Cultivating disaster donors

Size: px
Start display at page:

Download "Cultivating disaster donors"

Transcription

1 Cultivating disaster donors A case application of scalable analytics on massive data Ilya O. Ryzhov 1 Bin Han 2 Jelena Bradić 3 1 Robert H. Smith School of Business University of Maryland, College Park, MD Applied Mathematics, Statistics, and Scientific Computation University of Maryland, College Park, MD Department of Mathematics University of California San Diego, La Jolla, CA M&SOM Conference INSEAD July 29, / 35

2 Outline 1 Introduction 2 Statistical learning for massive data Statistical methodology Results and insights 3 Prescriptive analytics with optimal learning 4 Conclusions 2 / 35

3 Outline 1 Introduction 2 Statistical learning for massive data Statistical methodology Results and insights 3 Prescriptive analytics with optimal learning 4 Conclusions 3 / 35

4 STAART data: donors, disasters and designs 4 / 35

5 STAART data: layers and contents (a) All communications. (b) Gifts only. 5 / 35

6 Segment-specific strategies Has this person donated within the past 6 months? Did the appeal use dynamic ask amounts? Are both of these statements true? Some designs may have segment-specific effects. 6 / 35

7 Research objectives What are the determinants of campaign success rates? Are dynamic donation options an effective donor retention strategy? Should the stories emphasize relief or preparedness? Do gift items help convince donors to return? Does the most effective strategy differ by donor segment? How can we predict the effectiveness of the next campaign? How can we design the next campaign to be as effective as possible? Overall goal: provide insights into effective donor retention strategies, and help guide the development of new campaigns. 7 / 35

8 Research challenges Unobservable information: donor behaviour is affected by factors that the Red Cross cannot observe (PII) These factors have been widely studied based on economic panel data (Brown & Minty 2008, Brown et al. 2009, List 2011) However, we do not get to see them when actually designing a campaign Massive data: standard statistical methods work poorly when dealing with 8.6 million communications A widespread (yet inaccurate) view Large sample size is a good thing and it never causes trouble for statistical analysis. 8 / 35

9 Outline 1 Introduction 2 Statistical learning for massive data Statistical methodology Results and insights 3 Prescriptive analytics with optimal learning 4 Conclusions 9 / 35

10 Predicting the outcome of a single communication For communication j with donor i, we use the logistic regression model ( ) pij log = β 0 + β T x ij, 1 p ij where p ij probability that this communication will be successful x ij a p-vector of features of the communication β effects of the features We will modify this basic model to deal with the structure of the data. 10 / 35

11 Regression features The features of the jth communication with donor i are obtained from the data: Designs: 1 Does the communication use dynamic donation options? 2 Does the communication include a supporter card? 3 Does the communication have an option to donate online? 4 Which type of story is used for the communication? Donors: 1 Is the donor classified as Lapsed? (Acquisition? Renewal?) 2 Does the donor belong to the high donation class? 3 What is the recency of the donor? Cross terms: 1 Are we sending dynamic options to a Lapsed donor? 2 Are we sending a card to a donor with 0-6 mos. recency? Other features (e.g. previous gifts received from i) 11 / 35

12 Donor-level effects in panel data We are studying panel data, where communications are grouped by donor. We write ( ) pij log = β 0 + β T x ij +b i, 1 p ij where b i is an effect specific to donor account i. We use a random-effect model, where b i N ( 0,s 2). 12 / 35

13 Why use random effects? Donor behaviour is affected by factors that are unobservable to the Red Cross (income, demographics, etc.) The dataset represents a sample of a larger population, and the donor pool changes over time A fixed-effect model is computationally intractable (there are over 1 million donors) 13 / 35

14 Penalized maximum-likelihood estimation We choose β and s 2 by solving (β,s ) = arg max β,s logl(β,s), where l is the relevant likelihood function To focus on the key drivers of donor retention, we solve (β,s ) = arg min β,s logl(β,s)+λ β 1, with an extra penalty for non-zero values of β Lasso method: trade-off between accuracy and conciseness of the model 14 / 35

15 Why use Lasso? Typically λ is chosen to optimize criteria such as AIC, BIC, or cross-validation Thus, the regularized model will actually have more predictive power than the original model (with λ = 0) Lasso also addresses the problem of empirical correlation between columns of data The output has an intuitive managerial interpretation (identifying the determinants of success) 15 / 35

16 The challenge of massive data The likelihood function l(β,s) = I i=1 N i j=1 ( e xt ij β+b i 1 + e xt ij β+b i ) yij ( e xt ij β+b i is extremely time-consuming to optimize for 8.6 million communications ) 1 yij e b2 i 2s 2 2πs 2 db i A fixed-effect model avoids numerical integration, but has a much larger p The models work on paper, but the software cannot handle massive data 16 / 35

17 Illustration of small-sample analysis 17 / 35

18 Illustration of small-sample analysis 17 / 35

19 Illustration of small-sample analysis 17 / 35

20 Illustration of small-sample analysis 17 / 35

21 Illustration of small-sample analysis 17 / 35

22 Illustration of small-sample analysis 17 / 35

23 Illustration of small-sample analysis 17 / 35

24 Discussion of small-sample analysis The size of each small sample can be around N 0.7, a small fraction of the overall size of the dataset Computational speed-up is much more than 10 times, so it is easy to analyze many samples A feature is significant if it is selected in over 50% of small samples Theoretical results show that we can control the bias of the procedure and the number of false positives (Kleiner et al. 2012, Bradić 2013) 18 / 35

25 Summary of our approach 1 Use a logistic regression model to predict success/failure of an communication based on donor/design characteristics 2 Add random effects to compensate for unobservable variation between donors 3 Reduce model size and extract key determinants through model selection and the Lasso method 4 Handle massive data by considering many small samples from the big dataset 19 / 35

26 Model I: design information only Number of selected features over 120 small samples (8.6M communications, 197 total features): 20 / 35

27 Model I: design information only Highlights of the analysis (notable positive and negative effects): Feature Avg. coefficient Std. deviation Card Dynamic options/renewal type Preparedness story Renewal type Allow choice of fund Dynamic options/acquisition type Dynamic options/lapsed type Generic story/generic type The effect of dynamic options heavily depends on the campaign type. 21 / 35

28 Model I: design information only Breakdown of p-values for selected features across small samples: 22 / 35

29 Model II: design/segmentation information Number of selected features over 53 small samples (4.3M communications, 310 total features): 23 / 35

30 Model II: design/segmentation information Highlights of the analysis (notable positive and negative effects): Feature Avg. coefficient Std. deviation Allow choice of fund/0-6 mos. recency Card Dynamic options/0-6 mos. recency Preparedness story mos. recency mos. recency Generic story Specific disaster story Preparedness stories and supporter cards continue to be effective. 24 / 35

31 Model II: design/segmentation information Breakdown of p-values for selected features across small samples: 25 / 35

32 Model III: campaign-oriented We also studied the data at an aggregate (campaign) level The model ( ) pij log = β 0 + β T x ij + b i, 1 p ij is the same, but p ij is now the success rate of the jth campaign on the ith donor segment There are 60 campaigns on 952 segments, so no small-sample analysis is required We use this model to corroborate the results of the first two 26 / 35

33 Model III: campaign-oriented Highlights of the analysis (notable positive and negative effects): Feature Estimate Std. deviation Allow choice of fund/0-6 mos. recency Card Dynamic options/0-6 mos. recency Preparedness story mos. recency Dynamic options/lapsed type Generic story Specific disaster story This corroborates our findings on dynamic options, story types, fund choices, and supporter cards. 27 / 35

34 Model III: reducing empirical correlation Lasso eliminates columns of data with strong empirical correlation: 28 / 35

35 Model III: reducing empirical correlation Lasso eliminates columns of data with strong empirical correlation: 28 / 35

36 Summary of insights 1 Dynamic options: This strategy works well for current supporters of the program, but not for one-time or lapsed donors 2 Relief vs. preparedness: Preparedness stories comprise about 10% of RC appeals, but appear to be very effective 3 Gift items: Among all the various items, only supporter cards appear to contribute to campaign success 4 Donors, designs, and disasters: Donors appear to make little distinction between disaster types 29 / 35

37 Outline 1 Introduction 2 Statistical learning for massive data Statistical methodology Results and insights 3 Prescriptive analytics with optimal learning 4 Conclusions 30 / 35

38 From descriptive to prescriptive 31 / 35

39 Decision-making with optimal learning Experience-based learning: improve the belief model in real time, after every new campaign Requires a concise model that can be updated quickly and easily The empirical results can be used to initialize the model We then use the most recent beliefs to design the next campaign Anticipatory learning: forecasting future changes the model before they occur Requires a way to measure the uncertainty or potential for improvement of the current model The margin for error factors into the next action as well 32 / 35

40 Outline 1 Introduction 2 Statistical learning for massive data Statistical methodology Results and insights 3 Prescriptive analytics with optimal learning 4 Conclusions 33 / 35

41 Conclusions Model selection and small-sample analysis can help extract key features from a massive dataset Statistical learning provides insights into dynamic options, supporter cards, preparedness stories, and fund choice Once key features have been selected, we can adapt the model to new information very quickly We have an algorithmic procedure for designing new campaigns; experiments are in progress 34 / 35

42 References Bradić, J. (2013) Efficient support recovery via weighted maximum-contrast subagging. Submitted for publication. Brown, P.H. & Minty, J.H. (2008) Media coverage and charitable giving after the 2004 tsunami. Southern Economic Journal 75(1), Brown, S., Harris, M.N. & Taylor, K. (2011) Modeling charitable donations to an unexpected natural disaster: evidence from the U.S. Panel Study of Income Dynamics. Technical report, Department of Economics, University of Sheffield. Kleiner, A., Talwalkar, A., Sarkar, P. & Jordan, M.I. (2012) A scalable bootstrap for massive data. Arxiv preprint, arxiv: List, J.A. (2011) The market for charitable giving. Journal of Economic Perspectives 25(2), Ryzhov, I.O., Han, B., Bradić, J. & Bradić, A. (2013) Cultivating disaster donors: a case application of scalable analytics on massive data. In revision at Management Science. 35 / 35

The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

College Pricing. Ben Johnson. April 30, Abstract. Colleges in the United States price discriminate based on student characteristics

College Pricing. Ben Johnson. April 30, Abstract. Colleges in the United States price discriminate based on student characteristics College Pricing Ben Johnson April 30, 2012 Abstract Colleges in the United States price discriminate based on student characteristics such as ability and income. This paper develops a model of college

More information

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study

Purdue Data Summit Communication of Big Data Analytics. New SAT Predictive Validity Case Study Purdue Data Summit 2017 Communication of Big Data Analytics New SAT Predictive Validity Case Study Paul M. Johnson, Ed.D. Associate Vice President for Enrollment Management, Research & Enrollment Information

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

More information

The Effect of Income on Educational Attainment: Evidence from State Earned Income Tax Credit Expansions

The Effect of Income on Educational Attainment: Evidence from State Earned Income Tax Credit Expansions The Effect of Income on Educational Attainment: Evidence from State Earned Income Tax Credit Expansions Katherine Michelmore Policy Analysis and Management Cornell University km459@cornell.edu September

More information

Comparison of network inference packages and methods for multiple networks inference

Comparison of network inference packages and methods for multiple networks inference Comparison of network inference packages and methods for multiple networks inference Nathalie Villa-Vialaneix http://www.nathalievilla.org nathalie.villa@univ-paris1.fr 1ères Rencontres R - BoRdeaux, 3

More information

Access Center Assessment Report

Access Center Assessment Report Access Center Assessment Report The purpose of this report is to provide a description of the demographics as well as higher education access and success of Access Center students at CSU. College access

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

More information

Redirected Inbound Call Sampling An Example of Fit for Purpose Non-probability Sample Design

Redirected Inbound Call Sampling An Example of Fit for Purpose Non-probability Sample Design Redirected Inbound Call Sampling An Example of Fit for Purpose Non-probability Sample Design Burton Levine Karol Krotki NISS/WSS Workshop on Inference from Nonprobability Samples September 25, 2017 RTI

More information

Envision Success FY2014-FY2017 Strategic Goal 1: Enhancing pathways that guide students to achieve their academic, career, and personal goals

Envision Success FY2014-FY2017 Strategic Goal 1: Enhancing pathways that guide students to achieve their academic, career, and personal goals Strategic Goal 1: Enhancing pathways that guide students to achieve their academic, career, and personal goals Institutional Priority: Improve the front door experience Identify metrics appropriate to

More information

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan Gong, Li Deng Department of Electrical and Computer Engineering,

More information

Software Maintenance

Software Maintenance 1 What is Software Maintenance? Software Maintenance is a very broad activity that includes error corrections, enhancements of capabilities, deletion of obsolete capabilities, and optimization. 2 Categories

More information

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks

Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks Devendra Singh Chaplot, Eunhee Rhim, and Jihie Kim Samsung Electronics Co., Ltd. Seoul, South Korea {dev.chaplot,eunhee.rhim,jihie.kim}@samsung.com

More information

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

More information

Junior (61-90 semester hours or quarter hours) Two-year Colleges Number of Students Tested at Each Institution July 2008 through June 2013

Junior (61-90 semester hours or quarter hours) Two-year Colleges Number of Students Tested at Each Institution July 2008 through June 2013 Number of Students Tested at Each Institution July 2008 through June 2013 List of Institutions Number of School Name Students AIKEN TECHNICAL COLLEGE, SC 119 ARKANSAS NORTHEASTERN COLLEGE, AR 66 ASHLAND

More information

Psychometric Research Brief Office of Shared Accountability

Psychometric Research Brief Office of Shared Accountability August 2012 Psychometric Research Brief Office of Shared Accountability Linking Measures of Academic Progress in Mathematics and Maryland School Assessment in Mathematics Huafang Zhao, Ph.D. This brief

More information

Probability and Statistics Curriculum Pacing Guide

Probability and Statistics Curriculum Pacing Guide Unit 1 Terms PS.SPMJ.3 PS.SPMJ.5 Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods

More information

Why Did My Detector Do That?!

Why Did My Detector Do That?! Why Did My Detector Do That?! Predicting Keystroke-Dynamics Error Rates Kevin Killourhy and Roy Maxion Dependable Systems Laboratory Computer Science Department Carnegie Mellon University 5000 Forbes Ave,

More information

Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

More information

Higher Education Six-Year Plans

Higher Education Six-Year Plans Higher Education Six-Year Plans 2018-2024 House Appropriations Committee Retreat November 15, 2017 Tony Maggio, Staff Background The Higher Education Opportunity Act of 2011 included the requirement for

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

Detailed course syllabus

Detailed course syllabus Detailed course syllabus 1. Linear regression model. Ordinary least squares method. This introductory class covers basic definitions of econometrics, econometric model, and economic data. Classification

More information

Learning to Rank with Selection Bias in Personal Search

Learning to Rank with Selection Bias in Personal Search Learning to Rank with Selection Bias in Personal Search Xuanhui Wang, Michael Bendersky, Donald Metzler, Marc Najork Google Inc. Mountain View, CA 94043 {xuanhui, bemike, metzler, najork}@google.com ABSTRACT

More information

Understanding and Interpreting the NRC s Data-Based Assessment of Research-Doctorate Programs in the United States (2010)

Understanding and Interpreting the NRC s Data-Based Assessment of Research-Doctorate Programs in the United States (2010) Understanding and Interpreting the NRC s Data-Based Assessment of Research-Doctorate Programs in the United States (2010) Jaxk Reeves, SCC Director Kim Love-Myers, SCC Associate Director Presented at UGA

More information

A GENERIC SPLIT PROCESS MODEL FOR ASSET MANAGEMENT DECISION-MAKING

A GENERIC SPLIT PROCESS MODEL FOR ASSET MANAGEMENT DECISION-MAKING A GENERIC SPLIT PROCESS MODEL FOR ASSET MANAGEMENT DECISION-MAKING Yong Sun, a * Colin Fidge b and Lin Ma a a CRC for Integrated Engineering Asset Management, School of Engineering Systems, Queensland

More information

An Empirical Analysis of the Effects of Mexican American Studies Participation on Student Achievement within Tucson Unified School District

An Empirical Analysis of the Effects of Mexican American Studies Participation on Student Achievement within Tucson Unified School District An Empirical Analysis of the Effects of Mexican American Studies Participation on Student Achievement within Tucson Unified School District Report Submitted June 20, 2012, to Willis D. Hawley, Ph.D., Special

More information

ABILITY SORTING AND THE IMPORTANCE OF COLLEGE QUALITY TO STUDENT ACHIEVEMENT: EVIDENCE FROM COMMUNITY COLLEGES

ABILITY SORTING AND THE IMPORTANCE OF COLLEGE QUALITY TO STUDENT ACHIEVEMENT: EVIDENCE FROM COMMUNITY COLLEGES ABILITY SORTING AND THE IMPORTANCE OF COLLEGE QUALITY TO STUDENT ACHIEVEMENT: EVIDENCE FROM COMMUNITY COLLEGES Kevin Stange Ford School of Public Policy University of Michigan Ann Arbor, MI 48109-3091

More information

How to Judge the Quality of an Objective Classroom Test

How to Judge the Quality of an Objective Classroom Test How to Judge the Quality of an Objective Classroom Test Technical Bulletin #6 Evaluation and Examination Service The University of Iowa (319) 335-0356 HOW TO JUDGE THE QUALITY OF AN OBJECTIVE CLASSROOM

More information

JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD (410)

JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD (410) JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218. (410) 516 5728 wrightj@jhu.edu EDUCATION Harvard University 1993-1997. Ph.D., Economics (1997).

More information

NBER WORKING PAPER SERIES WOULD THE ELIMINATION OF AFFIRMATIVE ACTION AFFECT HIGHLY QUALIFIED MINORITY APPLICANTS? EVIDENCE FROM CALIFORNIA AND TEXAS

NBER WORKING PAPER SERIES WOULD THE ELIMINATION OF AFFIRMATIVE ACTION AFFECT HIGHLY QUALIFIED MINORITY APPLICANTS? EVIDENCE FROM CALIFORNIA AND TEXAS NBER WORKING PAPER SERIES WOULD THE ELIMINATION OF AFFIRMATIVE ACTION AFFECT HIGHLY QUALIFIED MINORITY APPLICANTS? EVIDENCE FROM CALIFORNIA AND TEXAS David Card Alan B. Krueger Working Paper 10366 http://www.nber.org/papers/w10366

More information

Predicting the Performance and Success of Construction Management Graduate Students using GRE Scores

Predicting the Performance and Success of Construction Management Graduate Students using GRE Scores Predicting the Performance and of Construction Management Graduate Students using GRE Scores Joel Ochieng Wao, PhD, Kimberly Baylor Bivins, M.Eng and Rogers Hunt III, M.Eng Tuskegee University, Tuskegee,

More information

12- A whirlwind tour of statistics

12- A whirlwind tour of statistics CyLab HT 05-436 / 05-836 / 08-534 / 08-734 / 19-534 / 19-734 Usable Privacy and Security TP :// C DU February 22, 2016 y & Secu rivac rity P le ratory bo La Lujo Bauer, Nicolas Christin, and Abby Marsh

More information

Business Analytics and Information Tech COURSE NUMBER: 33:136:494 COURSE TITLE: Data Mining and Business Intelligence

Business Analytics and Information Tech COURSE NUMBER: 33:136:494 COURSE TITLE: Data Mining and Business Intelligence Business Analytics and Information Tech COURSE NUMBER: 33:136:494 COURSE TITLE: Data Mining and Business Intelligence COURSE DESCRIPTION This course presents computing tools and concepts for all stages

More information

LANGUAGE DIVERSITY AND ECONOMIC DEVELOPMENT. Paul De Grauwe. University of Leuven

LANGUAGE DIVERSITY AND ECONOMIC DEVELOPMENT. Paul De Grauwe. University of Leuven Preliminary draft LANGUAGE DIVERSITY AND ECONOMIC DEVELOPMENT Paul De Grauwe University of Leuven January 2006 I am grateful to Michel Beine, Hans Dewachter, Geert Dhaene, Marco Lyrio, Pablo Rovira Kaltwasser,

More information

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS 1 CALIFORNIA CONTENT STANDARDS: Chapter 1 ALGEBRA AND WHOLE NUMBERS Algebra and Functions 1.4 Students use algebraic

More information

BMBF Project ROBUKOM: Robust Communication Networks

BMBF Project ROBUKOM: Robust Communication Networks BMBF Project ROBUKOM: Robust Communication Networks Arie M.C.A. Koster Christoph Helmberg Andreas Bley Martin Grötschel Thomas Bauschert supported by BMBF grant 03MS616A: ROBUKOM Robust Communication Networks,

More information

OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

More information

Evaluation of ecodriving performances and teaching method: comparing training and simple advice

Evaluation of ecodriving performances and teaching method: comparing training and simple advice EJTIR Issue 14(3), 014 pp. 01-13 ISSN: 1567-7141 www.ejtir.tbm.tudelft.nl Evaluation of ecodriving performances and teaching method: comparing training and simple advice Cindie Andrieu 1, Guillaume Saint

More information

A Model to Predict 24-Hour Urinary Creatinine Level Using Repeated Measurements

A Model to Predict 24-Hour Urinary Creatinine Level Using Repeated Measurements Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2006 A Model to Predict 24-Hour Urinary Creatinine Level Using Repeated Measurements Donna S. Kroos Virginia

More information

Admitting Students to Selective Education Programs: Merit, Profiling, and Affirmative Action

Admitting Students to Selective Education Programs: Merit, Profiling, and Affirmative Action Admitting Students to Selective Education Programs: Merit, Profiling, and Affirmative Action Dario Cestau IE Business School Dennis Epple Carnegie Mellon University and NBER Holger Sieg University of Pennsylvania

More information

Multi-Lingual Text Leveling

Multi-Lingual Text Leveling Multi-Lingual Text Leveling Salim Roukos, Jerome Quin, and Todd Ward IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 {roukos,jlquinn,tward}@us.ibm.com Abstract. Determining the language proficiency

More information

Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

More information

Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur)

Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) 1 Interviews, diary studies Start stats Thursday: Ethics/IRB Tuesday: More stats New homework is available

More information

Role Models, the Formation of Beliefs, and Girls Math. Ability: Evidence from Random Assignment of Students. in Chinese Middle Schools

Role Models, the Formation of Beliefs, and Girls Math. Ability: Evidence from Random Assignment of Students. in Chinese Middle Schools Role Models, the Formation of Beliefs, and Girls Math Ability: Evidence from Random Assignment of Students in Chinese Middle Schools Alex Eble and Feng Hu February 2017 Abstract This paper studies the

More information

A Comparison of Charter Schools and Traditional Public Schools in Idaho

A Comparison of Charter Schools and Traditional Public Schools in Idaho A Comparison of Charter Schools and Traditional Public Schools in Idaho Dale Ballou Bettie Teasley Tim Zeidner Vanderbilt University August, 2006 Abstract We investigate the effectiveness of Idaho charter

More information

We re Listening Results Dashboard How To Guide

We re Listening Results Dashboard How To Guide We re Listening Results Dashboard How To Guide Contents Page 1. Introduction 3 2. Finding your way around 3 3. Dashboard Options 3 4. Landing Page Dashboard 4 5. Question Breakdown Dashboard 5 6. Key Drivers

More information

STEPS TO EFFECTIVE ADVOCACY

STEPS TO EFFECTIVE ADVOCACY Poverty, Conservation and Biodiversity Godber Tumushabe Executive Director/Policy Analyst Advocates Coalition for Development and Environment STEPS TO EFFECTIVE ADVOCACY UPCLG Advocacy Capacity Building

More information

TIMSS ADVANCED 2015 USER GUIDE FOR THE INTERNATIONAL DATABASE. Pierre Foy

TIMSS ADVANCED 2015 USER GUIDE FOR THE INTERNATIONAL DATABASE. Pierre Foy TIMSS ADVANCED 2015 USER GUIDE FOR THE INTERNATIONAL DATABASE Pierre Foy TIMSS Advanced 2015 orks User Guide for the International Database Pierre Foy Contributors: Victoria A.S. Centurino, Kerry E. Cotter,

More information

Knowledge Transfer in Deep Convolutional Neural Nets

Knowledge Transfer in Deep Convolutional Neural Nets Knowledge Transfer in Deep Convolutional Neural Nets Steven Gutstein, Olac Fuentes and Eric Freudenthal Computer Science Department University of Texas at El Paso El Paso, Texas, 79968, U.S.A. Abstract

More information

Instructor: Mario D. Garrett, Ph.D. Phone: Office: Hepner Hall (HH) 100

Instructor: Mario D. Garrett, Ph.D.   Phone: Office: Hepner Hall (HH) 100 San Diego State University School of Social Work 610 COMPUTER APPLICATIONS FOR SOCIAL WORK PRACTICE Statistical Package for the Social Sciences Office: Hepner Hall (HH) 100 Instructor: Mario D. Garrett,

More information

Activities, Exercises, Assignments Copyright 2009 Cem Kaner 1

Activities, Exercises, Assignments Copyright 2009 Cem Kaner 1 Patterns of activities, iti exercises and assignments Workshop on Teaching Software Testing January 31, 2009 Cem Kaner, J.D., Ph.D. kaner@kaner.com Professor of Software Engineering Florida Institute of

More information

Individual Differences & Item Effects: How to test them, & how to test them well

Individual Differences & Item Effects: How to test them, & how to test them well Individual Differences & Item Effects: How to test them, & how to test them well Individual Differences & Item Effects Properties of subjects Cognitive abilities (WM task scores, inhibition) Gender Age

More information

PROGRAMME SYLLABUS International Management, Bachelor programme, 180

PROGRAMME SYLLABUS International Management, Bachelor programme, 180 PROGRAMME SYLLABUS International Management, Bachelor programme, 180 Programmestart: Autumn 2015 Jönköping International Business School, Box 1026, SE-551 11 Jönköping VISIT Gjuterigatan 5, Campus PHONE

More information

CHMB16H3 TECHNIQUES IN ANALYTICAL CHEMISTRY

CHMB16H3 TECHNIQUES IN ANALYTICAL CHEMISTRY CHMB16H3 TECHNIQUES IN ANALYTICAL CHEMISTRY FALL 2017 COURSE SYLLABUS Course Instructors Kagan Kerman (Theoretical), e-mail: kagan.kerman@utoronto.ca Office hours: Mondays 3-6 pm in EV502 (on the 5th floor

More information

Multivariate k-nearest Neighbor Regression for Time Series data -

Multivariate k-nearest Neighbor Regression for Time Series data - Multivariate k-nearest Neighbor Regression for Time Series data - a novel Algorithm for Forecasting UK Electricity Demand ISF 2013, Seoul, Korea Fahad H. Al-Qahtani Dr. Sven F. Crone Management Science,

More information

Model Ensemble for Click Prediction in Bing Search Ads

Model Ensemble for Click Prediction in Bing Search Ads Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Microsoft Bing xiaoling@microsoft.com Hucheng Zhou Microsoft Research huzho@microsoft.com Weiwei Deng Microsoft Bing dedeng@microsoft.com

More information

Development of Multistage Tests based on Teacher Ratings

Development of Multistage Tests based on Teacher Ratings Development of Multistage Tests based on Teacher Ratings Stéphanie Berger 12, Jeannette Oostlander 1, Angela Verschoor 3, Theo Eggen 23 & Urs Moser 1 1 Institute for Educational Evaluation, 2 Research

More information

Grade Dropping, Strategic Behavior, and Student Satisficing

Grade Dropping, Strategic Behavior, and Student Satisficing Grade Dropping, Strategic Behavior, and Student Satisficing Lester Hadsell Department of Economics State University of New York, College at Oneonta Oneonta, NY 13820 hadsell@oneonta.edu Raymond MacDermott

More information

PEER EFFECTS IN THE CLASSROOM: LEARNING FROM GENDER AND RACE VARIATION *

PEER EFFECTS IN THE CLASSROOM: LEARNING FROM GENDER AND RACE VARIATION * PEER EFFECTS IN THE CLASSROOM: LEARNING FROM GENDER AND RACE VARIATION * Caroline M. Hoxby NBER Working Paper 7867 August 2000 Peer effects are potentially important for understanding the optimal organization

More information

Working Paper: Do First Impressions Matter? Improvement in Early Career Teacher Effectiveness Allison Atteberry 1, Susanna Loeb 2, James Wyckoff 1

Working Paper: Do First Impressions Matter? Improvement in Early Career Teacher Effectiveness Allison Atteberry 1, Susanna Loeb 2, James Wyckoff 1 Center on Education Policy and Workforce Competitiveness Working Paper: Do First Impressions Matter? Improvement in Early Career Teacher Effectiveness Allison Atteberry 1, Susanna Loeb 2, James Wyckoff

More information

One Hour of Code 10 million students, A foundation for success

One Hour of Code 10 million students, A foundation for success One Hour of Code 10 million students, A foundation for success Everybody in this country should learn how to program a computer... because it teaches you how to think. Steve Jobs Code.org is organizing

More information

Graduation Initiative 2025 Goals San Jose State

Graduation Initiative 2025 Goals San Jose State Graduation Initiative 2025 Goals San Jose State Metric 2025 Goal Most Recent Rate Freshman 6-Year Graduation 71% 57% Freshman 4-Year Graduation 35% 10% Transfer 2-Year Graduation 36% 24% Transfer 4-Year

More information

w o r k i n g p a p e r s

w o r k i n g p a p e r s w o r k i n g p a p e r s 2 0 0 9 Assessing the Potential of Using Value-Added Estimates of Teacher Job Performance for Making Tenure Decisions Dan Goldhaber Michael Hansen crpe working paper # 2009_2

More information

arxiv: v1 [cs.cl] 2 Apr 2017

arxiv: v1 [cs.cl] 2 Apr 2017 Word-Alignment-Based Segment-Level Machine Translation Evaluation using Word Embeddings Junki Matsuo and Mamoru Komachi Graduate School of System Design, Tokyo Metropolitan University, Japan matsuo-junki@ed.tmu.ac.jp,

More information

Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design

Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design Session 2B From understanding perspectives to informing public policy the potential and challenges for Q findings to inform survey design Paper #3 Five Q-to-survey approaches: did they work? Job van Exel

More information

Semi-Supervised Face Detection

Semi-Supervised Face Detection Semi-Supervised Face Detection Nicu Sebe, Ira Cohen 2, Thomas S. Huang 3, Theo Gevers Faculty of Science, University of Amsterdam, The Netherlands 2 HP Research Labs, USA 3 Beckman Institute, University

More information

Truth Inference in Crowdsourcing: Is the Problem Solved?

Truth Inference in Crowdsourcing: Is the Problem Solved? Truth Inference in Crowdsourcing: Is the Problem Solved? Yudian Zheng, Guoliang Li #, Yuanbing Li #, Caihua Shan, Reynold Cheng # Department of Computer Science, Tsinghua University Department of Computer

More information

Investment in e- journals, use and research outcomes

Investment in e- journals, use and research outcomes Investment in e- journals, use and research outcomes David Nicholas CIBER Research Limited, UK Ian Rowlands University of Leicester, UK Library Return on Investment seminar Universite de Lyon, 20-21 February

More information

*Net Perceptions, Inc West 78th Street Suite 300 Minneapolis, MN

*Net Perceptions, Inc West 78th Street Suite 300 Minneapolis, MN From: AAAI Technical Report WS-98-08. Compilation copyright 1998, AAAI (www.aaai.org). All rights reserved. Recommender Systems: A GroupLens Perspective Joseph A. Konstan *t, John Riedl *t, AI Borchers,

More information

Multi-Dimensional, Multi-Level, and Multi-Timepoint Item Response Modeling.

Multi-Dimensional, Multi-Level, and Multi-Timepoint Item Response Modeling. Multi-Dimensional, Multi-Level, and Multi-Timepoint Item Response Modeling. Bengt Muthén & Tihomir Asparouhov In van der Linden, W. J., Handbook of Item Response Theory. Volume One. Models, pp. 527-539.

More information

Linking Task: Identifying authors and book titles in verbose queries

Linking Task: Identifying authors and book titles in verbose queries Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

More information

Twitter Sentiment Classification on Sanders Data using Hybrid Approach

Twitter Sentiment Classification on Sanders Data using Hybrid Approach IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

More information

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing a Moving Target How Do We Test Machine Learning Systems? Peter Varhol, Technology

More information

Len Lundstrum, Ph.D., FRM

Len Lundstrum, Ph.D., FRM , Ph.D., FRM Professor of Finance Department of Finance College of Business Office: 815 753-0317 Northern Illinois University Fax: 815 753-0504 Dekalb, IL 60115 llundstrum@niu.edu Education Indiana University

More information

On-the-Fly Customization of Automated Essay Scoring

On-the-Fly Customization of Automated Essay Scoring Research Report On-the-Fly Customization of Automated Essay Scoring Yigal Attali Research & Development December 2007 RR-07-42 On-the-Fly Customization of Automated Essay Scoring Yigal Attali ETS, Princeton,

More information

SPM 5309: SPORT MARKETING Fall 2017 (SEC. 8695; 3 credits)

SPM 5309: SPORT MARKETING Fall 2017 (SEC. 8695; 3 credits) SPM 5309: SPORT MARKETING Fall 2017 (SEC. 8695; 3 credits) Department of Tourism, Recreation and Sport Management College of Health and Human Performance University of Florida Professor: Dr. Yong Jae Ko

More information

School Competition and Efficiency with Publicly Funded Catholic Schools David Card, Martin D. Dooley, and A. Abigail Payne

School Competition and Efficiency with Publicly Funded Catholic Schools David Card, Martin D. Dooley, and A. Abigail Payne School Competition and Efficiency with Publicly Funded Catholic Schools David Card, Martin D. Dooley, and A. Abigail Payne Web Appendix See paper for references to Appendix Appendix 1: Multiple Schools

More information

Effectiveness of McGraw-Hill s Treasures Reading Program in Grades 3 5. October 21, Research Conducted by Empirical Education Inc.

Effectiveness of McGraw-Hill s Treasures Reading Program in Grades 3 5. October 21, Research Conducted by Empirical Education Inc. Effectiveness of McGraw-Hill s Treasures Reading Program in Grades 3 5 October 21, 2010 Research Conducted by Empirical Education Inc. Executive Summary Background. Cognitive demands on student knowledge

More information

Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017

Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017 Instructor Syed Zahid Ali Room No. 247 Economics Wing First Floor Office Hours Email szahid@lums.edu.pk Telephone Ext. 8074 Secretary/TA TA Office Hours Course URL (if any) Suraj.lums.edu.pk FINN 321 Econometrics

More information

A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention

A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention Damien Teney 1, Peter Anderson 2*, David Golub 4*, Po-Sen Huang 3, Lei Zhang 3, Xiaodong He 3, Anton van den Hengel 1 1

More information

Active Learning. Yingyu Liang Computer Sciences 760 Fall

Active Learning. Yingyu Liang Computer Sciences 760 Fall Active Learning Yingyu Liang Computer Sciences 760 Fall 2017 http://pages.cs.wisc.edu/~yliang/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,

More information

STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point.

STT 231 Test 1. Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point. STT 231 Test 1 Fill in the Letter of Your Choice to Each Question in the Scantron. Each question is worth 2 point. 1. A professor has kept records on grades that students have earned in his class. If he

More information

Global Television Manufacturing Industry : Trend, Profit, and Forecast Analysis Published September 2012

Global Television Manufacturing Industry : Trend, Profit, and Forecast Analysis Published September 2012 Industry 2012-2017: Published September 2012 Lucintel, a premier global management consulting and market research firm creates your equation for growth whether you need to understand market dynamics, identify

More information

Firms and Markets Saturdays Summer I 2014

Firms and Markets Saturdays Summer I 2014 PRELIMINARY DRAFT VERSION. SUBJECT TO CHANGE. Firms and Markets Saturdays Summer I 2014 Professor Thomas Pugel Office: Room 11-53 KMC E-mail: tpugel@stern.nyu.edu Tel: 212-998-0918 Fax: 212-995-4212 This

More information

Corrective Feedback and Persistent Learning for Information Extraction

Corrective Feedback and Persistent Learning for Information Extraction Corrective Feedback and Persistent Learning for Information Extraction Aron Culotta a, Trausti Kristjansson b, Andrew McCallum a, Paul Viola c a Dept. of Computer Science, University of Massachusetts,

More information

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

More information

MGT/MGP/MGB 261: Investment Analysis

MGT/MGP/MGB 261: Investment Analysis UNIVERSITY OF CALIFORNIA, DAVIS GRADUATE SCHOOL OF MANAGEMENT SYLLABUS for Fall 2014 MGT/MGP/MGB 261: Investment Analysis Daytime MBA: Tu 12:00p.m. - 3:00 p.m. Location: 1302 Gallagher (CRN: 51489) Sacramento

More information

STABILISATION AND PROCESS IMPROVEMENT IN NAB

STABILISATION AND PROCESS IMPROVEMENT IN NAB STABILISATION AND PROCESS IMPROVEMENT IN NAB Authors: Nicole Warren Quality & Process Change Manager, Bachelor of Engineering (Hons) and Science Peter Atanasovski - Quality & Process Change Manager, Bachelor

More information

Hierarchical Linear Modeling with Maximum Likelihood, Restricted Maximum Likelihood, and Fully Bayesian Estimation

Hierarchical Linear Modeling with Maximum Likelihood, Restricted Maximum Likelihood, and Fully Bayesian Estimation A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute

More information

Given a directed graph G =(N A), where N is a set of m nodes and A. destination node, implying a direction for ow to follow. Arcs have limitations

Given a directed graph G =(N A), where N is a set of m nodes and A. destination node, implying a direction for ow to follow. Arcs have limitations 4 Interior point algorithms for network ow problems Mauricio G.C. Resende AT&T Bell Laboratories, Murray Hill, NJ 07974-2070 USA Panos M. Pardalos The University of Florida, Gainesville, FL 32611-6595

More information

ENEE 302h: Digital Electronics, Fall 2005 Prof. Bruce Jacob

ENEE 302h: Digital Electronics, Fall 2005 Prof. Bruce Jacob Course Syllabus ENEE 302h: Digital Electronics, Fall 2005 Prof. Bruce Jacob 1. Basic Information Time & Place Lecture: TuTh 2:00 3:15 pm, CSIC-3118 Discussion Section: Mon 12:00 12:50pm, EGR-1104 Professor

More information