

More information

University of Victoria School of Exercise Science, Physical and Health Education EPHE 245 MOTOR LEARNING. Calendar Description Units: 1.

University of Victoria School of Exercise Science, Physical and Health Education EPHE 245 MOTOR LEARNING. Calendar Description Units: 1. University of Victoria School of Exercise Science, Physical and Health Education EPHE 245 MOTOR LEARNING Calendar Description Units: 1.5 Hours: 3-2 Neural and cognitive processes underlying human skilled

More information

Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling

Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Notebook for PAN at CLEF 2013 Andrés Alfonso Caurcel Díaz 1 and José María Gómez Hidalgo 2 1 Universidad

More information

The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

More information

Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners

Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners Andrea L. Thomaz and Cynthia Breazeal Abstract While Reinforcement Learning (RL) is not traditionally designed

More information

BAYESIAN ANALYSIS OF INTERLEAVED LEARNING AND RESPONSE BIAS IN BEHAVIORAL EXPERIMENTS

BAYESIAN ANALYSIS OF INTERLEAVED LEARNING AND RESPONSE BIAS IN BEHAVIORAL EXPERIMENTS Page 1 of 42 Articles in PresS. J Neurophysiol (December 20, 2006). doi:10.1152/jn.00946.2006 BAYESIAN ANALYSIS OF INTERLEAVED LEARNING AND RESPONSE BIAS IN BEHAVIORAL EXPERIMENTS Anne C. Smith 1*, Sylvia

More information

Rule-based Expert Systems

Rule-based Expert Systems Rule-based Expert Systems What is knowledge? is a theoretical or practical understanding of a subject or a domain. is also the sim of what is currently known, and apparently knowledge is power. Those who

More information

Automatic Discretization of Actions and States in Monte-Carlo Tree Search

Automatic Discretization of Actions and States in Monte-Carlo Tree Search Automatic Discretization of Actions and States in Monte-Carlo Tree Search Guy Van den Broeck 1 and Kurt Driessens 2 1 Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Belgium guy.vandenbroeck@cs.kuleuven.be

More information

A Version Space Approach to Learning Context-free Grammars

A Version Space Approach to Learning Context-free Grammars Machine Learning 2: 39~74, 1987 1987 Kluwer Academic Publishers, Boston - Manufactured in The Netherlands A Version Space Approach to Learning Context-free Grammars KURT VANLEHN (VANLEHN@A.PSY.CMU.EDU)

More information

An Introduction to Simio for Beginners

An Introduction to Simio for Beginners An Introduction to Simio for Beginners C. Dennis Pegden, Ph.D. This white paper is intended to introduce Simio to a user new to simulation. It is intended for the manufacturing engineer, hospital quality

More information

Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017

Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017 Instructor Syed Zahid Ali Room No. 247 Economics Wing First Floor Office Hours Email szahid@lums.edu.pk Telephone Ext. 8074 Secretary/TA TA Office Hours Course URL (if any) Suraj.lums.edu.pk FINN 321 Econometrics

More information

An Introduction to Simulation Optimization

An Introduction to Simulation Optimization An Introduction to Simulation Optimization Nanjing Jian Shane G. Henderson Introductory Tutorials Winter Simulation Conference December 7, 2015 Thanks: NSF CMMI1200315 1 Contents 1. Introduction 2. Common

More information

Performance Modeling and Design of Computer Systems

Performance Modeling and Design of Computer Systems Performance Modeling and Design of Computer Systems Computer systems design is full of conundrums: Given a choice between a single machine with speed s, orn machines each with speed s/n, which should we

More information

Stopping rules for sequential trials in high-dimensional data

Stopping rules for sequential trials in high-dimensional data Stopping rules for sequential trials in high-dimensional data Sonja Zehetmayer, Alexandra Graf, and Martin Posch Center for Medical Statistics, Informatics and Intelligent Systems Medical University of

More information

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley Challenges in Deep Reinforcement Learning Sergey Levine UC Berkeley Discuss some recent work in deep reinforcement learning Present a few major challenges Show some of our recent work toward tackling

More information

The Use of Statistical, Computational and Modelling Tools in Higher Learning Institutions: A Case Study of the University of Dodoma

The Use of Statistical, Computational and Modelling Tools in Higher Learning Institutions: A Case Study of the University of Dodoma International Journal of Computer Applications (975 8887) The Use of Statistical, Computational and Modelling Tools in Higher Learning Institutions: A Case Study of the University of Dodoma Gilbert M.

More information

Lecture 6: Applications

Lecture 6: Applications Lecture 6: Applications Michael L. Littman Rutgers University Department of Computer Science Rutgers Laboratory for Real-Life Reinforcement Learning What is RL? Branch of machine learning concerned with

More information

LEARNING TO PLAY IN A DAY: FASTER DEEP REIN-

LEARNING TO PLAY IN A DAY: FASTER DEEP REIN- LEARNING TO PLAY IN A DAY: FASTER DEEP REIN- FORCEMENT LEARNING BY OPTIMALITY TIGHTENING Frank S. He Department of Computer Science University of Illinois at Urbana-Champaign Zhejiang University frankheshibi@gmail.com

More information

CSL465/603 - Machine Learning

CSL465/603 - Machine Learning CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

More information

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

More information

Informatics 2A: Language Complexity and the. Inf2A: Chomsky Hierarchy

Informatics 2A: Language Complexity and the. Inf2A: Chomsky Hierarchy Informatics 2A: Language Complexity and the Chomsky Hierarchy September 28, 2010 Starter 1 Is there a finite state machine that recognises all those strings s from the alphabet {a, b} where the difference

More information

school students to improve communication skills

school students to improve communication skills Motivating middle and high school students to improve communication skills Megan Mahowald, Ph.D. CCC-SLP Indiana University mcmahowa@indiana.edu Case Study High Motivation Low Motivation Behaviors what

More information

Probability and Game Theory Course Syllabus

Probability and Game Theory Course Syllabus Probability and Game Theory Course Syllabus DATE ACTIVITY CONCEPT Sunday Learn names; introduction to course, introduce the Battle of the Bismarck Sea as a 2-person zero-sum game. Monday Day 1 Pre-test

More information

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

More information

A Process-Model Account of Task Interruption and Resumption: When Does Encoding of the Problem State Occur?

A Process-Model Account of Task Interruption and Resumption: When Does Encoding of the Problem State Occur? A Process-Model Account of Task Interruption and Resumption: When Does Encoding of the Problem State Occur? Dario D. Salvucci Drexel University Philadelphia, PA Christopher A. Monk George Mason University

More information

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases

2/15/13. POS Tagging Problem. Part-of-Speech Tagging. Example English Part-of-Speech Tagsets. More Details of the Problem. Typical Problem Cases POS Tagging Problem Part-of-Speech Tagging L545 Spring 203 Given a sentence W Wn and a tagset of lexical categories, find the most likely tag T..Tn for each word in the sentence Example Secretariat/P is/vbz

More information

An investigation of imitation learning algorithms for structured prediction

An investigation of imitation learning algorithms for structured prediction JMLR: Workshop and Conference Proceedings 24:143 153, 2012 10th European Workshop on Reinforcement Learning An investigation of imitation learning algorithms for structured prediction Andreas Vlachos Computer

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

Self Study Report Computer Science

Self Study Report Computer Science Computer Science undergraduate students have access to undergraduate teaching, and general computing facilities in three buildings. Two large classrooms are housed in the Davis Centre, which hold about

More information

A Reinforcement Learning Approach for Adaptive Single- and Multi-Document Summarization

A Reinforcement Learning Approach for Adaptive Single- and Multi-Document Summarization A Reinforcement Learning Approach for Adaptive Single- and Multi-Document Summarization Stefan Henß TU Darmstadt, Germany stefan.henss@gmail.com Margot Mieskes h da Darmstadt & AIPHES Germany margot.mieskes@h-da.de

More information

Acquiring Competence from Performance Data

Acquiring Competence from Performance Data Acquiring Competence from Performance Data Online learnability of OT and HG with simulated annealing Tamás Biró ACLC, University of Amsterdam (UvA) Computational Linguistics in the Netherlands, February

More information

Robot Learning Simultaneously a Task and How to Interpret Human Instructions

Robot Learning Simultaneously a Task and How to Interpret Human Instructions Robot Learning Simultaneously a Task and How to Interpret Human Instructions Jonathan Grizou, Manuel Lopes, Pierre-Yves Oudeyer To cite this version: Jonathan Grizou, Manuel Lopes, Pierre-Yves Oudeyer.

More information

Learning and Transferring Relational Instance-Based Policies

Learning and Transferring Relational Instance-Based Policies Learning and Transferring Relational Instance-Based Policies Rocío García-Durán, Fernando Fernández y Daniel Borrajo Universidad Carlos III de Madrid Avda de la Universidad 30, 28911-Leganés (Madrid),

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

Algebra 2- Semester 2 Review

Algebra 2- Semester 2 Review Name Block Date Algebra 2- Semester 2 Review Non-Calculator 5.4 1. Consider the function f x 1 x 2. a) Describe the transformation of the graph of y 1 x. b) Identify the asymptotes. c) What is the domain

More information

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Nuanwan Soonthornphisaj 1 and Boonserm Kijsirikul 2 Machine Intelligence and Knowledge Discovery Laboratory Department of Computer

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

DRAFT VERSION 2, 02/24/12

DRAFT VERSION 2, 02/24/12 DRAFT VERSION 2, 02/24/12 Incentive-Based Budget Model Pilot Project for Academic Master s Program Tuition (Optional) CURRENT The core of support for the university s instructional mission has historically

More information

On the Combined Behavior of Autonomous Resource Management Agents

On the Combined Behavior of Autonomous Resource Management Agents On the Combined Behavior of Autonomous Resource Management Agents Siri Fagernes 1 and Alva L. Couch 2 1 Faculty of Engineering Oslo University College Oslo, Norway siri.fagernes@iu.hio.no 2 Computer Science

More information

EDEXCEL FUNCTIONAL SKILLS PILOT. Maths Level 2. Chapter 7. Working with probability

EDEXCEL FUNCTIONAL SKILLS PILOT. Maths Level 2. Chapter 7. Working with probability Working with probability 7 EDEXCEL FUNCTIONAL SKILLS PILOT Maths Level 2 Chapter 7 Working with probability SECTION K 1 Measuring probability 109 2 Experimental probability 111 3 Using tables to find the

More information

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration

Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration INTERSPEECH 2013 Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration Yan Huang, Dong Yu, Yifan Gong, and Chaojun Liu Microsoft Corporation, One

More information

Lecture 2: Quantifiers and Approximation

Lecture 2: Quantifiers and Approximation Lecture 2: Quantifiers and Approximation Case study: Most vs More than half Jakub Szymanik Outline Number Sense Approximate Number Sense Approximating most Superlative Meaning of most What About Counting?

More information

Simple Random Sample (SRS) & Voluntary Response Sample: Examples: A Voluntary Response Sample: Examples: Systematic Sample Best Used When

Simple Random Sample (SRS) & Voluntary Response Sample: Examples: A Voluntary Response Sample: Examples: Systematic Sample Best Used When Simple Random Sample (SRS) & Voluntary Response Sample: In statistics, a simple random sample is a group of people who have been chosen at random from the general population. A simple random sample is

More information

Seminar - Organic Computing

Seminar - Organic Computing Seminar - Organic Computing Self-Organisation of OC-Systems Markus Franke 25.01.2006 Typeset by FoilTEX Timetable 1. Overview 2. Characteristics of SO-Systems 3. Concern with Nature 4. Design-Concepts

More information

Surprise-Based Learning for Autonomous Systems

Surprise-Based Learning for Autonomous Systems Surprise-Based Learning for Autonomous Systems Nadeesha Ranasinghe and Wei-Min Shen ABSTRACT Dealing with unexpected situations is a key challenge faced by autonomous robots. This paper describes a promising

More information

1. Answer the questions below on the Lesson Planning Response Document.

1. Answer the questions below on the Lesson Planning Response Document. Module for Lateral Entry Teachers Lesson Planning Introductory Information about Understanding by Design (UbD) (Sources: Wiggins, G. & McTighte, J. (2005). Understanding by design. Alexandria, VA: ASCD.;

More information

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering Lecture Details Instructor Course Objectives Tuesday and Thursday, 4:00 pm to 5:15 pm Information Technology and Engineering

More information

Modeling user preferences and norms in context-aware systems

Modeling user preferences and norms in context-aware systems Modeling user preferences and norms in context-aware systems Jonas Nilsson, Cecilia Lindmark Jonas Nilsson, Cecilia Lindmark VT 2016 Bachelor's thesis for Computer Science, 15 hp Supervisor: Juan Carlos

More information

Executive Guide to Simulation for Health

Executive Guide to Simulation for Health Executive Guide to Simulation for Health Simulation is used by Healthcare and Human Service organizations across the World to improve their systems of care and reduce costs. Simulation offers evidence

More information

Spinners at the School Carnival (Unequal Sections)

Spinners at the School Carnival (Unequal Sections) Spinners at the School Carnival (Unequal Sections) Maryann E. Huey Drake University maryann.huey@drake.edu Published: February 2012 Overview of the Lesson Students are asked to predict the outcomes of

More information

Ericsson Wallet Platform (EWP) 3.0 Training Programs. Catalog of Course Descriptions

Ericsson Wallet Platform (EWP) 3.0 Training Programs. Catalog of Course Descriptions Ericsson Wallet Platform (EWP) 3.0 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION... 3 ERICSSON CONVERGED WALLET (ECW) 3.0 RATING MANAGEMENT... 4 ERICSSON

More information

Person Centered Positive Behavior Support Plan (PC PBS) Report Scoring Criteria & Checklist (Rev ) P. 1 of 8

Person Centered Positive Behavior Support Plan (PC PBS) Report Scoring Criteria & Checklist (Rev ) P. 1 of 8 Scoring Criteria & Checklist (Rev. 3 5 07) P. 1 of 8 Name: Case Name: Case #: Rater: Date: Critical Features Note: The plan needs to meet all of the critical features listed below, and needs to obtain

More information

INFORMS Transactions on Education

INFORMS Transactions on Education This article was downloaded by: [46.3.195.208] On: 22 November 2017, At: 21:14 Publisher: Institute for Operations Research and the Management Sciences (INFORMS) INFORMS is located in Maryland, USA INFORMS

More information

Evaluating Statements About Probability

Evaluating Statements About Probability CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Evaluating Statements About Probability Mathematics Assessment Resource Service University of Nottingham

More information

Managerial Decision Making

Managerial Decision Making Course Business Managerial Decision Making Session 4 Conditional Probability & Bayesian Updating Surveys in the future... attempt to participate is the important thing Work-load goals Average 6-7 hours,

More information

Strategic Planning for Retaining Women in Undergraduate Computing

Strategic Planning for Retaining Women in Undergraduate Computing for Retaining Women Workbook An NCWIT Extension Services for Undergraduate Programs Resource Go to /work.extension.html or contact us at es@ncwit.org for more information. 303.735.6671 info@ncwit.org Strategic

More information

Department of Communication Criteria for Promotion and Tenure College of Business and Technology Eastern Kentucky University

Department of Communication Criteria for Promotion and Tenure College of Business and Technology Eastern Kentucky University Department of Communication Criteria for Promotion and Tenure College of Business and Technology Eastern Kentucky University Policies governing key personnel actions are contained in the Eastern Kentucky

More information

Redirected Inbound Call Sampling An Example of Fit for Purpose Non-probability Sample Design

Redirected Inbound Call Sampling An Example of Fit for Purpose Non-probability Sample Design Redirected Inbound Call Sampling An Example of Fit for Purpose Non-probability Sample Design Burton Levine Karol Krotki NISS/WSS Workshop on Inference from Nonprobability Samples September 25, 2017 RTI

More information

Planning with External Events

Planning with External Events 94 Planning with External Events Jim Blythe School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 blythe@cs.cmu.edu Abstract I describe a planning methodology for domains with uncertainty

More information

Agents and environments. Intelligent Agents. Reminders. Vacuum-cleaner world. Outline. A vacuum-cleaner agent. Chapter 2 Actuators

Agents and environments. Intelligent Agents. Reminders. Vacuum-cleaner world. Outline. A vacuum-cleaner agent. Chapter 2 Actuators s and environments Percepts Intelligent s? Chapter 2 Actions s include humans, robots, softbots, thermostats, etc. The agent function maps from percept histories to actions: f : P A The agent program runs

More information

IS FINANCIAL LITERACY IMPROVED BY PARTICIPATING IN A STOCK MARKET GAME?

IS FINANCIAL LITERACY IMPROVED BY PARTICIPATING IN A STOCK MARKET GAME? 21 JOURNAL FOR ECONOMIC EDUCATORS, 10(1), SUMMER 2010 IS FINANCIAL LITERACY IMPROVED BY PARTICIPATING IN A STOCK MARKET GAME? Cynthia Harter and John F.R. Harter 1 Abstract This study investigates the

More information

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview Algebra 1, Quarter 3, Unit 3.1 Line of Best Fit Overview Number of instructional days 6 (1 day assessment) (1 day = 45 minutes) Content to be learned Analyze scatter plots and construct the line of best

More information