CPSC 533 Reinforcement Learning. Paul Melenchuk Eva Wong Winson Yuen Kenneth Wong

Size: px
Start display at page:

Download "CPSC 533 Reinforcement Learning. Paul Melenchuk Eva Wong Winson Yuen Kenneth Wong"

Transcription

1 CPSC 533 Reinforcement Learning Paul Melenchuk Eva Wong Winson Yuen Kenneth Wong

2 Outline Introduction Passive Learning in an Known Environment Passive Learning in an Unknown Environment Active Learning in an Unknown Environment Exploration Learning an Action Value Function Generalization in Reinforcement Learning Genetic Algorithms and Evolutionary Programming Conclusion Glossary

3 Introduction In which we examine how an agent can learn from success and failure, reward and punishment.

4 Introduction Learning to ride a bicycle: The goal given to the Reinforcement Learning system is simply to ride the bicycle without falling over Begins riding the bicycle and performs a series of actions that result in the bicycle being tilted 45 degrees to the right Photo:

5 Introduction Learning to ride a bicycle: RL system turns the handle bars to the LEFT Result: CRASH!!! Receives negative reinforcement RL system turns the handle bars to the RIGHT Result: CRASH!!! Receives negative reinforcement

6 Introduction Learning to ride a bicycle: RL system has learned that the state of being titled 45 degrees to the right is bad Repeat trial using 40 degree to the right By performing enough of these trial-and-error interactions with the environment, the RL system will ultimately learn how to prevent the bicycle from ever falling over

7 Passive Learning in a Known Environment Passive Learner: A passive learner simply watches the world going by, and tries to learn the utility of being in various states. Another way to think of a passive learner is as an agent with a fixed policy trying to determine its benefits.

8 Passive Learning in a Known Environment In passive learning, the environment generates state transitions and the agent perceives them. Consider an agent trying to learn the utilities of the states shown below:

9 Passive Learning in a Known Environment Agent can move {North, East, South, West} Terminate on reading [4,2] or [4,3]

10 Passive Learning in a Known Environment Agent is provided: Mi j = a model given the probability of reaching from state i to state j

11 Passive Learning in a Known Environment the object is to use this information about rewards to learn the expected utility U(i) associated with each nonterminal state i Utilities can be learned using 3 approaches 1) LMS (least mean squares) 2) ADP (adaptive dynamic programming) 3) TD (temporal difference learning)

12 Passive Learning in a Known Environment LMS (Least Mean Squares) Agent makes random runs (sequences of random moves) through environment [1,1]->[1,2]->[1,3]->[2,3]->[3,3]->[4,3] = +1 [1,1]->[2,1]->[3,1]->[3,2]->[4,2] = -1

13 Passive Learning in a Known Environment LMS Collect statistics on final payoff for each state (eg. when on [2,3], how often reached +1 vs -1?) Learner computes average for each state Provably converges to true expected value (utilities) (Algorithm on page 602, Figure 20.3)

14 Passive Learning in a Known Environment Main Drawback: - slow convergence LMS - it takes the agent well over a 1000 training sequences to get close to the correct value

15 Passive Learning in a Known Environment ADP (Adaptive Dynamic Programming) Uses the value or policy iteration algorithm to calculate exact utilities of states given an estimated model

16 Passive Learning in a Known Environment In general: ADP - R(i) is reward of being in state i (often non zero for only a few end states) - Mij is the probability of transition from state i to j

17 Passive Learning in a Known Environment ADP Consider U(3,3) U(3,3) = 0.33 x U(4,3) x U(2,3) x U(3,2) = 0.33 x x x =

18 Passive Learning in a Known Environment ADP makes optimal use of the local constraints on utilities of states imposed by the neighborhood structure of the environment somewhat intractable for large state spaces

19 Passive Learning in a Known Environment TD (Temporal Difference Learning) The key is to use the observed transitions to adjust the values of the observed states so that they agree with the constraint equations

20 Passive Learning in a Known Environment TD Learning Suppose we observe a transition from state i to state j U(i) = -0.5 and U(j) = +0.5 Suggests that we should increase U(i) to make it agree better with it successor Can be achieved using the following updating rule

21 Passive Learning in a Known Environment Performance: TD Learning Runs noisier than LMS but smaller error Deal with observed states during sample runs (Not all instances, unlike ADP)

22 Passive Learning in an Unknown Environment Least Mean Square(LMS) approach and Temporal-Difference(TD) approach operate unchanged in an initially unknown environment. Adaptive Dynamic Programming(ADP) approach adds a step that updates an estimated model of the environment.

23 Passive Learning in an Unknown Environment ADP Approach The environment model is learned by direct observation of transitions The environment model M can be updated by keeping track of the percentage of times each state transitions to each of its neighbors

24 Passive Learning in an Unknown Environment ADP & TD Approaches The ADP approach and the TD approach are closely related Both try to make local adjustments to the utility estimates in order to make each state agree with its successors

25 Passive Learning in an Unknown Environment Minor differences : TD adjusts a state to agree with its observed successor ADP adjusts the state to agree with all of the successors Important differences : TD makes a single adjustment per observed transition ADP makes as many adjustments as it needs to restore consistency between the utility estimates U and the environment model M

26 Passive Learning in an Unknown Environment To make ADP more efficient : directly approximate the algorithm for value iteration or policy iteration prioritized-sweeping heuristic makes adjustments to states whose likely successors have just undergone a large adjustment in their own utility estimates Advantage of the approximate ADP : efficient in terms of computation eliminate long value iterations occur in early stage

27 Active Learning in an Unknown Environment An active agent must consider : what actions to take what their outcomes may be how they will affect the rewards received

28 Active Learning in an Unknown Environment Minor changes to passive learning agent : environment model now incorporates the probabilities of transitions to other states given a particular action maximize its expected utility agent needs a performance element to choose an action at each step

29 Active Learning in an Unknown Environment Active ADP Approach need to learn the probability M a ij of a transition instead of M ij the input to the function will include the action taken

30 Active Learning in an Unknown Environment Active TD Approach the model acquisition problem for the TD agent is identical to that for the ADP agent the update rule remains unchanged the TD algorithm will converge to the same values as ADP as the number of training sequences tends to infinity

31 Exploration Learning also involves the exploration of unknown areas Photo:

32 Exploration An agent can benefit from actions in 2 ways immediate rewards received percepts

33 Exploration Wacky Approach Vs. Greedy Approach

34 Exploration The Bandit Problem Photos:

35 Exploration The Exploration Function a simple example u= expected utility (greed) n= number of times actions have been tried(wacky) R+ = best reward possible

36 Learning An Action Value-Function What Are Q-Values?

37 Learning An Action Value-Function The Q-Values Formula

38 Learning An Action Value-Function The Q-Values Formula Application -just an adaptation of the active learning equation

39 Learning An Action Value-Function The TD Q-Learning Update Equation - requires no model - calculated after each transition from state.i to j

40 Learning An Action Value-Function The TD Q-Learning Update Equation in Practice The TD-Gammon System(Tesauro) Program:Neurogammon - attempted to learn from self-play and implicit representation

41 Generalization In Reinforcement Learning Explicit Representation we have assumed that all the functions learned by the agents(u,m,r,q) are represented in tabular form explicit representation involves one output value for each input tuple.

42 Generalization In Reinforcement Learning Explicit Representation good for small state spaces, but the time to convergence and the time per iteration increase rapidly as the space gets larger it may be possible to handle 10,000 states or more this suffices for 2-dimensional, maze-like environments

43 Generalization In Reinforcement Learning Explicit Representation Problem: more realistic worlds are out of question eg. Chess & backgammon are tiny subsets of the real world, yet their state spaces contain on the order of 10 to 10 states. So it would be absurd to suppose that one must visit all these states in order to learn how to play the game.

44 Generalization In Reinforcement Learning Implicit Representation Overcome the explicit problem a form that allows one to calculate the output for any input, but that is much more compact than the tabular form.

45 Generalization In Reinforcement Learning Implicit Representation For example, an estimated utility function for game playing can be represented as a weighted linear function of a set of board features f 1 f n : U(i) = w 1 f 1 (i)+w 2 f 2 (i)+.+w n f n (i)

46 Generalization In Reinforcement Learning Implicit Representation The utility function is characterized by n weights. A typical chess evaluation function might only have 10 weights, so this is enormous compression

47 Generalization In Reinforcement Learning Implicit Representation enormous compression : achieved by an implicit representation allows the learning agents to generalize from states it has visited to states it has not visited the most important aspect : it allows for inductive generalization over input states. Therefore, such method are said to perform input generalization

48 Game-playing : Galapagos Mendel is a four-legged spider-like creature he has goals and desires, rather than instructions through trial and error, he programs himself to satisfy those desires he is born not even knowing how to walk, and he has to learn to identify all of the deadly things in his environment he has two basic drives; move and avoid pain (negative reinforcement)

49 Game-playing : Galapagos player has no direct control over Mendel player turns various objects on and off and activates devices in order to guide him player has to let Mendel die a few times, otherwise he ll never learn each death proves to be a valuable lesson as the more experienced Mendel begins to avoid the things that cause him pain Developer : Anark Software.

50 Generalization In Reinforcement Learning Input Generalisation The cart pole problem: set up the problem of balancing a long pole upright on the top of a moving cart.

51 Generalization In Reinforcement Learning Input Generalisation The cart can be jerked left or right by a controller that observes x, x, θ, and θ the earliest work on learning for this problem was carried out by Michie and Chambers(1968) their BOXES algorithm was able to balance the pole for over an hour after only about 30 trials.

52 Generalization In Reinforcement Learning Input Generalisation The algorithm first discretized the 4- dimensional state into boxes, hence the name it then ran trials until the pole fell over or the cart hit the end of the track. Negative reinforcement was associated with the final action in the final box and then propagated back through the sequence

53 Generalization In Reinforcement Learning Input Generalisation The discretization causes some problems when the apparatus was initialized in a different position improvement : using the algorithm that adaptively partitions that state space according to the observed variation in the reward

54 Genetic Algorithms And Evolutionary Programming Genetic algorithm starts with a set of one or more individuals that are successful, as measured by a fitness function several choices for the individuals exist, such as: -Entire Agent function s the fitness function is a performance measure or reward function - the analogy to natural selection is greatest

55 Genetic Algorithms And Evolutionary Programming Genetic algorithm simply searches directly in the space of individuals, with the goal of finding one that maximizes the fitness function in a performance measure or reward function search is parallel because each individual in the population can be seen as a separate search

56 Genetic Algorithms And Evolutionary Programming component function of an agent the fitness function is the critic or they can be anything at all that can be framed as an optimization problem Evolutionary process: learn an agent function based on occasional rewards as supplied by the selection function, it can be seen as a form of reinforcement learning

57 Genetic Algorithms And Evolutionary Programming Before we can apply Genetic algorithm to a problem, we need to answer 4 questions : 1. What is the fitness function? 2. How is an individual represented? 3. How are individuals selected? 4. How do individuals reproduce?

58 Genetic Algorithms And Evolutionary Programming What is fitness function? Depends on the problem, but it is a function that takes an individual as input and returns a real number as output

59 Genetic Algorithms And Evolutionary Programming How is an individual represented? In the classic genetic algorithm, an individual is represented as a string over a finite alphabet each element of the string is called a gene in genetic algorithm, we usually use the binary alphabet(1,0) to represent DNA

60 Genetic Algorithms And Evolutionary Programming How are individuals selected? The selection strategy is usually randomized, with the probability of selection proportional to fitness for example, if an individual X scores twice as high as Y on the fitness function, then X is twice as likely to be selected for reproduction than is Y. selection is done with replacement

61 Genetic Algorithms And Evolutionary Programming How do individuals reproduce? By cross-over and mutation all the individuals that have been selected for reproduction are randomly paired for each pair, a cross-over point is randomly chosen cross-over point is a number in the range 1 to N

62 Genetic Algorithms And Evolutionary Programming How do individuals reproduce? One offspring will get genes 1 through 10 from the first parent, and the rest from the second parent the second offspring will get genes 1 through 10 from the second parent, and the rest from the first however, each gene can be altered by random mutation to a different value

63 Conclusion Passive Learning in a Known Environment Passive Learning in an Unknown Environment Active Learning in an Unknown Environment Exploration Learning an Action Value Function Generalization in Reinforcement Learning Genetic Algorithms and Evolutionary Programming

64 Resources And Glossary Information Source Russel, S. and P. Norvig (1995). Artificial Intelligence - A Modern Approach. Upper Saddle River, NJ, Prentice Hall Addition Information and Glossary of Keywords Available at

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Reinforcement Learning by Comparing Immediate Reward

Reinforcement Learning by Comparing Immediate Reward Reinforcement Learning by Comparing Immediate Reward Punit Pandey DeepshikhaPandey Dr. Shishir Kumar Abstract This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate

More information

Lecture 10: Reinforcement Learning

Lecture 10: Reinforcement Learning Lecture 1: Reinforcement Learning Cognitive Systems II - Machine Learning SS 25 Part III: Learning Programs and Strategies Q Learning, Dynamic Programming Lecture 1: Reinforcement Learning p. Motivation

More information

TD(λ) and Q-Learning Based Ludo Players

TD(λ) and Q-Learning Based Ludo Players TD(λ) and Q-Learning Based Ludo Players Majed Alhajry, Faisal Alvi, Member, IEEE and Moataz Ahmed Abstract Reinforcement learning is a popular machine learning technique whose inherent self-learning ability

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email Marilyn A. Walker Jeanne C. Fromer Shrikanth Narayanan walker@research.att.com jeannie@ai.mit.edu shri@research.att.com

More information

A Reinforcement Learning Variant for Control Scheduling

A Reinforcement Learning Variant for Control Scheduling A Reinforcement Learning Variant for Control Scheduling Aloke Guha Honeywell Sensor and System Development Center 3660 Technology Drive Minneapolis MN 55417 Abstract We present an algorithm based on reinforcement

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Varun Raj Kompella, Marijn Stollenga, Matthew Luciw, Juergen Schmidhuber The Swiss AI Lab IDSIA, USI

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

More information

AMULTIAGENT system [1] can be defined as a group of

AMULTIAGENT system [1] can be defined as a group of 156 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 2, MARCH 2008 A Comprehensive Survey of Multiagent Reinforcement Learning Lucian Buşoniu, Robert Babuška,

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

A Pipelined Approach for Iterative Software Process Model

A Pipelined Approach for Iterative Software Process Model A Pipelined Approach for Iterative Software Process Model Ms.Prasanthi E R, Ms.Aparna Rathi, Ms.Vardhani J P, Mr.Vivek Krishna Electronics and Radar Development Establishment C V Raman Nagar, Bangalore-560093,

More information

A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

More information

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words,

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words, A Language-Independent, Data-Oriented Architecture for Grapheme-to-Phoneme Conversion Walter Daelemans and Antal van den Bosch Proceedings ESCA-IEEE speech synthesis conference, New York, September 1994

More information

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering Lecture Details Instructor Course Objectives Tuesday and Thursday, 4:00 pm to 5:15 pm Information Technology and Engineering

More information

Speeding Up Reinforcement Learning with Behavior Transfer

Speeding Up Reinforcement Learning with Behavior Transfer Speeding Up Reinforcement Learning with Behavior Transfer Matthew E. Taylor and Peter Stone Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188 {mtaylor, pstone}@cs.utexas.edu

More information

A Comparison of Annealing Techniques for Academic Course Scheduling

A Comparison of Annealing Techniques for Academic Course Scheduling A Comparison of Annealing Techniques for Academic Course Scheduling M. A. Saleh Elmohamed 1, Paul Coddington 2, and Geoffrey Fox 1 1 Northeast Parallel Architectures Center Syracuse University, Syracuse,

More information

Evolution of Symbolisation in Chimpanzees and Neural Nets

Evolution of Symbolisation in Chimpanzees and Neural Nets Evolution of Symbolisation in Chimpanzees and Neural Nets Angelo Cangelosi Centre for Neural and Adaptive Systems University of Plymouth (UK) a.cangelosi@plymouth.ac.uk Introduction Animal communication

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

Lecture 1: Basic Concepts of Machine Learning

Lecture 1: Basic Concepts of Machine Learning Lecture 1: Basic Concepts of Machine Learning Cognitive Systems - Machine Learning Ute Schmid (lecture) Johannes Rabold (practice) Based on slides prepared March 2005 by Maximilian Röglinger, updated 2010

More information

Objectives. Chapter 2: The Representation of Knowledge. Expert Systems: Principles and Programming, Fourth Edition

Objectives. Chapter 2: The Representation of Knowledge. Expert Systems: Principles and Programming, Fourth Edition Chapter 2: The Representation of Knowledge Expert Systems: Principles and Programming, Fourth Edition Objectives Introduce the study of logic Learn the difference between formal logic and informal logic

More information

While you are waiting... socrative.com, room number SIMLANG2016

While you are waiting... socrative.com, room number SIMLANG2016 While you are waiting... socrative.com, room number SIMLANG2016 Simulating Language Lecture 4: When will optimal signalling evolve? Simon Kirby simon@ling.ed.ac.uk T H E U N I V E R S I T Y O H F R G E

More information

Learning and Transferring Relational Instance-Based Policies

Learning and Transferring Relational Instance-Based Policies Learning and Transferring Relational Instance-Based Policies Rocío García-Durán, Fernando Fernández y Daniel Borrajo Universidad Carlos III de Madrid Avda de la Universidad 30, 28911-Leganés (Madrid),

More information

Grade 6: Correlated to AGS Basic Math Skills

Grade 6: Correlated to AGS Basic Math Skills Grade 6: Correlated to AGS Basic Math Skills Grade 6: Standard 1 Number Sense Students compare and order positive and negative integers, decimals, fractions, and mixed numbers. They find multiples and

More information

The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

More information

Major Milestones, Team Activities, and Individual Deliverables

Major Milestones, Team Activities, and Individual Deliverables Major Milestones, Team Activities, and Individual Deliverables Milestone #1: Team Semester Proposal Your team should write a proposal that describes project objectives, existing relevant technology, engineering

More information

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS 1 CALIFORNIA CONTENT STANDARDS: Chapter 1 ALGEBRA AND WHOLE NUMBERS Algebra and Functions 1.4 Students use algebraic

More information

Seminar - Organic Computing

Seminar - Organic Computing Seminar - Organic Computing Self-Organisation of OC-Systems Markus Franke 25.01.2006 Typeset by FoilTEX Timetable 1. Overview 2. Characteristics of SO-Systems 3. Concern with Nature 4. Design-Concepts

More information

Using focal point learning to improve human machine tacit coordination

Using focal point learning to improve human machine tacit coordination DOI 10.1007/s10458-010-9126-5 Using focal point learning to improve human machine tacit coordination InonZuckerman SaritKraus Jeffrey S. Rosenschein The Author(s) 2010 Abstract We consider an automated

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

An empirical study of learning speed in backpropagation

An empirical study of learning speed in backpropagation Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science 1988 An empirical study of learning speed in backpropagation networks Scott E. Fahlman Carnegie

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

Intelligent Agents. Chapter 2. Chapter 2 1

Intelligent Agents. Chapter 2. Chapter 2 1 Intelligent Agents Chapter 2 Chapter 2 1 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types The structure of agents Chapter 2 2 Agents

More information

Algebra 2- Semester 2 Review

Algebra 2- Semester 2 Review Name Block Date Algebra 2- Semester 2 Review Non-Calculator 5.4 1. Consider the function f x 1 x 2. a) Describe the transformation of the graph of y 1 x. b) Identify the asymptotes. c) What is the domain

More information

RANKING AND UNRANKING LEFT SZILARD LANGUAGES. Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A ER E P S I M S

RANKING AND UNRANKING LEFT SZILARD LANGUAGES. Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A ER E P S I M S N S ER E P S I M TA S UN A I S I T VER RANKING AND UNRANKING LEFT SZILARD LANGUAGES Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A-1997-2 UNIVERSITY OF TAMPERE DEPARTMENT OF

More information

Integrating simulation into the engineering curriculum: a case study

Integrating simulation into the engineering curriculum: a case study Integrating simulation into the engineering curriculum: a case study Baidurja Ray and Rajesh Bhaskaran Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA E-mail:

More information

Proof Theory for Syntacticians

Proof Theory for Syntacticians Department of Linguistics Ohio State University Syntax 2 (Linguistics 602.02) January 5, 2012 Logics for Linguistics Many different kinds of logic are directly applicable to formalizing theories in syntax

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

The Strong Minimalist Thesis and Bounded Optimality

The Strong Minimalist Thesis and Bounded Optimality The Strong Minimalist Thesis and Bounded Optimality DRAFT-IN-PROGRESS; SEND COMMENTS TO RICKL@UMICH.EDU Richard L. Lewis Department of Psychology University of Michigan 27 March 2010 1 Purpose of this

More information

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology Tiancheng Zhao CMU-LTI-16-006 Language Technologies Institute School of Computer Science Carnegie Mellon

More information

Arizona s College and Career Ready Standards Mathematics

Arizona s College and Career Ready Standards Mathematics Arizona s College and Career Ready Mathematics Mathematical Practices Explanations and Examples First Grade ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS FOR STUDENTS State Board Approved June

More information

Firms and Markets Saturdays Summer I 2014

Firms and Markets Saturdays Summer I 2014 PRELIMINARY DRAFT VERSION. SUBJECT TO CHANGE. Firms and Markets Saturdays Summer I 2014 Professor Thomas Pugel Office: Room 11-53 KMC E-mail: tpugel@stern.nyu.edu Tel: 212-998-0918 Fax: 212-995-4212 This

More information

Evolution of Collective Commitment during Teamwork

Evolution of Collective Commitment during Teamwork Fundamenta Informaticae 56 (2003) 329 371 329 IOS Press Evolution of Collective Commitment during Teamwork Barbara Dunin-Kȩplicz Institute of Informatics, Warsaw University Banacha 2, 02-097 Warsaw, Poland

More information

A General Class of Noncontext Free Grammars Generating Context Free Languages

A General Class of Noncontext Free Grammars Generating Context Free Languages INFORMATION AND CONTROL 43, 187-194 (1979) A General Class of Noncontext Free Grammars Generating Context Free Languages SARWAN K. AGGARWAL Boeing Wichita Company, Wichita, Kansas 67210 AND JAMES A. HEINEN

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS

COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS L. Descalço 1, Paula Carvalho 1, J.P. Cruz 1, Paula Oliveira 1, Dina Seabra 2 1 Departamento de Matemática, Universidade de Aveiro (PORTUGAL)

More information

Learning to Schedule Straight-Line Code

Learning to Schedule Straight-Line Code Learning to Schedule Straight-Line Code Eliot Moss, Paul Utgoff, John Cavazos Doina Precup, Darko Stefanović Dept. of Comp. Sci., Univ. of Mass. Amherst, MA 01003 Carla Brodley, David Scheeff Sch. of Elec.

More information

Guidelines for Incorporating Publication into a Thesis. September, 2015

Guidelines for Incorporating Publication into a Thesis. September, 2015 Guidelines for Incorporating Publication into a Thesis September, 2015 Contents 1 Executive Summary... 2 2 More information... 2 3 Guideline Provisions... 2 3.1 Background... 2 3.2 Key Principles... 3

More information

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Proceedings of 28 ISFA 28 International Symposium on Flexible Automation Atlanta, GA, USA June 23-26, 28 ISFA28U_12 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Amit Gil, Helman Stern, Yael Edan, and

More information

The Evolution of Random Phenomena

The Evolution of Random Phenomena The Evolution of Random Phenomena A Look at Markov Chains Glen Wang glenw@uchicago.edu Splash! Chicago: Winter Cascade 2012 Lecture 1: What is Randomness? What is randomness? Can you think of some examples

More information

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics Machine Learning from Garden Path Sentences: The Application of Computational Linguistics http://dx.doi.org/10.3991/ijet.v9i6.4109 J.L. Du 1, P.F. Yu 1 and M.L. Li 2 1 Guangdong University of Foreign Studies,

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Evolutive Neural Net Fuzzy Filtering: Basic Description

Evolutive Neural Net Fuzzy Filtering: Basic Description Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

More information

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC On Human Computer Interaction, HCI Dr. Saif al Zahir Electrical and Computer Engineering Department UBC Human Computer Interaction HCI HCI is the study of people, computer technology, and the ways these

More information

High-level Reinforcement Learning in Strategy Games

High-level Reinforcement Learning in Strategy Games High-level Reinforcement Learning in Strategy Games Christopher Amato Department of Computer Science University of Massachusetts Amherst, MA 01003 USA camato@cs.umass.edu Guy Shani Department of Computer

More information

The dilemma of Saussurean communication

The dilemma of Saussurean communication ELSEVIER BioSystems 37 (1996) 31-38 The dilemma of Saussurean communication Michael Oliphant Deparlment of Cognitive Science, University of California, San Diego, CA, USA Abstract A Saussurean communication

More information

First Grade Standards

First Grade Standards These are the standards for what is taught throughout the year in First Grade. It is the expectation that these skills will be reinforced after they have been taught. Mathematical Practice Standards Taught

More information

Improving Conceptual Understanding of Physics with Technology

Improving Conceptual Understanding of Physics with Technology INTRODUCTION Improving Conceptual Understanding of Physics with Technology Heidi Jackman Research Experience for Undergraduates, 1999 Michigan State University Advisors: Edwin Kashy and Michael Thoennessen

More information

Physics 270: Experimental Physics

Physics 270: Experimental Physics 2017 edition Lab Manual Physics 270 3 Physics 270: Experimental Physics Lecture: Lab: Instructor: Office: Email: Tuesdays, 2 3:50 PM Thursdays, 2 4:50 PM Dr. Uttam Manna 313C Moulton Hall umanna@ilstu.edu

More information

Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I

Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I Session 1793 Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I John Greco, Ph.D. Department of Electrical and Computer Engineering Lafayette College Easton, PA 18042 Abstract

More information

STA 225: Introductory Statistics (CT)

STA 225: Introductory Statistics (CT) Marshall University College of Science Mathematics Department STA 225: Introductory Statistics (CT) Course catalog description A critical thinking course in applied statistical reasoning covering basic

More information

1 st Quarter (September, October, November) August/September Strand Topic Standard Notes Reading for Literature

1 st Quarter (September, October, November) August/September Strand Topic Standard Notes Reading for Literature 1 st Grade Curriculum Map Common Core Standards Language Arts 2013 2014 1 st Quarter (September, October, November) August/September Strand Topic Standard Notes Reading for Literature Key Ideas and Details

More information

DIANA: A computer-supported heterogeneous grouping system for teachers to conduct successful small learning groups

DIANA: A computer-supported heterogeneous grouping system for teachers to conduct successful small learning groups Computers in Human Behavior Computers in Human Behavior 23 (2007) 1997 2010 www.elsevier.com/locate/comphumbeh DIANA: A computer-supported heterogeneous grouping system for teachers to conduct successful

More information

SOFTWARE EVALUATION TOOL

SOFTWARE EVALUATION TOOL SOFTWARE EVALUATION TOOL Kyle Higgins Randall Boone University of Nevada Las Vegas rboone@unlv.nevada.edu Higgins@unlv.nevada.edu N.B. This form has not been fully validated and is still in development.

More information

Probability and Game Theory Course Syllabus

Probability and Game Theory Course Syllabus Probability and Game Theory Course Syllabus DATE ACTIVITY CONCEPT Sunday Learn names; introduction to course, introduce the Battle of the Bismarck Sea as a 2-person zero-sum game. Monday Day 1 Pre-test

More information

Math 96: Intermediate Algebra in Context

Math 96: Intermediate Algebra in Context : Intermediate Algebra in Context Syllabus Spring Quarter 2016 Daily, 9:20 10:30am Instructor: Lauri Lindberg Office Hours@ tutoring: Tutoring Center (CAS-504) 8 9am & 1 2pm daily STEM (Math) Center (RAI-338)

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

An OO Framework for building Intelligence and Learning properties in Software Agents

An OO Framework for building Intelligence and Learning properties in Software Agents An OO Framework for building Intelligence and Learning properties in Software Agents José A. R. P. Sardinha, Ruy L. Milidiú, Carlos J. P. Lucena, Patrick Paranhos Abstract Software agents are defined as

More information

Introduction to Simulation

Introduction to Simulation Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

More information

ME 443/643 Design Techniques in Mechanical Engineering. Lecture 1: Introduction

ME 443/643 Design Techniques in Mechanical Engineering. Lecture 1: Introduction ME 443/643 Design Techniques in Mechanical Engineering Lecture 1: Introduction Instructor: Dr. Jagadeep Thota Instructor Introduction Born in Bangalore, India. B.S. in ME @ Bangalore University, India.

More information

Diagnostic Test. Middle School Mathematics

Diagnostic Test. Middle School Mathematics Diagnostic Test Middle School Mathematics Copyright 2010 XAMonline, Inc. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by

More information

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C Using and applying mathematics objectives (Problem solving, Communicating and Reasoning) Select the maths to use in some classroom

More information

This scope and sequence assumes 160 days for instruction, divided among 15 units.

This scope and sequence assumes 160 days for instruction, divided among 15 units. In previous grades, students learned strategies for multiplication and division, developed understanding of structure of the place value system, and applied understanding of fractions to addition and subtraction

More information

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Tomi Kinnunen and Ismo Kärkkäinen University of Joensuu, Department of Computer Science, P.O. Box 111, 80101 JOENSUU,

More information

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study Purdue Data Summit 2017 Communication of Big Data Analytics New SAT Predictive Validity Case Study Paul M. Johnson, Ed.D. Associate Vice President for Enrollment Management, Research & Enrollment Information

More information

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses Thomas F.C. Woodhall Masters Candidate in Civil Engineering Queen s University at Kingston,

More information

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley Challenges in Deep Reinforcement Learning Sergey Levine UC Berkeley Discuss some recent work in deep reinforcement learning Present a few major challenges Show some of our recent work toward tackling

More information

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus

Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus Language Acquisition Fall 2010/Winter 2011 Lexical Categories Afra Alishahi, Heiner Drenhaus Computational Linguistics and Phonetics Saarland University Children s Sensitivity to Lexical Categories Look,

More information

Measurement. When Smaller Is Better. Activity:

Measurement. When Smaller Is Better. Activity: Measurement Activity: TEKS: When Smaller Is Better (6.8) Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

STUDENT MOODLE ORIENTATION

STUDENT MOODLE ORIENTATION BAKER UNIVERSITY SCHOOL OF PROFESSIONAL AND GRADUATE STUDIES STUDENT MOODLE ORIENTATION TABLE OF CONTENTS Introduction to Moodle... 2 Online Aptitude Assessment... 2 Moodle Icons... 6 Logging In... 8 Page

More information

DIDACTIC MODEL BRIDGING A CONCEPT WITH PHENOMENA

DIDACTIC MODEL BRIDGING A CONCEPT WITH PHENOMENA DIDACTIC MODEL BRIDGING A CONCEPT WITH PHENOMENA Beba Shternberg, Center for Educational Technology, Israel Michal Yerushalmy University of Haifa, Israel The article focuses on a specific method of constructing

More information

Written by Wendy Osterman

Written by Wendy Osterman Pre-Algebra Written by Wendy Osterman Editor: Alaska Hults Illustrator: Corbin Hillam Designer/Production: Moonhee Pak/Cari Helstrom Cover Designer: Barbara Peterson Art Director: Tom Cochrane Project

More information

12- A whirlwind tour of statistics

12- A whirlwind tour of statistics CyLab HT 05-436 / 05-836 / 08-534 / 08-734 / 19-534 / 19-734 Usable Privacy and Security TP :// C DU February 22, 2016 y & Secu rivac rity P le ratory bo La Lujo Bauer, Nicolas Christin, and Abby Marsh

More information

Cooperative Game Theoretic Models for Decision-Making in Contexts of Library Cooperation 1

Cooperative Game Theoretic Models for Decision-Making in Contexts of Library Cooperation 1 Cooperative Game Theoretic Models for Decision-Making in Contexts of Library Cooperation 1 Robert M. Hayes Abstract This article starts, in Section 1, with a brief summary of Cooperative Economic Game

More information

NCEO Technical Report 27

NCEO Technical Report 27 Home About Publications Special Topics Presentations State Policies Accommodations Bibliography Teleconferences Tools Related Sites Interpreting Trends in the Performance of Special Education Students

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Language properties and Grammar of Parallel and Series Parallel Languages

Language properties and Grammar of Parallel and Series Parallel Languages arxiv:1711.01799v1 [cs.fl] 6 Nov 2017 Language properties and Grammar of Parallel and Series Parallel Languages Mohana.N 1, Kalyani Desikan 2 and V.Rajkumar Dare 3 1 Division of Mathematics, School of

More information

A BLENDED MODEL FOR NON-TRADITIONAL TEACHING AND LEARNING OF MATHEMATICS

A BLENDED MODEL FOR NON-TRADITIONAL TEACHING AND LEARNING OF MATHEMATICS Readings in Technology and Education: Proceedings of ICICTE 2010 407 A BLENDED MODEL FOR NON-TRADITIONAL TEACHING AND LEARNING OF MATHEMATICS Wajeeh Daher Al-Qasemi Academic College of Education Israel

More information

Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking

Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking Catherine Pearn The University of Melbourne Max Stephens The University of Melbourne

More information

Predicting Students Performance with SimStudent: Learning Cognitive Skills from Observation

Predicting Students Performance with SimStudent: Learning Cognitive Skills from Observation School of Computer Science Human-Computer Interaction Institute Carnegie Mellon University Year 2007 Predicting Students Performance with SimStudent: Learning Cognitive Skills from Observation Noboru Matsuda

More information

Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

More information

Software Maintenance

Software Maintenance 1 What is Software Maintenance? Software Maintenance is a very broad activity that includes error corrections, enhancements of capabilities, deletion of obsolete capabilities, and optimization. 2 Categories

More information

Discriminative Learning of Beam-Search Heuristics for Planning

Discriminative Learning of Beam-Search Heuristics for Planning Discriminative Learning of Beam-Search Heuristics for Planning Yuehua Xu School of EECS Oregon State University Corvallis,OR 97331 xuyu@eecs.oregonstate.edu Alan Fern School of EECS Oregon State University

More information