# Combining multiple models

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Combining multiple models Basic idea of meta learning schemes: build different experts and let them vote Advantage: often improves predictive performance Disadvantage: produces output that is very hard to analyze Schemes we will discuss: bagging, boosting, stacking, and error-correcting output codes The first three can be applied to both classification and numeric prediction problems 10/25/

2 Bagging Employs simplest way of combining predictions: voting/averaging Each model receives equal weight Idealized version of bagging: Sample several training sets of size n (instead of just having one training set of size n) Build a classifier for each training set Combine the classifier s predictions This improves performance in almost all cases if learning scheme is unstable (i.e. decision trees) 10/25/

3 Bias-variance decomposition Theoretical tool for analyzing how much specific training set affects performance of classifier Assume we have an infinite number of classifiers built from different training sets of size n The bias of a learning scheme is the expected error of the combined classifier on new data The variance of a learning scheme is the expected error due to the particular training set used Total expected error: bias + variance 10/25/

4 More on bagging Bagging reduces variance by voting/averaging, thus reducing the overall expected error In the case of classification there are pathological situations where the overall error might increase Usually, the more classifiers the better Problem: we only have one dataset! Solution: generate new datasets of size n by sampling with replacement from original dataset Can help a lot if data is noisy 10/25/

5 Bagging classifiers model generation Let n be the number of instances in the training data. For each of t iterations: Sample n instances with replacement from training set. Apply the learning algorithm to the sample. Store the resulting model. classification For each of the t models: Predict class of instance using model. Return class that has been predicted most often. 10/25/

6 Boosting Also uses voting/averaging but models are weighted according to their performance Iterative procedure: new models are influenced by performance of previously built ones New model is encouraged to become expert for instances classified incorrectly by earlier models Intuitive justification: models should be experts that complement each other There are several variants of this algorithm 10/25/

7 AdaBoost.M1 model generation Assign equal weight to each training instance. For each of t iterations: Apply learning algorithm to weighted dataset and store resulting model. Compute error e of model on weighted dataset and store error. If e equal to zero, or e greater or equal to 0.5: Terminate model generation. For each instance in dataset: If instance classified correctly by model: Multiply weight of instance by e / (1 - e). Normalize weight of all instances. classification Assign weight of zero to all classes. For each of the t (or less) models: Add -log(e / (1 - e)) to weight of class predicted by model. Return class with highest weight. 10/25/

8 More on boosting Can be applied without weights using resampling with probability determined by weights Disadvantage: not all instances are used Advantage: resampling can be repeated if error exceeds 0.5 Stems from computational learning theory Theoretical result: training error decreases exponentially Also: works if base classifiers not too complex and their error doesn t become too large too quickly 10/25/

9 A bit more on boosting Puzzling fact: generalization error can decrease long after training error has reached zero Seems to contradict Occam s Razor! However, problem disappears if margin (confidence) is considered instead of error Margin: difference between estimated probability for true class and most likely other class (between 1, 1) Boosting works with weak learners: only condition is that error doesn t exceed 0.5 LogitBoost: more sophisticated boosting scheme 10/25/

10 Stacking Hard to analyze theoretically: black magic Uses meta learner instead of voting to combine predictions of base learners Predictions of base learners (level-0 models) are used as input for meta learner (level-1 model) Base learners usually different learning schemes Predictions on training data can t be used to generate data for level-1 model! Cross-validation-like scheme is employed 10/25/

11 More on stacking If base learners can output probabilities it s better to use those as input to meta learner Which algorithm to use to generate meta learner? In principle, any learning scheme can be applied David Wolpert: relatively global, smooth model Base learners do most of the work Reduces risk of overfitting Stacking can also be applied to numeric prediction (and density estimation) 10/25/

### Multiple classifiers

Multiple classifiers JERZY STEFANOWSKI Institute of Computing Sciences Poznań University of Technology Zajęcia dla TPD - ZED 2009 Oparte na wykładzie dla Doctoral School, Catania-Troina, April, 2008 Outline

### Multiple classifiers. JERZY STEFANOWSKI Institute of Computing Sciences Poznań University of Technology. Doctoral School, Catania-Troina, April, 2008

Multiple classifiers JERZY STEFANOWSKI Institute of Computing Sciences Poznań University of Technology Doctoral School, Catania-Troina, April, 2008 Outline of the presentation 1. Introduction 2. Why do

### Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

### Machine Learning for Language Technology

October 2013 Machine Learning for Language Technology Lecture 6: Ensemble Methods Marina Santini, Uppsala University Department of Linguistics and Philology Where we are Previous lectures, various different

### A Few Useful Things to Know about Machine Learning. Pedro Domingos Department of Computer Science and Engineering University of Washington" 2012"

A Few Useful Things to Know about Machine Learning Pedro Domingos Department of Computer Science and Engineering University of Washington 2012 A Few Useful Things to Know about Machine Learning Machine

### Decision Tree For Playing Tennis

Decision Tree For Playing Tennis ROOT NODE BRANCH INTERNAL NODE LEAF NODE Disjunction of conjunctions Another Perspective of a Decision Tree Model Age 60 40 20 NoDefault NoDefault + + NoDefault Default

### Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

### Machine Learning B, Fall 2016

Machine Learning 10-601 B, Fall 2016 Decision Trees (Summary) Lecture 2, 08/31/ 2016 Maria-Florina (Nina) Balcan Learning Decision Trees. Supervised Classification. Useful Readings: Mitchell, Chapter 3

### 1. Subject. 2. Dataset. Resampling approaches for prediction error estimation.

1. Subject Resampling approaches for prediction error estimation. The ability to predict correctly is one of the most important criteria to evaluate classifiers in supervised learning. The preferred indicator

### Machine Learning (Decision Trees and Intro to Neural Nets) CSCI 3202, Fall 2010

Machine Learning (Decision Trees and Intro to Neural Nets) CSCI 3202, Fall 2010 Assignments To read this week: Chapter 18, sections 1-4 and 7 Problem Set 3 due next week! Learning a Decision Tree We look

### 6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

In the previous chapter, we presented an evaluation of the state-of-the-art machine learning algorithms for the task of classification using a real world problem and dataset. We calculated our results

### Machine Learning with Weka

Machine Learning with Weka SLIDES BY (TOTAL 5 Session of 1.5 Hours Each) ANJALI GOYAL & ASHISH SUREKA (www.ashish-sureka.in) CS 309 INFORMATION RETRIEVAL COURSE ASHOKA UNIVERSITY NOTE: Slides created and

### Lecture 1: Machine Learning Basics

1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

### Linear Models Continued: Perceptron & Logistic Regression

Linear Models Continued: Perceptron & Logistic Regression CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Linear Models for Classification Feature function

### Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

### 18 LEARNING FROM EXAMPLES

18 LEARNING FROM EXAMPLES An intelligent agent may have to learn, for instance, the following components: A direct mapping from conditions on the current state to actions A means to infer relevant properties

### CLASS distribution, i.e., the proportion of instances belonging

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012 463 A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based

### Decision Boundary. Hemant Ishwaran and J. Sunil Rao

32 Decision Trees, Advanced Techniques in Constructing define impurity using the log-rank test. As in CART, growing a tree by reducing impurity ensures that terminal nodes are populated by individuals

### Supervised learning can be done by choosing the hypothesis that is most probable given the data: = arg max ) = arg max

The learning problem is called realizable if the hypothesis space contains the true function; otherwise it is unrealizable On the other hand, in the name of better generalization ability it may be sensible

(Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

### CS 354R: Computer Game Technology

CS 354R: Computer Game Technology AI Decision Trees and Rule Systems Fall 2017 Decision Trees Nodes represent attribute tests One child for each outcome Leaves represent classifications Can have same classification

### Dudon Wai Georgia Institute of Technology CS 7641: Machine Learning Atlanta, GA

Adult Income and Letter Recognition - Supervised Learning Report An objective look at classifier performance for predicting adult income and Letter Recognition Dudon Wai Georgia Institute of Technology

### Linear Regression: Predicting House Prices

Linear Regression: Predicting House Prices I am big fan of Kalid Azad writings. He has a knack of explaining hard mathematical concepts like Calculus in simple words and helps the readers to get the intuition

### Python Machine Learning

Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

### Spotting Sentiments with Semantic Aware Multilevel Cascaded Analysis

Spotting Sentiments with Semantic Aware Multilevel Cascaded Analysis Despoina Chatzakou, Nikolaos Passalis, Athena Vakali Aristotle University of Thessaloniki Big Data Analytics and Knowledge Discovery,

### Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. January 11, 2011

Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 11, 2011 Today: What is machine learning? Decision tree learning Course logistics Readings: The Discipline

### Assignment 6 (Sol.) Introduction to Machine Learning Prof. B. Ravindran

Assignment 6 (Sol.) Introduction to Machine Learning Prof. B. Ravindran 1. Assume that you are given a data set and a neural network model trained on the data set. You are asked to build a decision tree

### Compacting Instances: Creating models

Decision Trees Compacting Instances: Creating models Food Chat Speedy Price Bar BigTip (3) (2) (2) (2) (2) 1 great yes yes adequate no yes 2 great no yes adequate no yes 3 mediocre yes no high no no 4

### Classification with Deep Belief Networks. HussamHebbo Jae Won Kim

Classification with Deep Belief Networks HussamHebbo Jae Won Kim Table of Contents Introduction... 3 Neural Networks... 3 Perceptron... 3 Backpropagation... 4 Deep Belief Networks (RBM, Sigmoid Belief

### A COMPARATIVE ANALYSIS OF META AND TREE CLASSIFICATION ALGORITHMS USING WEKA

A COMPARATIVE ANALYSIS OF META AND TREE CLASSIFICATION ALGORITHMS USING WEKA T.Sathya Devi 1, Dr.K.Meenakshi Sundaram 2, (Sathya.kgm24@gmail.com 1, lecturekms@yahoo.com 2 ) 1 (M.Phil Scholar, Department

### Machine Learning : Hinge Loss

Machine Learning Hinge Loss 16/01/2014 Machine Learning : Hinge Loss Recap tasks considered before Let a training dataset be given with (i) data and (ii) classes The goal is to find a hyper plane that

### Bias and the Probability of Generalization

Brigham Young University BYU ScholarsArchive All Faculty Publications 1997-12-10 Bias and the Probability of Generalization Tony R. Martinez martinez@cs.byu.edu D. Randall Wilson Follow this and additional

### Boosted Mixture of Experts: An Ensemble Learning Scheme

LETTER Communicated by Robert Jacobs Boosted Mixture of Experts: An Ensemble Learning Scheme Ran Avnimelech Nathan Intrator Department of Computer Science, Sackler Faculty of Exact Sciences, Tel-Aviv University,

### IAI : Machine Learning

IAI : Machine Learning John A. Bullinaria, 2005 1. What is Machine Learning? 2. The Need for Learning 3. Learning in Neural and Evolutionary Systems 4. Problems Facing Expert Systems 5. Learning in Rule

### An Empirical Study of Combining Boosting-BAN and Boosting-MultiTAN

Research Journal of Applied Sciences, Engineering and Technology 5(24): 5550-5555, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: September 24, 2012 Accepted:

### Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. January 12, 2015

Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 12, 2015 Today: What is machine learning? Decision tree learning Course logistics Readings: The Discipline

### Neighbourhood Sampling in Bagging for Imbalanced Data

Neighbourhood Sampling in Bagging for Imbalanced Data Jerzy Błaszczyński, Jerzy Stefanowski Institute of Computing Sciences, Poznań University of Technology, 60 965 Poznań, Poland Abstract Various approaches

### Online Ensemble Learning: An Empirical Study

Online Ensemble Learning: An Empirical Study Alan Fern AFERN@ECN.PURDUE.EDU Robert Givan GIVAN@ECN.PURDUE.EDU Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 4797

### CSC-272 Exam #2 March 20, 2015

CSC-272 Exam #2 March 20, 2015 Name Questions are weighted as indicated. Show your work and state your assumptions for partial credit consideration. Unless explicitly stated, there are NO intended errors

### Don t Get Kicked - Machine Learning Predictions for Car Buying

STANFORD UNIVERSITY, CS229 - MACHINE LEARNING Don t Get Kicked - Machine Learning Predictions for Car Buying Albert Ho, Robert Romano, Xin Alice Wu December 14, 2012 1 Introduction When you go to an auto

### COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.

COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise

### Performance Analysis of Various Data Mining Techniques on Banknote Authentication

International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 5 Issue 2 February 2016 PP.62-71 Performance Analysis of Various Data Mining Techniques on

### Decision Tree Instability and Active Learning

Decision Tree Instability and Active Learning Kenneth Dwyer and Robert Holte University of Alberta November 14, 2007 Kenneth Dwyer, University of Alberta Decision Tree Instability and Active Learning 1

### QUESTION BANK 10CS82-SYSTEM SIMULATION & MODELING CHAPTER 1: INTRODUCTION, REQUIREMENTS ENGINEERING

QUESTION BANK 10CS82-SYSTEM SIMULATION & MODELING CHAPTER 1: INTRODUCTION, REQUIREMENTS ENGINEERING When Simulation is the appropriate tool and not appropriate. Advantages And Disadvantages of Simulation

### ANALYZING BIG DATA WITH DECISION TREES

San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2014 ANALYZING BIG DATA WITH DECISION TREES Lok Kei Leong Follow this and additional works at:

### Speeding up ResNet training

Speeding up ResNet training Konstantin Solomatov (06246217), Denis Stepanov (06246218) Project mentor: Daniel Kang December 2017 Abstract Time required for model training is an important limiting factor

### Applied Machine Learning Lecture 1: Introduction

Applied Machine Learning Lecture 1: Introduction Richard Johansson January 16, 2018 welcome to the course! machine learning is getting increasingly popular among students our courses are full! many thesis

### A Review on Classification Techniques in Machine Learning

A Review on Classification Techniques in Machine Learning R. Vijaya Kumar Reddy 1, Dr. U. Ravi Babu 2 1 Research Scholar, Dept. of. CSE, Acharya Nagarjuna University, Guntur, (India) 2 Principal, DRK College

### P(A, B) = P(A B) = P(A) + P(B) - P(A B)

AND Probability P(A, B) = P(A B) = P(A) + P(B) - P(A B) P(A B) = P(A) + P(B) - P(A B) Area = Probability of Event AND Probability P(A, B) = P(A B) = P(A) + P(B) - P(A B) If, and only if, A and B are independent,

### Online Ensemble Learning: An Empirical Study

Online Ensemble Learning: An Empirical Study Alan Fern AFERN@ECN.PURDUE.EDU Robert Givan GIVAN@ECN.PURDUE.EDU Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 4797

### Feature Selection for Ensembles

From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Feature Selection for Ensembles David W. Opitz Computer Science Department University of Montana Missoula, MT 59812

### Zero & Negative Exponents 2.) Negative Exponents:

In math, people often invent ways to extend concepts to areas that might not make sense at first. Pretty much everyone can understand what means, because they understand that it represents multiplying

### Machine Learning Lecture 1: Introduction

Welcome to CSCE 478/878! Please check off your name on the roster, or write your name if you're not listed Indicate if you wish to register or sit in Policy on sit-ins: You may sit in on the course without

### Unsupervised Learning and Dimensionality Reduction A Continued Study on Letter Recognition and Adult Income

Unsupervised Learning and Dimensionality Reduction A Continued Study on Letter Recognition and Adult Income Dudon Wai, dwai3 Georgia Institute of Technology CS 7641: Machine Learning Abstract: This paper

### Cascade evaluation of clustering algorithms

Cascade evaluation of clustering algorithms Laurent Candillier 1,2, Isabelle Tellier 1, Fabien Torre 1, Olivier Bousquet 2 1 GRAppA - Charles de Gaulle University - Lille 3 candillier@grappa.univ-lille3.fr

### Optimal Ensemble Construction via Meta-Evolutionary Ensembles

Optimal Ensemble Construction via Meta-Evolutionary Ensembles YongSeog Kim a, W. Nick Street b, Filippo Menczer c a Business Information Systems, Utah State University, Logan, UT 84322, USA b Management

### Uninformed Search (Ch )

1 Uninformed Search (Ch. 3-3.4) 2 Announcements Will make homework this weekend (~4 days) due next weekend (~13 days) 3 What did we do last time? Take away messages: Lecture 1: Class schedule (ended early)

### A study of the NIPS feature selection challenge

A study of the NIPS feature selection challenge Nicholas Johnson November 29, 2009 Abstract The 2003 Nips Feature extraction challenge was dominated by Bayesian approaches developed by the team of Radford

### CS 4510/9010 Applied Machine Learning. Evaluation. Paula Matuszek Fall, copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning 1 Evaluation Paula Matuszek Fall, 2016 Evaluating Classifiers 2 With a decision tree, or with any classifier, we need to know how well our trained model performs on

### Number of classifiers in error

Ensemble Methods in Machine Learning Thomas G. Dietterich Oregon State University, Corvallis, Oregon, USA, tgd@cs.orst.edu, WWW home page: http://www.cs.orst.edu/~tgd Abstract. Ensemble methods are learning

### GLMs the Good, the Bad, and the Ugly Midwest Actuarial Forum 23 March Christopher Cooksey, FCAS, MAAA EagleEye Analytics

Midwest Actuarial Forum 23 March 2009 Christopher Cooksey, FCAS, MAAA EagleEye Analytics Agenda 1.A Brief History of GLMs 2.The Good what GLMs do well 3.The Bad what GLMs don t do well 4.The Ugly what

### CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification Farshid Rayhan, Sajid Ahmed, Asif Mahbub, Md. Rafsan Jani, Swakkhar Shatabda, and Dewan Md. Farid Department of Computer

Copyright Dante Soares 2014 ABSTRACT Linkify: A Web-Based Collaborative Content Tagging System for Machine Learning Algorithms by Dante Soares Automated tutoring systems that use machine learning algorithms

### TOWARDS DATA-DRIVEN AUTONOMICS IN DATA CENTERS

TOWARDS DATA-DRIVEN AUTONOMICS IN DATA CENTERS ALINA SIRBU, OZALP BABAOGLU SUMMARIZED BY ARDA GUMUSALAN MOTIVATION 2 MOTIVATION Human-interaction-dependent data centers are not sustainable for future data

### Negative News No More: Classifying News Article Headlines

Negative News No More: Classifying News Article Headlines Karianne Bergen and Leilani Gilpin kbergen@stanford.edu lgilpin@stanford.edu December 14, 2012 1 Introduction The goal of this project is to develop

### CSE 258 Lecture 3. Web Mining and Recommender Systems. Supervised learning Classification

CSE 258 Lecture 3 Web Mining and Recommender Systems Supervised learning Classification Last week Last week we started looking at supervised learning problems Last week We studied linear regression, in

### CS534 Machine Learning

CS534 Machine Learning Spring 2013 Lecture 1: Introduction to ML Course logistics Reading: The discipline of Machine learning by Tom Mitchell Course Information Instructor: Dr. Xiaoli Fern Kec 3073, xfern@eecs.oregonstate.edu

### Machine Learning L, T, P, J, C 2,0,2,4,4

Subject Code: Objective Expected Outcomes Machine Learning L, T, P, J, C 2,0,2,4,4 It introduces theoretical foundations, algorithms, methodologies, and applications of Machine Learning and also provide

### The Implementation of Machine Learning in the Game of Checkers

The Implementation of Machine Learning in the Game of Checkers William Melicher Computer Systems Lab Thomas Jefferson June 9, 2009 Abstract Most games have a set algorithm that does not change. This means

### Language Modelling. Marco Kuhlmann Department of Computer and Information Science Partially based on material developed by David Chiang

TDDE09, 729A27 Natural Language Processing (2017) Language Modelling Marco Kuhlmann Department of Computer and Information Science Partially based on material developed by David Chiang This work is licensed

### Stay Alert!: Creating a Classifier to Predict Driver Alertness in Real-time

Stay Alert!: Creating a Classifier to Predict Driver Alertness in Real-time Aditya Sarkar, Julien Kawawa-Beaudan, Quentin Perrot Friday, December 11, 2014 1 Problem Definition Driving while drowsy inevitably

### Article from. Predictive Analytics and Futurism December 2015 Issue 12

Article from Predictive Analytics and Futurism December 2015 Issue 12 The Third Generation of Neural Networks By Jeff Heaton Neural networks are the phoenix of artificial intelligence. Right now neural

### Programming Social Robots for Human Interaction. Lecture 4: Machine Learning and Pattern Recognition

Programming Social Robots for Human Interaction Lecture 4: Machine Learning and Pattern Recognition Zheng-Hua Tan Dept. of Electronic Systems, Aalborg Univ., Denmark zt@es.aau.dk, http://kom.aau.dk/~zt

### Refine Decision Boundaries of a Statistical Ensemble by Active Learning

Refine Decision Boundaries of a Statistical Ensemble by Active Learning a b * Dingsheng Luo and Ke Chen a National Laboratory on Machine Perception and Center for Information Science, Peking University,

### Cross-Domain Video Concept Detection Using Adaptive SVMs

Cross-Domain Video Concept Detection Using Adaptive SVMs AUTHORS: JUN YANG, RONG YAN, ALEXANDER G. HAUPTMANN PRESENTATION: JESSE DAVIS CS 3710 VISUAL RECOGNITION Problem-Idea-Challenges Address accuracy

### Scaling Quality On Quora Using Machine Learning

Scaling Quality On Quora Using Machine Learning Nikhil Garg @nikhilgarg28 @Quora @QconSF 11/7/16 Goals Of The Talk Introducing specific product problems we need to solve to stay high-quality Describing

### Naive Bayesian. Introduction. What is Naive Bayes algorithm? Algorithm

Naive Bayesian Introduction You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importance of variables. Within an hour, stakeholders

### Introduction "Boosting" is a general method for improving the performance of a learning algorithm. It is a method for nding a highly accurate classier

Boosting Neural Networks paper No 86 Holger Schwenk LIMSI-CNRS, bat 8, BP 33, 943 Orsay cedex, FRANCE Yoshua Bengio DIRO, University of Montreal, Succ. Centre-Ville, CP 68 Montreal, Qc, H3C 3J7, CANADA

### Introduction to Classification

Introduction to Classification Classification: Definition Given a collection of examples (training set ) Each example is represented by a set of features, sometimes called attributes Each example is to

### Analysis of Clustering and Classification Methods for Actionable Knowledge

Available online at www.sciencedirect.com ScienceDirect Materials Today: Proceedings XX (2016) XXX XXX www.materialstoday.com/proceedings PMME 2016 Analysis of Clustering and Classification Methods for

### IMBALANCED data sets (IDS) correspond to domains

Diversity Analysis on Imbalanced Data Sets by Using Ensemble Models Shuo Wang and Xin Yao Abstract Many real-world applications have problems when learning from imbalanced data sets, such as medical diagnosis,

### CS Machine Learning

CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

### Principles of Machine Learning

Principles of Machine Learning Lab 5 - Optimization-Based Machine Learning Models Overview In this lab you will explore the use of optimization-based machine learning models. Optimization-based models

### Machine Learning. Basic Concepts. Joakim Nivre. Machine Learning 1(24)

Machine Learning Basic Concepts Joakim Nivre Uppsala University and Växjö University, Sweden E-mail: nivre@msi.vxu.se Machine Learning 1(24) Machine Learning Idea: Synthesize computer programs by learning

### AP Statistics Audit Syllabus

AP Statistics Audit Syllabus COURSE DESCRIPTION: AP Statistics is the high school equivalent of a one semester, introductory college statistics course. In this course, students develop strategies for collecting,

### A Procedure for Classifying New Respondents into Existing Segments Using Maximum Difference Scaling

A Procedure for Classifying New Respondents into Existing Segments Using Maximum Difference Scaling Background Bryan Orme and Rich Johnson, Sawtooth Software March, 2009 (with minor clarifications September

### Statistics for Risk Modeling Exam September 2018

Statistics for Risk Modeling Exam September 2018 IMPORTANT NOTICE This version of the syllabus is final, though minor changes may occur. This March 2018 version includes updates to this page and to the

### Ensemble Neural Networks Using Interval Neutrosophic Sets and Bagging

Ensemble Neural Networks Using Interval Neutrosophic Sets and Bagging Pawalai Kraipeerapun, Chun Che Fung and Kok Wai Wong School of Information Technology, Murdoch University, Australia Email: {p.kraipeerapun,

### COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.

COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551

### Instructions for L90 Practical: Sentiment Detection of Reviews

Instructions for L90 Practical: Sentiment Detection of Reviews Kevin Heffernan kh562@cam.ac.uk Helen Yannakoudakis hy260@cam.ac.uk This practical concerns sentiment classification of movie reviews. Your

### OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

### Unsupervised Learning (Examples)

Unsupervised Learning (Examples) Javier Béjar cbea Term 2010/2011 Javier Béjar cbea Unsupervised Learning (Examples) Term 2010/2011 1 / 25 Outline 1 Iris 2 Voting Records 3 Mushroom 4 Image Segmentation

### Cost-sensitive Dynamic Feature Selection

Cost-sensitive Dynamic Feature Selection He He Hal Daumé III Dept. of Computer Science, University of Maryland, College Park, MD Jason Eisner Dept. of Computer Science, Johns Hopkins University, Baltimore,

### Ensemble Classifier for Solving Credit Scoring Problems

Ensemble Classifier for Solving Credit Scoring Problems Maciej Zięba and Jerzy Świątek Wroclaw University of Technology, Faculty of Computer Science and Management, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław,

### Guido Boella Dipartimento di Informatica Università di Torino FP7-ICT-2013-SME-DCA

EuroVoc classifier Guido Boella Dipartimento di Informatica Università di Torino FP7-ICT-2013-SME-DCA Overview Introduction Background Our approach Pre-processing of the texts Evaluation Introduction Classification

### Decision Tree for Playing Tennis

Decision Tree Decision Tree for Playing Tennis (outlook=sunny, wind=strong, humidity=normal,? ) DT for prediction C-section risks Characteristics of Decision Trees Decision trees have many appealing properties

### Stats Camp for Economists and Econometricians

Stats Camp for Economists and Econometricians Rice University Summer 2017 Logistics Logistics Instructor: Mehreen Gul, mehreen.gul@rice.edu Schedule: May 31 st July 30th Location: Canvas Platform, https://canvas.rice.edu

### 11. Reinforcement Learning

Artificial Intelligence 11. Reinforcement Learning prof. dr. sc. Bojana Dalbelo Bašić doc. dr. sc. Jan Šnajder University of Zagreb Faculty of Electrical Engineering and Computing (FER) Academic Year 2015/2016

### Practical Methods for the Analysis of Big Data

Practical Methods for the Analysis of Big Data Module 4: Clustering, Decision Trees, and Ensemble Methods Philip A. Schrodt The Pennsylvania State University schrodt@psu.edu Workshop at the Odum Institute

### (-: (-: SMILES :-) :-)

(-: (-: SMILES :-) :-) A Multi-purpose Learning System Vicent Estruch, Cèsar Ferri, José Hernández-Orallo, M.José Ramírez-Quintana {vestruch, cferri, jorallo, mramirez}@dsic.upv.es Dep. de Sistemes Informàtics