College of information technology Department of software

Size: px
Start display at page:

Download "College of information technology Department of software"

Transcription

1 University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/ *************************************************************************** Artificial Neural Networks 1.The Nervous System The human nervous system can be broken down into three stages that may be represented in block diagram form as: The receptors collect information from the environment e.g. photons on the retina. The effectors generate interactions with the environment e.g. activate muscles. The flow of information/activation is represented by arrows feed forward and feedback. Naturally, in this module we will be primarily concerned with the neural network in the middle. 2.Basic Components of Biological Neurons 1. The majority of neurons encode their activations or outputs as a series of brief electrical pulses (i.e. spikes or action potentials). 2. The neuron s cell body (soma) processes the incoming activations and converts them into output activations. 3. Dendrites are fibres which emanate from the cell body and provide the receptive zones that receive activation from other neurons. 4. Axons are fibres acting as transmission lines that send activation to other neurons. 5. The junctions that allow signal transmission between the axons and dendrites are called synapses. The process of transmission is by diffusion of chemicals called neurotransmitters across the synaptic cleft 1

2 Dendrites receive activation from other neurons. Soma processes the incoming activations and converts them into output activations. Axons act as transmission lines to send activation to other neurons. Synapses the junctions allow signal transmission between the axons and dendrites. The process of transmission is by diffusion of chemicals called neurotransmitters. 3. What are Neural Networks? 1. Neural Networks (NNs) are networks of neurons, for example, as found in real (i.e. biological) brains. 2. Artificial Neurons are crude approximations of the neurons found in brains. They may be physical devices, or purely mathematical constructs. 3. Artificial Neural Networks (ANNs) are networks of Artificial Neurons, and hence constitute crude approximations to parts of real brains. They may be physical devices, or simulated on conventional computers. 4. From a practical point of view, an ANN is just a parallel computational system consisting of many simple processing elements connected together in a specific way in order to perform a particular task. 5. One should never lose sight of how crude the approximations are, and how over-simplified our ANNs are compared to real brains. 2

3 4. What are Artificial Neural Networks used for? As with the field of AI in general, there are two basic goals for neural network research: Brain modeling : The scientific goal of building models of how real brains work. This can potentially help us understand the nature of human intelligence, formulate better teaching strategies, or better remedial actions for brain damaged patients. Artificial System Building : The engineering goal of building efficient systems for real world applications. This may make machines more powerful, relieve humans of tedious tasks, and may even improve upon human performance. These should not be thought of as competing goals. We often use exactly the same networks and techniques for both. Frequently progress is made when the two approaches are allowed to feed into each other. There are fundamental differences though, e.g. the need for biological plausibility in brain modeling, and the need for computational efficiency in artificial system building. 5.Why are Artificial Neural Networks worth studying? 1. They are extremely powerful computational devices. 2. Massive parallelism makes them very efficient. 3. They can learn and generalize from training data so there is no need for enormous feats of programming. 4. They are particularly fault tolerant this is equivalent to the graceful degradation found in biological systems. 5. They are very noise tolerant so they can cope with situations where normal symbolic systems would have difficulty. 6.Architecture of ANNs 1-The Single Layer Feed-forward Network consists of a single layer of weights, where the inputs are directly connected to the outputs, via a series of weights. The synaptic links carrying weights connect every input to every output, but not other way. This way it is considered a network of feed-forward type. 3

4 2-Multi Layer Feed-forward Network The name suggests, it consists of multiple layers. The architecture of this class of network, besides having the input and the output layers, also have one or more intermediary layers called hidden layers. The computational units of the hidden layer are known as hidden neurons. - The hidden layer does intermediate computation before directing the input to output layer. - The input layer neurons are linked to the hidden layer neurons; the weights on these links are referred to as input-hidden layer weights. - The hidden layer neurons and the corresponding weights are referred to as output-hidden layer weights. - A multi-layer feed-forward network with l input neurons, m1 neurons In the first hidden layers, m2 neurons in the second hidden layers, and n 4

5 output neurons in the output layers is written as (l - m1 - m2 n ). The Fig. above illustrates a multilayer feed-forward network with a configuration (l - m n). 3-The Recurrent Networks differ from feed-forward architecture. A Recurrent network has at least one feed back loop. There could be neurons with self-feedback links; that is the output of a neuron is fed back into it self as input. 7.Learning in Neural Networks There are many forms of neural networks. Most operate by passing neural activations through a network of connected neurons. One of the most powerful features of neural networks is their ability to learn and generalize from a set of training data. They adapt the strengths/weights of the connections between neurons so that the final output activations are correct. There are three broad types of learning: 1. Supervised Learning (i.e. learning with a teacher) 2. Reinforcement learning (i.e. learning with limited feedback) 3. Unsupervised learning (i.e. learning with no help) This module will study in some detail the most common learning algorithms for the most common types of neural network. 1-Supervised Learning - A teacher is present during learning process and presents expected 5

6 output. - Every input pattern is used to train the network. - Learning process is based on comparison, between network's computed output and the correct expected output, generating "error". - The "error" generated is used to change network parameters that result improved performance. 2- Unsupervised Learning - No teacher is present. - The expected or desired output is not presented to the network. - The system learns of it own by discovering and adapting to the structural features in the input patterns. 3- Reinforced learning - A teacher is present but does not present the expected or desired output but only indicated if the computed output is correct or incorrect. - The information provided helps the network in its learning process. - A reward is given for correct answer computed and a penalty for a wrong answer. Note : The Supervised and Unsupervised learning methods are most popular forms of learning compared to Reinforced learning. 8-The McCulloch-Pitts Neuron This vastly simplified model of real neurons is also known as a Threshold Logic Unit : 1. A set of synapses (i.e. connections) brings in activations from other neurons. 2. A processing unit sums the inputs, and then applies activation function. 3. An output line transmits the result to other neurons. Using the above notation, we can now write down a simple equation for the output out of a McCulloch-Pitts neuron as a function of its n inputs ini : 6

7 where is the neuron s activation threshold. We can easily see that: Note that the McCulloch-Pitts neuron is an extremely simplified model of real biological neurons. Some of its missing features such: non-binary inputs and Outputs. Nevertheless, McCulloch-Pitts neurons are computationally very powerful. One can show that assemblies of such neurons are capable of universal computation. 9.General Procedure for Building Neural Networks Formulating neural network solutions for particular problems is a multistage process: 1. Understand and specify your problem in terms of inputs and required outputs, e.g. for classification the outputs are the classes usually represented as binary vectors. 2. Take the simplest form of network you think might be able to solve your problem, e.g. a simple Perceptron. 3. Try to find appropriate connection weights (including neuron thresholds) so that the network produces the right outputs for each input in its training data. 4. Make sure that the network works on its training data, and test its generalization by checking its performance on new testing data. 5. If the network doesn t perform well enough, go back to stage 3 and try harder. 6. If the network still doesn t perform well enough, go back to stage 2 and try harder. 7. If the network still doesn t perform well enough, go back to stage 1 and try harder. 8. Problem solved move on to next problem. 10.Artificial Neuron - Basic Elements Neuron consists of three basic components - weights, thresholds, and a single activation function 7

8 In practice, neurons generally do not fire (produce an output) unless their total input goes above a threshold value. Activation Functions An activation function f performs a mathematical operation on the signal output. The activation functions are chosen depending upon the type of problem to be solved by the network. The most common activation functions are: Activation functions are called bipolar continuous and bipolar binary functions, respectively. The word "bipolar" is used to point out that both positive and negative responses of neurons are produced for this definition of the activation function. 8

9 Activation functions are called unipolar continuous and unipolar binary functions, respectively. 11.NEURAL NETWORK LEARNING RULES Our focus in this section will be artificial neural network learning rules. A neuron is considered to be an adaptive element. Its weights are modifiable depending on the input signal it receives, its output value, and the associated teacher response. In some cases the teacher signal is not available and no error information can be used, thus the neuron will modify its weights based only on the input and/or output. This is the case for unsupervised learning. Let us study the learning of the weight vector wi, or its components wy connecting the j7th input with the i'th neuron.. In general, the j'th input can be an output of another neuron or it can be an external input. Our discussion in this section will cover single-neuron and single-layer network supervised learning and simple cases of unsupervised learning. Under different learning rules, the form of the neuron's activation function may be different. Note that the threshold parameter may be included in learning as one of the weights. This would require fixing one of the inputs, say x,. We will assume here that x,, if fixed, takes the value of

10 11.1.Hebbian Learning Rule For the Hebbian learning rule the learning signal is equal simply to the neuron's output (Hebb 1949). This learning rule requires the weight initialization at small random values around wi = 0 prior to learning. The Hebbian learning rule represents a purely feedforward, unsupervised learning. 10

11 11

12 12

13 11.2.Perceptron Learning Rule For the perceptron learning rule, the learning signal is the difference between the desired and actual neuron's response (Rosenblatt 1958). Thus, learning is supervised and the learning signal is equal to: This example illustrates the perceptron learning rule of the network shown in Figure. The set of input training vectors is as follows: 13

14 11.3.Delta Learning Rule The delta learning rule is only valid for continuous activation functions as defined before, and in the supervised training mode. The learning signal for this rule is called delta and is defined as follows 14

15 This example discusses the delta learning rule as applied to the network shown in Figure. Training input vectors, desired responses, and initial weights are identical to those in Example. The delta learning requires that the value f'(net) be computed in each step. 15

16 11.4.Widrow-Hoff Learning Rule The Widrow-Hoff learning rule (Widrow 1962) is applicable for the supervised training of neural networks. It is independent of the activation function of neurons used since it minimizes the squared error between the desired output value d, and the neuron's activation value net, = wtx. The learning signal for this rule is defined as follows: The weight vector increment under this learning rule is Correlation Learning Rule By substituting r = di into the general learning rule we obtain the correlation learning rule. The adjustments for the weight vector and the single weights, respectively are 11.6.Winner-take-all Learning Rule This learning rule differs substantially from any of the rules discussed so far in this section It can only be demonstrated and explained for an ensemble of neurons, preferably arranged in a layer of p units. This rule is an example of Competitive learning, and it is used for unsupervised network training. Typically, winner-take-all learning is used for learning 16

17 statistical properties of inputs (Hechtle Nielsen 1987).learning is based on the premise that one of the neurons in the layer, say the m'th, has the maximum response due to input x, as shown in Figure. this neuron is declared the winner. As a result of this winning event, the weight vector w containing weights highlighted in the figure is the only one adjusted in the given unsupervised learning step. Its increment is computed as follows: The winner selection is based on the following criterion of maximum activation among all p neurons participating in a competition: 11.7.Outstar Learning Rule Outstar learning rule is another learning rule that is best explained when neurons are arranged in a layer. This rule is designed to produce a desired 17

18 response d of the layer of p neurons shown in Figure (Grossberg 1974, 1982). The rule is used to provide learning of repetitive and characteristic properties of input /output relationships. This rule is concerned with supervised learning; however, it is supposed to allow the network to extract statistical properties of the input and output signals. The weight adjustments in this rule are computed as follows: Excersise/ presents the analysis of a two layer feedforward network using neurons having the bipolar binary activation function given in. Our purpose is to find output o5 for a given network and input pattern. 18

19 11.9 Application of Neural Network Applications can be grouped in following categories: Clustering: A clustering algorithm explores the similarity between patterns And places similar patterns in a cluster. Best known applications Include data compression and data mining. Classification/Pattern recognition: The task of pattern recognition is to assign an input pattern (like handwritten symbol) to one of many classes. This category includes algorithmic implementations such as associative memory. Function approximation : The tasks of function approximation is to find an estimate of the unknown function subject to noise. Various engineering and scientific disciplines require function approximation. Prediction Systems: The task is to forecast some future values of a time-sequenced data. Prediction has a significant impact on decision support systems. Prediction differs from function approximation by considering time factor. System may be dynamic and may produce different results for the same input data based on system state (time). 19

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Andres Chavez Math 382/L T/Th 2:00-3:40 April 13, 2010 Chavez2 Abstract The main interest of this paper is Artificial Neural Networks (ANNs). A brief history of the development

More information

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

More information

A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

Proposal of Pattern Recognition as a necessary and sufficient principle to Cognitive Science

Proposal of Pattern Recognition as a necessary and sufficient principle to Cognitive Science Proposal of Pattern Recognition as a necessary and sufficient principle to Cognitive Science Gilberto de Paiva Sao Paulo Brazil (May 2011) gilbertodpaiva@gmail.com Abstract. Despite the prevalence of the

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

INPE São José dos Campos

INPE São José dos Campos INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

More information

Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

More information

*** * * * COUNCIL * * CONSEIL OFEUROPE * * * DE L'EUROPE. Proceedings of the 9th Symposium on Legal Data Processing in Europe

*** * * * COUNCIL * * CONSEIL OFEUROPE * * * DE L'EUROPE. Proceedings of the 9th Symposium on Legal Data Processing in Europe *** * * * COUNCIL * * CONSEIL OFEUROPE * * * DE L'EUROPE Proceedings of the 9th Symposium on Legal Data Processing in Europe Bonn, 10-12 October 1989 Systems based on artificial intelligence in the legal

More information

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

More information

Evolutive Neural Net Fuzzy Filtering: Basic Description

Evolutive Neural Net Fuzzy Filtering: Basic Description Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

More information

Forget catastrophic forgetting: AI that learns after deployment

Forget catastrophic forgetting: AI that learns after deployment Forget catastrophic forgetting: AI that learns after deployment Anatoly Gorshechnikov CTO, Neurala 1 Neurala at a glance Programming neural networks on GPUs since circa 2 B.C. Founded in 2006 expecting

More information

Breaking the Habit of Being Yourself Workshop for Quantum University

Breaking the Habit of Being Yourself Workshop for Quantum University Breaking the Habit of Being Yourself Workshop for Quantum University 2 Copyright Dr Joe Dispenza. June 2013. All rights reserved. 3 Copyright Dr Joe Dispenza. June 2013. All rights reserved. 4 Copyright

More information

Human Emotion Recognition From Speech

Human Emotion Recognition From Speech RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

More information

Lecture 1: Basic Concepts of Machine Learning

Lecture 1: Basic Concepts of Machine Learning Lecture 1: Basic Concepts of Machine Learning Cognitive Systems - Machine Learning Ute Schmid (lecture) Johannes Rabold (practice) Based on slides prepared March 2005 by Maximilian Röglinger, updated 2010

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

Soft Computing based Learning for Cognitive Radio

Soft Computing based Learning for Cognitive Radio Int. J. on Recent Trends in Engineering and Technology, Vol. 10, No. 1, Jan 2014 Soft Computing based Learning for Cognitive Radio Ms.Mithra Venkatesan 1, Dr.A.V.Kulkarni 2 1 Research Scholar, JSPM s RSCOE,Pune,India

More information

Evolution of Symbolisation in Chimpanzees and Neural Nets

Evolution of Symbolisation in Chimpanzees and Neural Nets Evolution of Symbolisation in Chimpanzees and Neural Nets Angelo Cangelosi Centre for Neural and Adaptive Systems University of Plymouth (UK) a.cangelosi@plymouth.ac.uk Introduction Animal communication

More information

Neuroscience I. BIOS/PHIL/PSCH 484 MWF 1:00-1:50 Lecture Center F6. Fall credit hours

Neuroscience I. BIOS/PHIL/PSCH 484 MWF 1:00-1:50 Lecture Center F6. Fall credit hours INSTRUCTOR INFORMATION Dr. John Leonard (course coordinator) Neuroscience I BIOS/PHIL/PSCH 484 MWF 1:00-1:50 Lecture Center F6 Fall 2016 3 credit hours leonard@uic.edu Biological Sciences 3055 SEL 312-996-4261

More information

Software Maintenance

Software Maintenance 1 What is Software Maintenance? Software Maintenance is a very broad activity that includes error corrections, enhancements of capabilities, deletion of obsolete capabilities, and optimization. 2 Categories

More information

A student diagnosing and evaluation system for laboratory-based academic exercises

A student diagnosing and evaluation system for laboratory-based academic exercises A student diagnosing and evaluation system for laboratory-based academic exercises Maria Samarakou, Emmanouil Fylladitakis and Pantelis Prentakis Technological Educational Institute (T.E.I.) of Athens

More information

Knowledge Transfer in Deep Convolutional Neural Nets

Knowledge Transfer in Deep Convolutional Neural Nets Knowledge Transfer in Deep Convolutional Neural Nets Steven Gutstein, Olac Fuentes and Eric Freudenthal Computer Science Department University of Texas at El Paso El Paso, Texas, 79968, U.S.A. Abstract

More information

On-Line Data Analytics

On-Line Data Analytics International Journal of Computer Applications in Engineering Sciences [VOL I, ISSUE III, SEPTEMBER 2011] [ISSN: 2231-4946] On-Line Data Analytics Yugandhar Vemulapalli #, Devarapalli Raghu *, Raja Jacob

More information

FUZZY EXPERT. Dr. Kasim M. Al-Aubidy. Philadelphia University. Computer Eng. Dept February 2002 University of Damascus-Syria

FUZZY EXPERT. Dr. Kasim M. Al-Aubidy. Philadelphia University. Computer Eng. Dept February 2002 University of Damascus-Syria FUZZY EXPERT SYSTEMS 16-18 18 February 2002 University of Damascus-Syria Dr. Kasim M. Al-Aubidy Computer Eng. Dept. Philadelphia University What is Expert Systems? ES are computer programs that emulate

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

More information

An OO Framework for building Intelligence and Learning properties in Software Agents

An OO Framework for building Intelligence and Learning properties in Software Agents An OO Framework for building Intelligence and Learning properties in Software Agents José A. R. P. Sardinha, Ruy L. Milidiú, Carlos J. P. Lucena, Patrick Paranhos Abstract Software agents are defined as

More information

Accelerated Learning Online. Course Outline

Accelerated Learning Online. Course Outline Accelerated Learning Online Course Outline Course Description The purpose of this course is to make the advances in the field of brain research more accessible to educators. The techniques and strategies

More information

TD(λ) and Q-Learning Based Ludo Players

TD(λ) and Q-Learning Based Ludo Players TD(λ) and Q-Learning Based Ludo Players Majed Alhajry, Faisal Alvi, Member, IEEE and Moataz Ahmed Abstract Reinforcement learning is a popular machine learning technique whose inherent self-learning ability

More information

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study Purdue Data Summit 2017 Communication of Big Data Analytics New SAT Predictive Validity Case Study Paul M. Johnson, Ed.D. Associate Vice President for Enrollment Management, Research & Enrollment Information

More information

Accelerated Learning Course Outline

Accelerated Learning Course Outline Accelerated Learning Course Outline Course Description The purpose of this course is to make the advances in the field of brain research more accessible to educators. The techniques and strategies of Accelerated

More information

Issues in the Mining of Heart Failure Datasets

Issues in the Mining of Heart Failure Datasets International Journal of Automation and Computing 11(2), April 2014, 162-179 DOI: 10.1007/s11633-014-0778-5 Issues in the Mining of Heart Failure Datasets Nongnuch Poolsawad 1 Lisa Moore 1 Chandrasekhar

More information

How People Learn Physics

How People Learn Physics How People Learn Physics Edward F. (Joe) Redish Dept. Of Physics University Of Maryland AAPM, Houston TX, Work supported in part by NSF grants DUE #04-4-0113 and #05-2-4987 Teaching complex subjects 2

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus Language Acquisition Fall 2010/Winter 2011 Lexical Categories Afra Alishahi, Heiner Drenhaus Computational Linguistics and Phonetics Saarland University Children s Sensitivity to Lexical Categories Look,

More information

Time series prediction

Time series prediction Chapter 13 Time series prediction Amaury Lendasse, Timo Honkela, Federico Pouzols, Antti Sorjamaa, Yoan Miche, Qi Yu, Eric Severin, Mark van Heeswijk, Erkki Oja, Francesco Corona, Elia Liitiäinen, Zhanxing

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Seminar - Organic Computing

Seminar - Organic Computing Seminar - Organic Computing Self-Organisation of OC-Systems Markus Franke 25.01.2006 Typeset by FoilTEX Timetable 1. Overview 2. Characteristics of SO-Systems 3. Concern with Nature 4. Design-Concepts

More information

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

More information

A Reinforcement Learning Variant for Control Scheduling

A Reinforcement Learning Variant for Control Scheduling A Reinforcement Learning Variant for Control Scheduling Aloke Guha Honeywell Sensor and System Development Center 3660 Technology Drive Minneapolis MN 55417 Abstract We present an algorithm based on reinforcement

More information

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

More information

The Strong Minimalist Thesis and Bounded Optimality

The Strong Minimalist Thesis and Bounded Optimality The Strong Minimalist Thesis and Bounded Optimality DRAFT-IN-PROGRESS; SEND COMMENTS TO RICKL@UMICH.EDU Richard L. Lewis Department of Psychology University of Michigan 27 March 2010 1 Purpose of this

More information

Speech Recognition at ICSI: Broadcast News and beyond

Speech Recognition at ICSI: Broadcast News and beyond Speech Recognition at ICSI: Broadcast News and beyond Dan Ellis International Computer Science Institute, Berkeley CA Outline 1 2 3 The DARPA Broadcast News task Aspects of ICSI

More information

Test Effort Estimation Using Neural Network

Test Effort Estimation Using Neural Network J. Software Engineering & Applications, 2010, 3: 331-340 doi:10.4236/jsea.2010.34038 Published Online April 2010 (http://www.scirp.org/journal/jsea) 331 Chintala Abhishek*, Veginati Pavan Kumar, Harish

More information

Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees Cognitive Skills in Algebra on the SAT

Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees Cognitive Skills in Algebra on the SAT The Journal of Technology, Learning, and Assessment Volume 6, Number 6 February 2008 Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees Cognitive Skills in Algebra on the

More information

Spinal Cord. Student Pages. Classroom Ac tivities

Spinal Cord. Student Pages. Classroom Ac tivities Classroom Ac tivities Spinal Cord Student Pages Produced by Regenerative Medicine Partnership in Education Duquesne University Director john A. Pollock (pollock@duq.edu) The spinal column protects the

More information

Physics 270: Experimental Physics

Physics 270: Experimental Physics 2017 edition Lab Manual Physics 270 3 Physics 270: Experimental Physics Lecture: Lab: Instructor: Office: Email: Tuesdays, 2 3:50 PM Thursdays, 2 4:50 PM Dr. Uttam Manna 313C Moulton Hall umanna@ilstu.edu

More information

The Method of Immersion the Problem of Comparing Technical Objects in an Expert Shell in the Class of Artificial Intelligence Algorithms

The Method of Immersion the Problem of Comparing Technical Objects in an Expert Shell in the Class of Artificial Intelligence Algorithms IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Method of Immersion the Problem of Comparing Technical Objects in an Expert Shell in the Class of Artificial Intelligence

More information

Speaker Identification by Comparison of Smart Methods. Abstract

Speaker Identification by Comparison of Smart Methods. Abstract Journal of mathematics and computer science 10 (2014), 61-71 Speaker Identification by Comparison of Smart Methods Ali Mahdavi Meimand Amin Asadi Majid Mohamadi Department of Electrical Department of Computer

More information

Operational Knowledge Management: a way to manage competence

Operational Knowledge Management: a way to manage competence Operational Knowledge Management: a way to manage competence Giulio Valente Dipartimento di Informatica Universita di Torino Torino (ITALY) e-mail: valenteg@di.unito.it Alessandro Rigallo Telecom Italia

More information

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

More information

I-COMPETERE: Using Applied Intelligence in search of competency gaps in software project managers.

I-COMPETERE: Using Applied Intelligence in search of competency gaps in software project managers. Information Systems Frontiers manuscript No. (will be inserted by the editor) I-COMPETERE: Using Applied Intelligence in search of competency gaps in software project managers. Ricardo Colomo-Palacios

More information

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Devendra Singh Chaplot, Eunhee Rhim, and Jihie Kim Samsung Electronics Co., Ltd. Seoul, South Korea {dev.chaplot,eunhee.rhim,jihie.kim}@samsung.com

More information

Reinforcement Learning by Comparing Immediate Reward

Reinforcement Learning by Comparing Immediate Reward Reinforcement Learning by Comparing Immediate Reward Punit Pandey DeepshikhaPandey Dr. Shishir Kumar Abstract This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate

More information

Knowledge-Based - Systems

Knowledge-Based - Systems Knowledge-Based - Systems ; Rajendra Arvind Akerkar Chairman, Technomathematics Research Foundation and Senior Researcher, Western Norway Research institute Priti Srinivas Sajja Sardar Patel University

More information

Diagnostic Test. Middle School Mathematics

Diagnostic Test. Middle School Mathematics Diagnostic Test Middle School Mathematics Copyright 2010 XAMonline, Inc. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by

More information

Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

More information

Neuro-Symbolic Approaches for Knowledge Representation in Expert Systems

Neuro-Symbolic Approaches for Knowledge Representation in Expert Systems Published in the International Journal of Hybrid Intelligent Systems 1(3-4) (2004) 111-126 Neuro-Symbolic Approaches for Knowledge Representation in Expert Systems Ioannis Hatzilygeroudis and Jim Prentzas

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

On the Combined Behavior of Autonomous Resource Management Agents

On the Combined Behavior of Autonomous Resource Management Agents On the Combined Behavior of Autonomous Resource Management Agents Siri Fagernes 1 and Alva L. Couch 2 1 Faculty of Engineering Oslo University College Oslo, Norway siri.fagernes@iu.hio.no 2 Computer Science

More information

Early Model of Student's Graduation Prediction Based on Neural Network

Early Model of Student's Graduation Prediction Based on Neural Network TELKOMNIKA, Vol.12, No.2, June 2014, pp. 465~474 ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013 DOI: 10.12928/TELKOMNIKA.v12i2.1603 465 Early Model of Student's Graduation Prediction

More information

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Tomi Kinnunen and Ismo Kärkkäinen University of Joensuu, Department of Computer Science, P.O. Box 111, 80101 JOENSUU,

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Computerized Adaptive Psychological Testing A Personalisation Perspective

Computerized Adaptive Psychological Testing A Personalisation Perspective Psychology and the internet: An European Perspective Computerized Adaptive Psychological Testing A Personalisation Perspective Mykola Pechenizkiy mpechen@cc.jyu.fi Introduction Mixed Model of IRT and ES

More information

A study of speaker adaptation for DNN-based speech synthesis

A study of speaker adaptation for DNN-based speech synthesis A study of speaker adaptation for DNN-based speech synthesis Zhizheng Wu, Pawel Swietojanski, Christophe Veaux, Steve Renals, Simon King The Centre for Speech Technology Research (CSTR) University of Edinburgh,

More information

Data Fusion Through Statistical Matching

Data Fusion Through Statistical Matching A research and education initiative at the MIT Sloan School of Management Data Fusion Through Statistical Matching Paper 185 Peter Van Der Puttan Joost N. Kok Amar Gupta January 2002 For more information,

More information

CSL465/603 - Machine Learning

CSL465/603 - Machine Learning CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems

Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems Ajith Abraham School of Business Systems, Monash University, Clayton, Victoria 3800, Australia. Email: ajith.abraham@ieee.org

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

Syntactic systematicity in sentence processing with a recurrent self-organizing network

Syntactic systematicity in sentence processing with a recurrent self-organizing network Syntactic systematicity in sentence processing with a recurrent self-organizing network Igor Farkaš,1 Department of Applied Informatics, Comenius University Mlynská dolina, 842 48 Bratislava, Slovak Republic

More information

1 NETWORKS VERSUS SYMBOL SYSTEMS: TWO APPROACHES TO MODELING COGNITION

1 NETWORKS VERSUS SYMBOL SYSTEMS: TWO APPROACHES TO MODELING COGNITION NETWORKS VERSUS SYMBOL SYSTEMS 1 1 NETWORKS VERSUS SYMBOL SYSTEMS: TWO APPROACHES TO MODELING COGNITION 1.1 A Revolution in the Making? The rise of cognitivism in psychology, which, by the 1970s, had successfully

More information

The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

More information

An Empirical and Computational Test of Linguistic Relativity

An Empirical and Computational Test of Linguistic Relativity An Empirical and Computational Test of Linguistic Relativity Kathleen M. Eberhard* (eberhard.1@nd.edu) Matthias Scheutz** (mscheutz@cse.nd.edu) Michael Heilman** (mheilman@nd.edu) *Department of Psychology,

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Circuit Simulators: A Revolutionary E-Learning Platform

Circuit Simulators: A Revolutionary E-Learning Platform Circuit Simulators: A Revolutionary E-Learning Platform Mahi Itagi Padre Conceicao College of Engineering, Verna, Goa, India. itagimahi@gmail.com Akhil Deshpande Gogte Institute of Technology, Udyambag,

More information

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF

ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Read Online and Download Ebook ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY DOWNLOAD EBOOK : ADVANCED MACHINE LEARNING WITH PYTHON BY JOHN HEARTY PDF Click link bellow and free register to download

More information

MASTER OF SCIENCE (M.S.) MAJOR IN COMPUTER SCIENCE

MASTER OF SCIENCE (M.S.) MAJOR IN COMPUTER SCIENCE Master of Science (M.S.) Major in Computer Science 1 MASTER OF SCIENCE (M.S.) MAJOR IN COMPUTER SCIENCE Major Program The programs in computer science are designed to prepare students for doctoral research,

More information

LEADERSHIP AND COMMUNICATION SKILLS

LEADERSHIP AND COMMUNICATION SKILLS LEADERSHIP AND COMMUNICATION SKILLS DEGREE: BACHELOR IN BUSINESS ADMINISTRATION DEGREE COURSE YEAR: 1 ST 1º SEMESTER 2º SEMESTER CATEGORY: BASIC COMPULSORY OPTIONAL NO. OF CREDITS (ECTS): 3 LANGUAGE: ENGLISH

More information

Firms and Markets Saturdays Summer I 2014

Firms and Markets Saturdays Summer I 2014 PRELIMINARY DRAFT VERSION. SUBJECT TO CHANGE. Firms and Markets Saturdays Summer I 2014 Professor Thomas Pugel Office: Room 11-53 KMC E-mail: tpugel@stern.nyu.edu Tel: 212-998-0918 Fax: 212-995-4212 This

More information

GCSE Mathematics B (Linear) Mark Scheme for November Component J567/04: Mathematics Paper 4 (Higher) General Certificate of Secondary Education

GCSE Mathematics B (Linear) Mark Scheme for November Component J567/04: Mathematics Paper 4 (Higher) General Certificate of Secondary Education GCSE Mathematics B (Linear) Component J567/04: Mathematics Paper 4 (Higher) General Certificate of Secondary Education Mark Scheme for November 2014 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge

More information

Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

More information

Deep search. Enhancing a search bar using machine learning. Ilgün Ilgün & Cedric Reichenbach

Deep search. Enhancing a search bar using machine learning. Ilgün Ilgün & Cedric Reichenbach #BaselOne7 Deep search Enhancing a search bar using machine learning Ilgün Ilgün & Cedric Reichenbach We are not researchers Outline I. Periscope: A search tool II. Goals III. Deep learning IV. Applying

More information

Ph.D in Advance Machine Learning (computer science) PhD submitted, degree to be awarded on convocation, sept B.Tech in Computer science and

Ph.D in Advance Machine Learning (computer science) PhD submitted, degree to be awarded on convocation, sept B.Tech in Computer science and Name Qualification Sonia Thomas Ph.D in Advance Machine Learning (computer science) PhD submitted, degree to be awarded on convocation, sept. 2016. M.Tech in Computer science and Engineering. B.Tech in

More information

LEGO MINDSTORMS Education EV3 Coding Activities

LEGO MINDSTORMS Education EV3 Coding Activities LEGO MINDSTORMS Education EV3 Coding Activities s t e e h s k r o W t n e d Stu LEGOeducation.com/MINDSTORMS Contents ACTIVITY 1 Performing a Three Point Turn 3-6 ACTIVITY 2 Written Instructions for a

More information

SAM - Sensors, Actuators and Microcontrollers in Mobile Robots

SAM - Sensors, Actuators and Microcontrollers in Mobile Robots Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering BACHELOR'S

More information

An Introduction to Simio for Beginners

An Introduction to Simio for Beginners An Introduction to Simio for Beginners C. Dennis Pegden, Ph.D. This white paper is intended to introduce Simio to a user new to simulation. It is intended for the manufacturing engineer, hospital quality

More information

Notes on The Sciences of the Artificial Adapted from a shorter document written for course (Deciding What to Design) 1

Notes on The Sciences of the Artificial Adapted from a shorter document written for course (Deciding What to Design) 1 Notes on The Sciences of the Artificial Adapted from a shorter document written for course 17-652 (Deciding What to Design) 1 Ali Almossawi December 29, 2005 1 Introduction The Sciences of the Artificial

More information

A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation

A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation SLSP-2016 October 11-12 Natalia Tomashenko 1,2,3 natalia.tomashenko@univ-lemans.fr Yuri Khokhlov 3 khokhlov@speechpro.com Yannick

More information

Device Independence and Extensibility in Gesture Recognition

Device Independence and Extensibility in Gesture Recognition Device Independence and Extensibility in Gesture Recognition Jacob Eisenstein, Shahram Ghandeharizadeh, Leana Golubchik, Cyrus Shahabi, Donghui Yan, Roger Zimmermann Department of Computer Science University

More information

Abstractions and the Brain

Abstractions and the Brain Abstractions and the Brain Brian D. Josephson Department of Physics, University of Cambridge Cavendish Lab. Madingley Road Cambridge, UK. CB3 OHE bdj10@cam.ac.uk http://www.tcm.phy.cam.ac.uk/~bdj10 ABSTRACT

More information

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF)

SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) SINGLE DOCUMENT AUTOMATIC TEXT SUMMARIZATION USING TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) Hans Christian 1 ; Mikhael Pramodana Agus 2 ; Derwin Suhartono 3 1,2,3 Computer Science Department,

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics Machine Learning from Garden Path Sentences: The Application of Computational Linguistics http://dx.doi.org/10.3991/ijet.v9i6.4109 J.L. Du 1, P.F. Yu 1 and M.L. Li 2 1 Guangdong University of Foreign Studies,

More information

Introduction to Simulation

Introduction to Simulation Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

More information

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade The third grade standards primarily address multiplication and division, which are covered in Math-U-See

More information