Neural Dynamics and Reinforcement Learning

Size: px
Start display at page:

Download "Neural Dynamics and Reinforcement Learning"

Transcription

1 Neural Dynamics and Reinforcement Learning Presented By: Matthew Luciw DFT SUMMER SCHOOL, 2013 IDSIA Istituto Dalle Molle Di Studi sull Intelligenza Artificiale

2 IDSIA Lugano, Switzerland Our Lab s Director: Juergen Schmidhuber -Cognitive robotics, robot learning, universal search and learning algorithms, Kolmogorov complexity, algorithmic probability, Speed Prior, minimal description length, generalization and data compression, recurrent neural networks, financial forecasting with low-complexity nets, independent component analysis, low-complexity codes, reinforcement learning in partially observable environments, adaptive subgoal generation, multiagent learning, artificial evolution, probabilistic program evolution, automatic music composition, metalearning, self-modifying policies, Gödel machines, low-complexity art, theories of interestingness and beauty-

3 Motivation How do we learn sequences of behavior, to achieve goals, in the DFT framework? How are these sequences learned from delayed rewards? How do sequences of these behaviors emerge as an agent autonomously explores its environment?

4 Reinforcement Environment state / situation s t reward r t AGENT action a t r t+1 ENVIRONMENT s t+1

5 Reinforcement Learning Basics Agent in situation s t chooses action a t Outcome: new situation s t+1 Agent perceives situation s t+1 and reward r t+1 Policy: law of how the agent acts Reinforcement learning is both improving the policy and selecting actions to provide experience stream (history) s 0 a 0 s 1 r 1 a 1 s 2 r 2 a 2 Goal: produce history to maximize sum of r i

6 Reinforcement Learning: What We Need 1. What is the learner s internal state? e.g., state values, state-action values Needs states and actions to be defined 2. How does the agent sense the world state? Sensors? Features? 3. How are possible actions evaluated? e.g., state-action values, one-step state predictor and state values 4. How are possible actions chosen? policy exploration method 5. How are the actions executed? e.g., low-level controllers 6. How is the internal state updated? e.g., value iteration, Q-learning, SARSA

7 Color Hue IDSIA Elementary Behaviors for RL (Example: Find Color) Sensory Input Perceptual Field Activity Perceptual Field Output Current Intention: Green Preshape Pixel Column Motor Field Intention Nodes Heading Direction Motors EBs cover #2 - how does the agent sense the world state?, and #5 how are the actions executed? CoS node

8 Learner s Internal State Value Function Value function predicts reward, estimates total future reward given a course of action State values (γ is a discount factor) State-action values Learner estimates values from experience

9 Elementary Behaviors can function as States for an RL system Discretize the continuous world

10 Behavior Chaining Functionally a deterministic state transition Lets add multiple outcome EBs, and (possibly multiple) ways to select one of them

11 Adaptive Value Nodes for Policy Learning IDSIA Intention Nodes CoS Nodes Value Nodes Perceptual Field Output Greedy policy execution becomes: for the previously completed EB, select the intention of the next most valuable EB this encodes a sequence of EBs

12 Adaptive Value Nodes for Policy Learning IDSIA Intention Nodes CoS Nodes Value Nodes Perceptual Field Output This covers #1 what is the internal state of the learner? and #3 how are possible actions evaluated?

13 Learning the Policy IDSIA In RL, we re generally trying to learn an optimal policy If we know the dynamics of the environment and the reward function (together: the model), we can use dynamic programming to get Dynamics of environment: Reward function:

14 Temporal Difference Learning IDSIA We can learn an optimal policy without learning the model with model-free methods These learn directly (on-line) from experience Update estimate of V(s) after visiting state s

15 Our DFT TD-Learning Algorithm DN-SARSA(λ) combines: a process description of DFT to allow operation in real-time, continuous environments, with RL algorithm SARSA(λ) to enable agent to learn sequences of behaviors that lead to reward Deals with #6 how is the internal state updated?

16 SARSA(λ) TD Algorithm DN-SARSA(λ) Dynamic Neural-SARSA(λ)

17 DN-SARSA(λ) Architecture Value opposition field is where the TD-error calculation lives Eligibility trace - this particular implementation uses Item and Order working memory (Sohrob) Transient pulse cells do state transition signaling and memory of last stateaction

18 Avg.TD Eror Cumulative Reward IDSIA Epuck in a Color Sequence Learning Task Four EBs Find Blue Explore 2. Find Red Time Step [S 3. Find Yellow (b) 4. Find Purple (a) Explore Error Measurem

19 The Eligibility Trace is Important for sequence learning

20 ~~ The Tree of Life ~~ α A B C D A B C D A B C D A B C D A B C D all possible histories Ω

21 Somewhere, A Reward C D +100!

22 What Caused It? C D +100! C D +0

23 Memory Capacity Can Matter! A B C D +100!

24 Memory Capacity Can Matter! A B REINFORCED C D +100!

25 Memory Capacity Can Matter! A B B A REINFORCED NOPE C C D +100! D +0

26 Grid World Analogy

27 Grid World Analogy

28 Grid World Analogy

29 The Eligibility Trace is Essential for our system But the length of sequences it can learn is limited Note: if a sequence is very long, you couldn t learn it either

30 Avg.TD Eror Cumulative Reward IDSIA Epuck in a Color Sequence Learning Task Four EBs Find Blue Explore 2. Find Red Time Step [S 3. Find Yellow (b) 4. Find Purple (a) Explore Error Measurem

31 One Last Thing: Policy Iteration IDSIA More than TD value updates are needed to achieve This constitutes policy evaluation prediction of return for some policy But we will only learn the values of the policy through which the agent is sampling the stateaction space Policy improvement change policy to increase prediction of return Need to interleave policy evaluation and policy improvement to get Epsilon greedy - More random exploration early, (hopefully) mostly exploitation later

32 Avg.TD Eror Cumulative Reward Cumulative Reward Time Step IDSIA Should have used e-greedy!!! Exploit Plots 5 x Time When Correct Sequence Learned Explore Time Step [S * 32] x 10 4 (b) x Run # (c) Sequence Finding Difficulty(Run 6) 2 0 Explore Error Measurements (d) Exploit Time Step [S * 32] x 10 4 (e)

33 Dynamics of Behavioral Transitions

34 Simulated Environment: Exploration Video See Demo Material

35 Sequence Learned Transferred to THE REAL WORLD Video See Demo Material

36 Different Agent+Environment

37 Start Possible Transitions Reward if A-> B-> C -> D -> E Search (A) Grab (C) Transp. (D) Approach (B) Drop (E) FAIL

38 Goal Sequence Video See Demo Material

39 Learning the Sequence (Now with E-Greedy!) Video See Demo Material

40 Exploration Mishaps Video See Demo Material

41 Exploration Mishaps Video See Demo Material

42 Exploration Mishaps Video See Demo Material

43 Nao Experiment Boris Duran, Gauss Lee, Robert Lowe

44 Motivation Dynamic Field Theory Behavioral Organization in DFT SARSA / DN-SARSA Conclusion

45 Video See Demo Material

46 Video See Demo Material

47 Conclusions Reinforcement Learning can enable Neural Dynamics models to autonomously learn rewarding behavioral sequences There are some limitations of the current method

48 References Kazerounian*, S., Luciw*, M., Richter, M., Sandamirskaya, Y. (2013). Autonomous Reinforcement of Behavioral Sequences in Neural Dynamics. Proceedings of the International Joint Conference on Neural Networks (IJCNN). Duran, B., Lee, G., Lowe, R. (2013), Learning a DFT-Based Sequence with Reinforcement Learning: A NAO Implementation. PALADYN Journal of Behavioral Robotics. Sandamirskaya, Y., Richter, M., Schöner, G. (2011). A Neural-Dynamic Architecture for Behavioral Organization of an Embodied Agent. Proceedings of the International Conference on Development and Learning (ICDL). Sutton, R.S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. Material from:

Lecture 10: Reinforcement Learning

Lecture 10: Reinforcement Learning Lecture 1: Reinforcement Learning Cognitive Systems II - Machine Learning SS 25 Part III: Learning Programs and Strategies Q Learning, Dynamic Programming Lecture 1: Reinforcement Learning p. Motivation

More information

Reinforcement Learning by Comparing Immediate Reward

Reinforcement Learning by Comparing Immediate Reward Reinforcement Learning by Comparing Immediate Reward Punit Pandey DeepshikhaPandey Dr. Shishir Kumar Abstract This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate

More information

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Varun Raj Kompella, Marijn Stollenga, Matthew Luciw, Juergen Schmidhuber The Swiss AI Lab IDSIA, USI

More information

Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Proceedings of 28 ISFA 28 International Symposium on Flexible Automation Atlanta, GA, USA June 23-26, 28 ISFA28U_12 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Amit Gil, Helman Stern, Yael Edan, and

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

TD(λ) and Q-Learning Based Ludo Players

TD(λ) and Q-Learning Based Ludo Players TD(λ) and Q-Learning Based Ludo Players Majed Alhajry, Faisal Alvi, Member, IEEE and Moataz Ahmed Abstract Reinforcement learning is a popular machine learning technique whose inherent self-learning ability

More information

AMULTIAGENT system [1] can be defined as a group of

AMULTIAGENT system [1] can be defined as a group of 156 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 2, MARCH 2008 A Comprehensive Survey of Multiagent Reinforcement Learning Lucian Buşoniu, Robert Babuška,

More information

Seminar - Organic Computing

Seminar - Organic Computing Seminar - Organic Computing Self-Organisation of OC-Systems Markus Franke 25.01.2006 Typeset by FoilTEX Timetable 1. Overview 2. Characteristics of SO-Systems 3. Concern with Nature 4. Design-Concepts

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

A Reinforcement Learning Variant for Control Scheduling

A Reinforcement Learning Variant for Control Scheduling A Reinforcement Learning Variant for Control Scheduling Aloke Guha Honeywell Sensor and System Development Center 3660 Technology Drive Minneapolis MN 55417 Abstract We present an algorithm based on reinforcement

More information

High-level Reinforcement Learning in Strategy Games

High-level Reinforcement Learning in Strategy Games High-level Reinforcement Learning in Strategy Games Christopher Amato Department of Computer Science University of Massachusetts Amherst, MA 01003 USA camato@cs.umass.edu Guy Shani Department of Computer

More information

Speeding Up Reinforcement Learning with Behavior Transfer

Speeding Up Reinforcement Learning with Behavior Transfer Speeding Up Reinforcement Learning with Behavior Transfer Matthew E. Taylor and Peter Stone Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188 {mtaylor, pstone}@cs.utexas.edu

More information

Learning Prospective Robot Behavior

Learning Prospective Robot Behavior Learning Prospective Robot Behavior Shichao Ou and Rod Grupen Laboratory for Perceptual Robotics Computer Science Department University of Massachusetts Amherst {chao,grupen}@cs.umass.edu Abstract This

More information

Georgetown University at TREC 2017 Dynamic Domain Track

Georgetown University at TREC 2017 Dynamic Domain Track Georgetown University at TREC 2017 Dynamic Domain Track Zhiwen Tang Georgetown University zt79@georgetown.edu Grace Hui Yang Georgetown University huiyang@cs.georgetown.edu Abstract TREC Dynamic Domain

More information

Robot Shaping: Developing Autonomous Agents through Learning*

Robot Shaping: Developing Autonomous Agents through Learning* TO APPEAR IN ARTIFICIAL INTELLIGENCE JOURNAL ROBOT SHAPING 2 1. Introduction Robot Shaping: Developing Autonomous Agents through Learning* Marco Dorigo # Marco Colombetti + INTERNATIONAL COMPUTER SCIENCE

More information

LEGO MINDSTORMS Education EV3 Coding Activities

LEGO MINDSTORMS Education EV3 Coding Activities LEGO MINDSTORMS Education EV3 Coding Activities s t e e h s k r o W t n e d Stu LEGOeducation.com/MINDSTORMS Contents ACTIVITY 1 Performing a Three Point Turn 3-6 ACTIVITY 2 Written Instructions for a

More information

The Evolution of Random Phenomena

The Evolution of Random Phenomena The Evolution of Random Phenomena A Look at Markov Chains Glen Wang glenw@uchicago.edu Splash! Chicago: Winter Cascade 2012 Lecture 1: What is Randomness? What is randomness? Can you think of some examples

More information

Improving Action Selection in MDP s via Knowledge Transfer

Improving Action Selection in MDP s via Knowledge Transfer In Proc. 20th National Conference on Artificial Intelligence (AAAI-05), July 9 13, 2005, Pittsburgh, USA. Improving Action Selection in MDP s via Knowledge Transfer Alexander A. Sherstov and Peter Stone

More information

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology Tiancheng Zhao CMU-LTI-16-006 Language Technologies Institute School of Computer Science Carnegie Mellon

More information

An OO Framework for building Intelligence and Learning properties in Software Agents

An OO Framework for building Intelligence and Learning properties in Software Agents An OO Framework for building Intelligence and Learning properties in Software Agents José A. R. P. Sardinha, Ruy L. Milidiú, Carlos J. P. Lucena, Patrick Paranhos Abstract Software agents are defined as

More information

XXII BrainStorming Day

XXII BrainStorming Day UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA PhD course in Electronics, Automation and Control of Complex Systems - XXV Cycle DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA E INFORMATICA XXII

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

DOCTOR OF PHILOSOPHY HANDBOOK

DOCTOR OF PHILOSOPHY HANDBOOK University of Virginia Department of Systems and Information Engineering DOCTOR OF PHILOSOPHY HANDBOOK 1. Program Description 2. Degree Requirements 3. Advisory Committee 4. Plan of Study 5. Comprehensive

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

On the Combined Behavior of Autonomous Resource Management Agents

On the Combined Behavior of Autonomous Resource Management Agents On the Combined Behavior of Autonomous Resource Management Agents Siri Fagernes 1 and Alva L. Couch 2 1 Faculty of Engineering Oslo University College Oslo, Norway siri.fagernes@iu.hio.no 2 Computer Science

More information

Evolutive Neural Net Fuzzy Filtering: Basic Description

Evolutive Neural Net Fuzzy Filtering: Basic Description Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

More information

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley Challenges in Deep Reinforcement Learning Sergey Levine UC Berkeley Discuss some recent work in deep reinforcement learning Present a few major challenges Show some of our recent work toward tackling

More information

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Andres Chavez Math 382/L T/Th 2:00-3:40 April 13, 2010 Chavez2 Abstract The main interest of this paper is Artificial Neural Networks (ANNs). A brief history of the development

More information

Chapter 2. Intelligent Agents. Outline. Agents and environments. Rationality. PEAS (Performance measure, Environment, Actuators, Sensors)

Chapter 2. Intelligent Agents. Outline. Agents and environments. Rationality. PEAS (Performance measure, Environment, Actuators, Sensors) Intelligent Agents Chapter 2 1 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Agent types 2 Agents and environments sensors environment percepts

More information

Introduction to Simulation

Introduction to Simulation Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

More information

SAM - Sensors, Actuators and Microcontrollers in Mobile Robots

SAM - Sensors, Actuators and Microcontrollers in Mobile Robots Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering BACHELOR'S

More information

arxiv: v1 [cs.cv] 10 May 2017

arxiv: v1 [cs.cv] 10 May 2017 Inferring and Executing Programs for Visual Reasoning Justin Johnson 1 Bharath Hariharan 2 Laurens van der Maaten 2 Judy Hoffman 1 Li Fei-Fei 1 C. Lawrence Zitnick 2 Ross Girshick 2 1 Stanford University

More information

EVOLVING POLICIES TO SOLVE THE RUBIK S CUBE: EXPERIMENTS WITH IDEAL AND APPROXIMATE PERFORMANCE FUNCTIONS

EVOLVING POLICIES TO SOLVE THE RUBIK S CUBE: EXPERIMENTS WITH IDEAL AND APPROXIMATE PERFORMANCE FUNCTIONS EVOLVING POLICIES TO SOLVE THE RUBIK S CUBE: EXPERIMENTS WITH IDEAL AND APPROXIMATE PERFORMANCE FUNCTIONS by Robert Smith Submitted in partial fulfillment of the requirements for the degree of Master of

More information

Robot Learning Simultaneously a Task and How to Interpret Human Instructions

Robot Learning Simultaneously a Task and How to Interpret Human Instructions Robot Learning Simultaneously a Task and How to Interpret Human Instructions Jonathan Grizou, Manuel Lopes, Pierre-Yves Oudeyer To cite this version: Jonathan Grizou, Manuel Lopes, Pierre-Yves Oudeyer.

More information

Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures

Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures Alex Graves and Jürgen Schmidhuber IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland TU Munich, Boltzmannstr.

More information

Surprise-Based Learning for Autonomous Systems

Surprise-Based Learning for Autonomous Systems Surprise-Based Learning for Autonomous Systems Nadeesha Ranasinghe and Wei-Min Shen ABSTRACT Dealing with unexpected situations is a key challenge faced by autonomous robots. This paper describes a promising

More information

Lecture 6: Applications

Lecture 6: Applications Lecture 6: Applications Michael L. Littman Rutgers University Department of Computer Science Rutgers Laboratory for Real-Life Reinforcement Learning What is RL? Branch of machine learning concerned with

More information

INPE São José dos Campos

INPE São José dos Campos INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

More information

AGENDA LEARNING THEORIES LEARNING THEORIES. Advanced Learning Theories 2/22/2016

AGENDA LEARNING THEORIES LEARNING THEORIES. Advanced Learning Theories 2/22/2016 AGENDA Advanced Learning Theories Alejandra J. Magana, Ph.D. admagana@purdue.edu Introduction to Learning Theories Role of Learning Theories and Frameworks Learning Design Research Design Dual Coding Theory

More information

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email Marilyn A. Walker Jeanne C. Fromer Shrikanth Narayanan walker@research.att.com jeannie@ai.mit.edu shri@research.att.com

More information

Carter M. Mast. Participants: Peter Mackenzie-Helnwein, Pedro Arduino, and Greg Miller. 6 th MPM Workshop Albuquerque, New Mexico August 9-10, 2010

Carter M. Mast. Participants: Peter Mackenzie-Helnwein, Pedro Arduino, and Greg Miller. 6 th MPM Workshop Albuquerque, New Mexico August 9-10, 2010 Representing Arbitrary Bounding Surfaces in the Material Point Method Carter M. Mast 6 th MPM Workshop Albuquerque, New Mexico August 9-10, 2010 Participants: Peter Mackenzie-Helnwein, Pedro Arduino, and

More information

Transfer Learning Action Models by Measuring the Similarity of Different Domains

Transfer Learning Action Models by Measuring the Similarity of Different Domains Transfer Learning Action Models by Measuring the Similarity of Different Domains Hankui Zhuo 1, Qiang Yang 2, and Lei Li 1 1 Software Research Institute, Sun Yat-sen University, Guangzhou, China. zhuohank@gmail.com,lnslilei@mail.sysu.edu.cn

More information

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing a Moving Target How Do We Test Machine Learning Systems? Peter Varhol, Technology

More information

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering Lecture Details Instructor Course Objectives Tuesday and Thursday, 4:00 pm to 5:15 pm Information Technology and Engineering

More information

Learning and Transferring Relational Instance-Based Policies

Learning and Transferring Relational Instance-Based Policies Learning and Transferring Relational Instance-Based Policies Rocío García-Durán, Fernando Fernández y Daniel Borrajo Universidad Carlos III de Madrid Avda de la Universidad 30, 28911-Leganés (Madrid),

More information

Using focal point learning to improve human machine tacit coordination

Using focal point learning to improve human machine tacit coordination DOI 10.1007/s10458-010-9126-5 Using focal point learning to improve human machine tacit coordination InonZuckerman SaritKraus Jeffrey S. Rosenschein The Author(s) 2010 Abstract We consider an automated

More information

Proposal of Pattern Recognition as a necessary and sufficient principle to Cognitive Science

Proposal of Pattern Recognition as a necessary and sufficient principle to Cognitive Science Proposal of Pattern Recognition as a necessary and sufficient principle to Cognitive Science Gilberto de Paiva Sao Paulo Brazil (May 2011) gilbertodpaiva@gmail.com Abstract. Despite the prevalence of the

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

Multiagent Simulation of Learning Environments

Multiagent Simulation of Learning Environments Multiagent Simulation of Learning Environments Elizabeth Sklar and Mathew Davies Dept of Computer Science Columbia University New York, NY 10027 USA sklar,mdavies@cs.columbia.edu ABSTRACT One of the key

More information

FF+FPG: Guiding a Policy-Gradient Planner

FF+FPG: Guiding a Policy-Gradient Planner FF+FPG: Guiding a Policy-Gradient Planner Olivier Buffet LAAS-CNRS University of Toulouse Toulouse, France firstname.lastname@laas.fr Douglas Aberdeen National ICT australia & The Australian National University

More information

Master s Programme in Computer, Communication and Information Sciences, Study guide , ELEC Majors

Master s Programme in Computer, Communication and Information Sciences, Study guide , ELEC Majors Master s Programme in Computer, Communication and Information Sciences, Study guide 2015-2016, ELEC Majors Sisällysluettelo PS=pääsivu, AS=alasivu PS: 1 Acoustics and Audio Technology... 4 Objectives...

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

Learning to Schedule Straight-Line Code

Learning to Schedule Straight-Line Code Learning to Schedule Straight-Line Code Eliot Moss, Paul Utgoff, John Cavazos Doina Precup, Darko Stefanović Dept. of Comp. Sci., Univ. of Mass. Amherst, MA 01003 Carla Brodley, David Scheeff Sch. of Elec.

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

Automatic Discretization of Actions and States in Monte-Carlo Tree Search

Automatic Discretization of Actions and States in Monte-Carlo Tree Search Automatic Discretization of Actions and States in Monte-Carlo Tree Search Guy Van den Broeck 1 and Kurt Driessens 2 1 Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Belgium guy.vandenbroeck@cs.kuleuven.be

More information

CSL465/603 - Machine Learning

CSL465/603 - Machine Learning CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

More information

Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners

Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners Andrea L. Thomaz and Cynthia Breazeal Abstract While Reinforcement Learning (RL) is not traditionally designed

More information

Case Acquisition Strategies for Case-Based Reasoning in Real-Time Strategy Games

Case Acquisition Strategies for Case-Based Reasoning in Real-Time Strategy Games Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference Case Acquisition Strategies for Case-Based Reasoning in Real-Time Strategy Games Santiago Ontañón

More information

University of Victoria School of Exercise Science, Physical and Health Education EPHE 245 MOTOR LEARNING. Calendar Description Units: 1.

University of Victoria School of Exercise Science, Physical and Health Education EPHE 245 MOTOR LEARNING. Calendar Description Units: 1. University of Victoria School of Exercise Science, Physical and Health Education EPHE 245 MOTOR LEARNING Calendar Description Units: 1.5 Hours: 3-2 Neural and cognitive processes underlying human skilled

More information

Planning with External Events

Planning with External Events 94 Planning with External Events Jim Blythe School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 blythe@cs.cmu.edu Abstract I describe a planning methodology for domains with uncertainty

More information

Evolution of Symbolisation in Chimpanzees and Neural Nets

Evolution of Symbolisation in Chimpanzees and Neural Nets Evolution of Symbolisation in Chimpanzees and Neural Nets Angelo Cangelosi Centre for Neural and Adaptive Systems University of Plymouth (UK) a.cangelosi@plymouth.ac.uk Introduction Animal communication

More information

Regret-based Reward Elicitation for Markov Decision Processes

Regret-based Reward Elicitation for Markov Decision Processes 444 REGAN & BOUTILIER UAI 2009 Regret-based Reward Elicitation for Markov Decision Processes Kevin Regan Department of Computer Science University of Toronto Toronto, ON, CANADA kmregan@cs.toronto.edu

More information

AI Agent for Ice Hockey Atari 2600

AI Agent for Ice Hockey Atari 2600 AI Agent for Ice Hockey Atari 2600 Emman Kabaghe (emmank@stanford.edu) Rajarshi Roy (rroy@stanford.edu) 1 Introduction In the reinforcement learning (RL) problem an agent autonomously learns a behavior

More information

Agents and environments. Intelligent Agents. Reminders. Vacuum-cleaner world. Outline. A vacuum-cleaner agent. Chapter 2 Actuators

Agents and environments. Intelligent Agents. Reminders. Vacuum-cleaner world. Outline. A vacuum-cleaner agent. Chapter 2 Actuators s and environments Percepts Intelligent s? Chapter 2 Actions s include humans, robots, softbots, thermostats, etc. The agent function maps from percept histories to actions: f : P A The agent program runs

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

TOKEN-BASED APPROACH FOR SCALABLE TEAM COORDINATION. by Yang Xu PhD of Information Sciences

TOKEN-BASED APPROACH FOR SCALABLE TEAM COORDINATION. by Yang Xu PhD of Information Sciences TOKEN-BASED APPROACH FOR SCALABLE TEAM COORDINATION by Yang Xu PhD of Information Sciences Submitted to the Graduate Faculty of in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Lecture 2: Quantifiers and Approximation

Lecture 2: Quantifiers and Approximation Lecture 2: Quantifiers and Approximation Case study: Most vs More than half Jakub Szymanik Outline Number Sense Approximate Number Sense Approximating most Superlative Meaning of most What About Counting?

More information

An Embodied Model for Sensorimotor Grounding and Grounding Transfer: Experiments With Epigenetic Robots

An Embodied Model for Sensorimotor Grounding and Grounding Transfer: Experiments With Epigenetic Robots Cognitive Science 30 (2006) 673 689 Copyright 2006 Cognitive Science Society, Inc. All rights reserved. An Embodied Model for Sensorimotor Grounding and Grounding Transfer: Experiments With Epigenetic

More information

Building A Baby. Paul R. Cohen, Tim Oates, Marc S. Atkin Department of Computer Science

Building A Baby. Paul R. Cohen, Tim Oates, Marc S. Atkin Department of Computer Science Building A Baby Paul R. Cohen, Tim Oates, Marc S. Atkin Department of Computer Science Carole R. Beal Department of Psychology University of Massachusetts, Amherst, MA 01003 cohen@cs.umass.edu Abstract

More information

A Case-Based Approach To Imitation Learning in Robotic Agents

A Case-Based Approach To Imitation Learning in Robotic Agents A Case-Based Approach To Imitation Learning in Robotic Agents Tesca Fitzgerald, Ashok Goel School of Interactive Computing Georgia Institute of Technology, Atlanta, GA 30332, USA {tesca.fitzgerald,goel}@cc.gatech.edu

More information

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics Machine Learning from Garden Path Sentences: The Application of Computational Linguistics http://dx.doi.org/10.3991/ijet.v9i6.4109 J.L. Du 1, P.F. Yu 1 and M.L. Li 2 1 Guangdong University of Foreign Studies,

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Contents. Foreword... 5

Contents. Foreword... 5 Contents Foreword... 5 Chapter 1: Addition Within 0-10 Introduction... 6 Two Groups and a Total... 10 Learn Symbols + and =... 13 Addition Practice... 15 Which is More?... 17 Missing Items... 19 Sums with

More information

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

More information

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC On Human Computer Interaction, HCI Dr. Saif al Zahir Electrical and Computer Engineering Department UBC Human Computer Interaction HCI HCI is the study of people, computer technology, and the ways these

More information

Softprop: Softmax Neural Network Backpropagation Learning

Softprop: Softmax Neural Network Backpropagation Learning Softprop: Softmax Neural Networ Bacpropagation Learning Michael Rimer Computer Science Department Brigham Young University Provo, UT 84602, USA E-mail: mrimer@axon.cs.byu.edu Tony Martinez Computer Science

More information

While you are waiting... socrative.com, room number SIMLANG2016

While you are waiting... socrative.com, room number SIMLANG2016 While you are waiting... socrative.com, room number SIMLANG2016 Simulating Language Lecture 4: When will optimal signalling evolve? Simon Kirby simon@ling.ed.ac.uk T H E U N I V E R S I T Y O H F R G E

More information

ACTL5103 Stochastic Modelling For Actuaries. Course Outline Semester 2, 2014

ACTL5103 Stochastic Modelling For Actuaries. Course Outline Semester 2, 2014 UNSW Australia Business School School of Risk and Actuarial Studies ACTL5103 Stochastic Modelling For Actuaries Course Outline Semester 2, 2014 Part A: Course-Specific Information Please consult Part B

More information

Knowledge-Based - Systems

Knowledge-Based - Systems Knowledge-Based - Systems ; Rajendra Arvind Akerkar Chairman, Technomathematics Research Foundation and Senior Researcher, Western Norway Research institute Priti Srinivas Sajja Sardar Patel University

More information

Task Completion Transfer Learning for Reward Inference

Task Completion Transfer Learning for Reward Inference Machine Learning for Interactive Systems: Papers from the AAAI-14 Workshop Task Completion Transfer Learning for Reward Inference Layla El Asri 1,2, Romain Laroche 1, Olivier Pietquin 3 1 Orange Labs,

More information

Summary / Response. Karl Smith, Accelerations Educational Software. Page 1 of 8

Summary / Response. Karl Smith, Accelerations Educational Software. Page 1 of 8 Summary / Response This is a study of 2 autistic students to see if they can generalize what they learn on the DT Trainer to their physical world. One student did automatically generalize and the other

More information

Circuit Simulators: A Revolutionary E-Learning Platform

Circuit Simulators: A Revolutionary E-Learning Platform Circuit Simulators: A Revolutionary E-Learning Platform Mahi Itagi Padre Conceicao College of Engineering, Verna, Goa, India. itagimahi@gmail.com Akhil Deshpande Gogte Institute of Technology, Udyambag,

More information

A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

More information

ECE-492 SENIOR ADVANCED DESIGN PROJECT

ECE-492 SENIOR ADVANCED DESIGN PROJECT ECE-492 SENIOR ADVANCED DESIGN PROJECT Meeting #3 1 ECE-492 Meeting#3 Q1: Who is not on a team? Q2: Which students/teams still did not select a topic? 2 ENGINEERING DESIGN You have studied a great deal

More information

WHAT ARE VIRTUAL MANIPULATIVES?

WHAT ARE VIRTUAL MANIPULATIVES? by SCOTT PIERSON AA, Community College of the Air Force, 1992 BS, Eastern Connecticut State University, 2010 A VIRTUAL MANIPULATIVES PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR TECHNOLOGY

More information

Liquid Narrative Group Technical Report Number

Liquid Narrative Group Technical Report Number http://liquidnarrative.csc.ncsu.edu/pubs/tr04-004.pdf NC STATE UNIVERSITY_ Liquid Narrative Group Technical Report Number 04-004 Equivalence between Narrative Mediation and Branching Story Graphs Mark

More information

Interaction Design Considerations for an Aircraft Carrier Deck Agent-based Simulation

Interaction Design Considerations for an Aircraft Carrier Deck Agent-based Simulation Interaction Design Considerations for an Aircraft Carrier Deck Agent-based Simulation Miles Aubert (919) 619-5078 Miles.Aubert@duke. edu Weston Ross (505) 385-5867 Weston.Ross@duke. edu Steven Mazzari

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

Intelligent Agents. Chapter 2. Chapter 2 1

Intelligent Agents. Chapter 2. Chapter 2 1 Intelligent Agents Chapter 2 Chapter 2 1 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types The structure of agents Chapter 2 2 Agents

More information

MYCIN. The MYCIN Task

MYCIN. The MYCIN Task MYCIN Developed at Stanford University in 1972 Regarded as the first true expert system Assists physicians in the treatment of blood infections Many revisions and extensions over the years The MYCIN Task

More information

Moderator: Gary Weckman Ohio University USA

Moderator: Gary Weckman Ohio University USA Moderator: Gary Weckman Ohio University USA Robustness in Real-time Complex Systems What is complexity? Interactions? Defy understanding? What is robustness? Predictable performance? Ability to absorb

More information

A Context-Driven Use Case Creation Process for Specifying Automotive Driver Assistance Systems

A Context-Driven Use Case Creation Process for Specifying Automotive Driver Assistance Systems A Context-Driven Use Case Creation Process for Specifying Automotive Driver Assistance Systems Hannes Omasreiter, Eduard Metzker DaimlerChrysler AG Research Information and Communication Postfach 23 60

More information

TABLE OF CONTENTS TABLE OF CONTENTS COVER PAGE HALAMAN PENGESAHAN PERNYATAAN NASKAH SOAL TUGAS AKHIR ACKNOWLEDGEMENT FOREWORD

TABLE OF CONTENTS TABLE OF CONTENTS COVER PAGE HALAMAN PENGESAHAN PERNYATAAN NASKAH SOAL TUGAS AKHIR ACKNOWLEDGEMENT FOREWORD TABLE OF CONTENTS TABLE OF CONTENTS COVER PAGE HALAMAN PENGESAHAN PERNYATAAN NASKAH SOAL TUGAS AKHIR ACKNOWLEDGEMENT FOREWORD TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES LIST OF APPENDICES LIST OF

More information

The SWARM-BOTS Project

The SWARM-BOTS Project The SWARM-BOTS Project Marco Dorigo 1, Elio Tuci 1,RoderichGroß 1, Vito Trianni 1, Thomas Halva Labella 1, Shervin Nouyan 1,ChristosAmpatzis 1, Jean-Louis Deneubourg 2, Gianluca Baldassarre 3,StefanoNolfi

More information

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

More information