Algebraic Representations of Conic Sections

Size: px
Start display at page:

Download "Algebraic Representations of Conic Sections"

Transcription

1 Geometry, Quarter 4, Unit 4.1 Algebraic Representations of Conic Sections Overview Number of instructional days: 22 (1 day = 45 minutes) Content to be learned Construct the inscribed and circumscribed circles of a triangle. Prove properties of angles for a quadrilateral inscribed in a circle. Make geometric constructions of an equilateral triangle, square, and regular hexagon inscribed in a circle (as well as explain the process of construction). (+) Construct a tangent line from a point outside a given circle to the circle. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove whether the point (1, 3) lies on the circle centered at the origin and containing the point (0, 2). Translate between the geometric description and the equation for a conic section. Derive the equation of a circle of given center and radius using the Pythagorean Theorem. Complete the square to find the center and radius of a circle given by an equation. Derive the equation of a parabola given a focus and directrix. (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. Identify the shapes of two-dimensional cross sections of three-dimensional objects. Identify three-dimensional objects generated by rotations of two-dimensional objects. Mathematical practices to be integrated Construct viable arguments and critique the reasoning of others. Understand and use stated assumptions, definitions, and previously established results in constructing arguments regarding circles on and off coordinate planes. Determine whether the arguments make sense; ask useful questions to clarify and improve an argument or proof. Use appropriate tools strategically. Make geometric constructions with a variety of tools, including a compass, protractor, straightedge, and geometric software. Make sense of problems and persevere in solving them. Explain the meaning of a problem and look for entry points to its solution when writing the equations of conics. Analyze givens, constraints, and relationships, and utilize them to derive the equations of circles, parabolas, ellipses, and hyperbolas. Make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt Check answers to problems using a different method, and continually ask, Does this make sense? Understand the approaches of others when solving complex problems and deriving the formulas in conic sections. 35

2 Geometry, Quarter 4, Unit 4.1 Algebraic Representations of Conic Sections (22 days) Identify correspondences between different approaches in problem solving. Attend to precision. Specify units of measure in constructions. Use theorems and definitions to examine and prove or disprove a mathematical claim. Essential questions How do you construct a circle that circumscribes a triangle? How do you construct a polygon inscribed in a circle? What can you conclude about the angles of a quadrilateral inscribed in a circle? How can you prove it? If you are given a point on a circle and the coordinates of its center, how can you prove or disprove that another point is on the circle? Given the center and radius, how can you develop the equation of a circle? Given a focus and directrix, how can you develop the equation of a parabola? How do you identify cross sections of threedimensional figures? How do you use rotations to generate three-dimensional figures seen in everyday life? Written Curriculum Common Core State Standards for Mathematical Content Circles G-C Understand and apply theorems about circles G-C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. Congruence G-CO Make geometric constructions [Formalize and explain processes] G-CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. Circles G-C Understand and apply theorems about circles G-C.4 (+) Construct a tangent line from a point outside a given circle to the circle. 36

3 Geometry, Quarter 4, Unit 4.1 Algebraic Representations of Conic Sections (22 days) Expressing Geometric Properties with Equations G-GPE Use coordinates to prove simple geometric theorems algebraically [Include distance formula; relate to Pythagorean theorem] G-GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, 3) lies on the circle centered at the origin and containing the point (0, 2). Translate between the geometric description and the equation for a conic section G-GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. G-GPE.2 Derive the equation of a parabola given a focus and directrix. G-GPE.3 (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. Geometric Measurement and Dimension G-GMD Visualize relationships between two-dimensional and three-dimensional objects G-GMD.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. Common Core Standards for Mathematical Practice 3 Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their 37

4 Geometry, Quarter 4, Unit 4.1 Algebraic Representations of Conic Sections (22 days) limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. Clarifying the Standards Prior Learning In earlier years, students recognized shapes and their attributes. In grade 7, students described the 2-D figures that result from slicing 3-D figures. (7.G.3) In grade 8, students proved and applied the Pythagorean Theorem and its converse in 2-D and 3-D applications. In Algebra I, students completed the square in quadratic expressions. (A.SSE.3b) In Unit 1.1 of this course, students made formal constructions using a variety of tools. (G-CO.12) In Unit 3.1, they proved and began using the distance formula. (G-GPE.7) In Unit 3.3, students studied inscribed and circumscribed angles of circles. (G-C.2) 38

5 Geometry, Quarter 4, Unit 4.1 Algebraic Representations of Conic Sections (22 days) Current Learning Students construct the inscribed and circumscribed circles of a triangle and prove properties of angles for a quadrilateral inscribed in a circle. They construct, formalize, and explain the process of constructing an equilateral triangle, square, and regular hexagon inscribed in a circle. Students construct a tangent line from a point outside a given circle to the circle (+ standard). They algebraically prove whether a point lies on circle given the origin and a point on a circle [e.g., whether the point (1, 3) lies on the circle centered at the origin and containing the point (0, 2)]. Students translate between the geometric description and the equation for a conic section. They derive the equation of a circle of given center and radius using the Pythagorean Theorem. Students complete the square to find the center and radius of a circle given by an equation. They derive the equation of a parabola given a focus and directrix. Students derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. Students identify the shapes of two-dimensional cross sections of three-dimensional objects as well as three-dimensional objects generated by rotations of two-dimensional objects. Future Learning Students will continue their study of quadratic functions in Algebra II. In future mathematics courses, they will utilize and build upon their knowledge of the conic sections, rotation of 2-D objects, and cross section of 3-D objects. Student will encounter these topics in careers such as graphic design, architecture, engineering, and art-related fields. Additional Findings According to Principles and Standards for School Mathematics, Working to understand orientation and drawings in a 3-D rectangular coordinate system will afford opportunities for student to think and reason spatially. In addition, Schooling should provide rich mathematical settings in which they [students] can hone their visualization skills. Visualizing a building represented in architectural plans, the shape of cross section formed when a plane slices through a cone (conic section) or another solid object, or the shape of the solid swept out when a plane figure is rotated about an axis become easier when students work with physical models, drawings, and software capable of manipulating 3-D representations. (pp. 315 and 316) Writing Team Notes In G-GPE.2 and G-GPE.3(+), the writing team interprets the word derive to mean that students should be able to write and use the equation for a parabola, ellipse, and hyperbola given specific conditions. It may not be necessary at this level for students to derive these formulas from scratch. 39

6 Geometry, Quarter 4, Unit 4.1 Algebraic Representations of Conic Sections (22 days) 40

7 Geometry, Quarter 4, Unit 4.2 Introduction to and Applications of Conditional Probability Overview Number of instructional days: 18 (1 day = 45 minutes) Content to be learned Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (or, and, not). Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. Apply the Addition Rule, P( A or B) = P( A) + P(B) P( A and B), and interpret the answer in terms of the model (using a modeling approach). Understand the conditional probability of A given B as P(A and B)/P(B) and interpret independence of A and B as P(A B) = P(A), and P(B A) = P(B) (using a modeling approach). Understand that two events A and B are independent if P(A and B) = P(A) P(B) and use this characterization to determine if they are independent (using a modeling approach). Find the conditional probability of A given B as the fraction of Bs outcomes that also belong to A, and interpret the answer in terms of the P( A and B) model. P( A B) = P(B) Mathematical practices to be integrated Make sense of problems and persevere in solving them. Explain the meaning of a problem and analyze givens, constraints, relationships, and goals. Explain correspondence between equations, verbal descriptions, tables, and graphs. Reason abstractly and quantitatively. Represent a given situation symbolically and manipulate the symbols when dealing with conditional probabilities. When using the rules of probability, create a coherent representation of the problem at hand, attending to the meaning of the quantities, not just how to compute them. Model with mathematics. Construct and interpret two-way frequency tables of collected data to determine whether events are independent or dependent and calculate their approximate probabilities. Use the rules of probability to compute probabilities of compound events in a uniform probability model. Identify important qualities in a practical situation and map their relationships using tools such as tree diagrams, two-way tables, Venn diagrams, and formulas. 41

8 Geometry, Quarter 4, Unit 4.2 Introduction to and Applications of Conditional Probability (18 days) Use appropriate tools strategically. Use tools such as graphing calculators, a statistical package, or other computer software to collect random samples of data. Utilize technology when making mathematical models to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Essential questions What are the similarities and differences between experimental and theoretical probability? How could you use a frequency table and probability distribution to draw conclusions about a given situation? How could you determine whether two events are dependent or independent? What is an example of mutually exclusive events? How can you find the probability of these events? How can tables, tree diagrams, and formulas be used to find conditional probability? Is it possible to prove one event causes another event if the events are not independent? Written Curriculum Common Core State Standards for Mathematical Content Conditional Probability and the Rules of Probability S-CP Understand independence and conditional probability and use them to interpret data [Link to data from simulations or experiments] S-CP.1 S-CP.4 S-CP.5 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ( or, and, not ). Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. 42

9 Geometry, Quarter 4, Unit 4.2 Introduction to and Applications of Conditional Probability (18 days) Use the rules of probability to compute probabilities of compound events in a uniform probability model S-CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) P(A and B), and interpret the answer in terms of the model. Understand independence and conditional probability and use them to interpret data [Link to data from simulations or experiments] S-CP.3 S-CP.2 Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Use the rules of probability to compute probabilities of compound events in a uniform probability model S-CP.6 Find the conditional probability of A given B as the fraction of B s outcomes that also belong to A, and interpret the answer in terms of the model. Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 2 Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of 43

10 Geometry, Quarter 4, Unit 4.2 Introduction to and Applications of Conditional Probability (18 days) quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. 4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. Clarifying the Standards Prior Learning In grade 1, students organized, represented, and interpreted data with up to three categories. They also asked and answered questions about the data. (1.MD.4) In grade 2, students made line plots, picture graphs, and bar graphs (with single-unit scales) to represent a data set with up to four categories. They also solved problems using information presented in a bar graph. (2.MD.10) In grade 3, students drew scaled picture graphs and scaled bar graphs to represent data in several categories. They solved one- and two-step problems using information presented in scaled bar graphs. (3.MD.3) In grade 6, students represented and analyzed quantitative relationships between dependent and independent variables. (6.EE.9) In grade 7, students understood that sample population and random sampling can be used to gain information and make inferences about a population. They also investigated chance processes and developed, used, and evaluated probability models. Students studied unlikely events, predicted relative frequency given probability, and found probabilities of compound events and 44

11 Geometry, Quarter 4, Unit 4.2 Introduction to and Applications of Conditional Probability (18 days) displayed them in lists, tables, and tree diagrams. They designed a simulation to generate frequencies for compound events. (7.SP.1-8) In grade 8, students used relative frequencies to describe possible associations between two variables. (8.SP.4) In Unit 3.2 of Algebra 1, students summarized categorical data for two categories in two-way frequency tables. They also interpreted relative frequencies in the context of the data. (S-ID.5) Current Learning Students describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (or, and, not). They construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Students use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. They recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. They apply the Addition Rule, P( A or B) = P( A) + P(B) P( A and B), and interpret the answer in terms of the model. Students understand the conditional probability of A given B as P(A and B)/P(B) and interpret independence of A and B as P(A B) = P(A) and P(B A) = P(B). They understand that two events A and B are independent if P(A and B) = P(A) P(B) and use this characterization to determine if they are independent. Students find the conditional probability of A given B as the fraction of Bs outcomes P( A and B) P( A B) = P(B) that also belong to A, and interpret the answer in terms of the model. Future Learning In Unit 4.4 of Algebra II, students will build upon the concept of random sampling in probability to explain how it relates to sample surveys, experiments, and observational studies. In Unit 4.1 of Precalculus, students will utilize the rules of probability to compute probabilities of compound events in a uniform probability model. They will use probability to evaluate outcomes of decisions and strategies such as drawing by lots and using a random number event. Students will calculate the expected value and develop a probability distribution of a random variable defined for a sample space, in which probabilities are assigned empirically or calculated theoretically. They will further develop and apply probability concepts in advanced-level statistics courses and actuarial sciences. Most students will encounter a statistics course at the college level, regardless of their major. Additional Findings Benchmarks for Science Literacy states, One of the many misunderstandings of probability that teachers have to deal with is that a wellestablished probability will be changed by the most recent history: [for example] People tend to believe that a coin that has come up heads ten times in a row is more likely on the next flip to come up tails than heads or that the number that won the lottery last week is less likely to win this week. Those and other confusions about probability are purely mathematical and can be addressed as such, but it is also important to take up some of the questions related to how probabilities are established. Examples should come from medicine, natural catastrophes such as floods and earthquakes, weather patterns, sports events, stock market events, elections, and other topical contexts. (p. 226) By the end of 12th grade, students should know that a physical or mathematical model can be used to estimate the probability of real-world events. (p. 230) 45

12 Geometry, Quarter 4, Unit 4.2 Introduction to and Applications of Conditional Probability (18 days) Writing Team Notes Include discussion of empirical (experimental) and theoretical probabilities to help students better understand the basis of probability. Emphasize that association/correlation does not equal causation; in other words, just because two events are associated, it does not mean that one is a result of the other. This is a common misconception students have. Different textbooks have used different notations for unions ( ) and intersections ( ) instead of and and or stated in the Common Core standards. For more specific examples of each standard and how they translate to instructional resources refer to chapter 11 of the On Core Mathematics by Houghton Mifflin Harcourt or chapter 13 of the Geometry Common Core by Pearson. 46

Florida Mathematics Standards for Geometry Honors (CPalms # )

Florida Mathematics Standards for Geometry Honors (CPalms # ) A Correlation of Florida Geometry Honors 2011 to the for Geometry Honors (CPalms #1206320) Geometry Honors (#1206320) Course Standards MAFS.912.G-CO.1.1: Know precise definitions of angle, circle, perpendicular

More information

Extending Place Value with Whole Numbers to 1,000,000

Extending Place Value with Whole Numbers to 1,000,000 Grade 4 Mathematics, Quarter 1, Unit 1.1 Extending Place Value with Whole Numbers to 1,000,000 Overview Number of Instructional Days: 10 (1 day = 45 minutes) Content to Be Learned Recognize that a digit

More information

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS 1 CALIFORNIA CONTENT STANDARDS: Chapter 1 ALGEBRA AND WHOLE NUMBERS Algebra and Functions 1.4 Students use algebraic

More information

Dublin City Schools Mathematics Graded Course of Study GRADE 4

Dublin City Schools Mathematics Graded Course of Study GRADE 4 I. Content Standard: Number, Number Sense and Operations Standard Students demonstrate number sense, including an understanding of number systems and reasonable estimates using paper and pencil, technology-supported

More information

Montana Content Standards for Mathematics Grade 3. Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011

Montana Content Standards for Mathematics Grade 3. Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011 Montana Content Standards for Mathematics Grade 3 Montana Content Standards for Mathematical Practices and Mathematics Content Adopted November 2011 Contents Standards for Mathematical Practice: Grade

More information

Mathematics subject curriculum

Mathematics subject curriculum Mathematics subject curriculum Dette er ei omsetjing av den fastsette læreplanteksten. Læreplanen er fastsett på Nynorsk Established as a Regulation by the Ministry of Education and Research on 24 June

More information

Classroom Connections Examining the Intersection of the Standards for Mathematical Content and the Standards for Mathematical Practice

Classroom Connections Examining the Intersection of the Standards for Mathematical Content and the Standards for Mathematical Practice Classroom Connections Examining the Intersection of the Standards for Mathematical Content and the Standards for Mathematical Practice Title: Considering Coordinate Geometry Common Core State Standards

More information

Probability and Statistics Curriculum Pacing Guide

Probability and Statistics Curriculum Pacing Guide Unit 1 Terms PS.SPMJ.3 PS.SPMJ.5 Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods

More information

Grade 6: Correlated to AGS Basic Math Skills

Grade 6: Correlated to AGS Basic Math Skills Grade 6: Correlated to AGS Basic Math Skills Grade 6: Standard 1 Number Sense Students compare and order positive and negative integers, decimals, fractions, and mixed numbers. They find multiples and

More information

First Grade Standards

First Grade Standards These are the standards for what is taught throughout the year in First Grade. It is the expectation that these skills will be reinforced after they have been taught. Mathematical Practice Standards Taught

More information

Statewide Framework Document for:

Statewide Framework Document for: Statewide Framework Document for: 270301 Standards may be added to this document prior to submission, but may not be removed from the framework to meet state credit equivalency requirements. Performance

More information

Problem of the Month: Movin n Groovin

Problem of the Month: Movin n Groovin : The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of

More information

TabletClass Math Geometry Course Guidebook

TabletClass Math Geometry Course Guidebook TabletClass Math Geometry Course Guidebook Includes Final Exam/Key, Course Grade Calculation Worksheet and Course Certificate Student Name Parent Name School Name Date Started Course Date Completed Course

More information

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview Algebra 1, Quarter 3, Unit 3.1 Line of Best Fit Overview Number of instructional days 6 (1 day assessment) (1 day = 45 minutes) Content to be learned Analyze scatter plots and construct the line of best

More information

Missouri Mathematics Grade-Level Expectations

Missouri Mathematics Grade-Level Expectations A Correlation of to the Grades K - 6 G/M-223 Introduction This document demonstrates the high degree of success students will achieve when using Scott Foresman Addison Wesley Mathematics in meeting the

More information

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified

Page 1 of 11. Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General. Grade(s): None specified Curriculum Map: Grade 4 Math Course: Math 4 Sub-topic: General Grade(s): None specified Unit: Creating a Community of Mathematical Thinkers Timeline: Week 1 The purpose of the Establishing a Community

More information

Math Grade 3 Assessment Anchors and Eligible Content

Math Grade 3 Assessment Anchors and Eligible Content Math Grade 3 Assessment Anchors and Eligible Content www.pde.state.pa.us 2007 M3.A Numbers and Operations M3.A.1 Demonstrate an understanding of numbers, ways of representing numbers, relationships among

More information

Arizona s College and Career Ready Standards Mathematics

Arizona s College and Career Ready Standards Mathematics Arizona s College and Career Ready Mathematics Mathematical Practices Explanations and Examples First Grade ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS FOR STUDENTS State Board Approved June

More information

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Third Grade The third grade standards primarily address multiplication and division, which are covered in Math-U-See

More information

2003, Prentice-Hall, Inc. Giesecke Technical Drawing, 12e. Figure 4-1 Points and Lines.

2003, Prentice-Hall, Inc. Giesecke Technical Drawing, 12e. Figure 4-1 Points and Lines. Figure 4-1 Points and Lines. Figure 4-2 Angles. Figure 4-3 Triangles. Figure 4-4 Quadrilaterals. Figure 4-5 Regular Polygons. Figure 4-6 The Circle. Figure 4-7 Solids. Figure 4-7.1 Examples of Solids Created

More information

Playing It By Ear The First Year of SCHEMaTC: South Carolina High Energy Mathematics Teachers Circle

Playing It By Ear The First Year of SCHEMaTC: South Carolina High Energy Mathematics Teachers Circle Playing It By Ear The First Year of SCHEMaTC: South Carolina High Energy Mathematics Teachers Circle George McNulty 2 Nieves McNulty 1 Douglas Meade 2 Diana White 3 1 Columbia College 2 University of South

More information

LLD MATH. Student Eligibility: Grades 6-8. Credit Value: Date Approved: 8/24/15

LLD MATH. Student Eligibility: Grades 6-8. Credit Value: Date Approved: 8/24/15 PUBLIC SCHOOLS OF EDISON TOWNSHIP DIVISION OF CURRICULUM AND INSTRUCTION LLD MATH Length of Course: Elective/Required: School: Full Year Required Middle Schools Student Eligibility: Grades 6-8 Credit Value:

More information

ASSESSMENT TASK OVERVIEW & PURPOSE:

ASSESSMENT TASK OVERVIEW & PURPOSE: Performance Based Learning and Assessment Task A Place at the Table I. ASSESSMENT TASK OVERVIEW & PURPOSE: Students will create a blueprint for a decorative, non rectangular picnic table (top only), and

More information

Pre-AP Geometry Course Syllabus Page 1

Pre-AP Geometry Course Syllabus Page 1 Pre-AP Geometry Course Syllabus 2015-2016 Welcome to my Pre-AP Geometry class. I hope you find this course to be a positive experience and I am certain that you will learn a great deal during the next

More information

Using Calculators for Students in Grades 9-12: Geometry. Re-published with permission from American Institutes for Research

Using Calculators for Students in Grades 9-12: Geometry. Re-published with permission from American Institutes for Research Using Calculators for Students in Grades 9-12: Geometry Re-published with permission from American Institutes for Research Using Calculators for Students in Grades 9-12: Geometry By: Center for Implementing

More information

Math 96: Intermediate Algebra in Context

Math 96: Intermediate Algebra in Context : Intermediate Algebra in Context Syllabus Spring Quarter 2016 Daily, 9:20 10:30am Instructor: Lauri Lindberg Office Hours@ tutoring: Tutoring Center (CAS-504) 8 9am & 1 2pm daily STEM (Math) Center (RAI-338)

More information

Technical Manual Supplement

Technical Manual Supplement VERSION 1.0 Technical Manual Supplement The ACT Contents Preface....................................................................... iii Introduction....................................................................

More information

TOPICS LEARNING OUTCOMES ACTIVITES ASSESSMENT Numbers and the number system

TOPICS LEARNING OUTCOMES ACTIVITES ASSESSMENT Numbers and the number system Curriculum Overview Mathematics 1 st term 5º grade - 2010 TOPICS LEARNING OUTCOMES ACTIVITES ASSESSMENT Numbers and the number system Multiplies and divides decimals by 10 or 100. Multiplies and divide

More information

Cal s Dinner Card Deals

Cal s Dinner Card Deals Cal s Dinner Card Deals Overview: In this lesson students compare three linear functions in the context of Dinner Card Deals. Students are required to interpret a graph for each Dinner Card Deal to help

More information

This scope and sequence assumes 160 days for instruction, divided among 15 units.

This scope and sequence assumes 160 days for instruction, divided among 15 units. In previous grades, students learned strategies for multiplication and division, developed understanding of structure of the place value system, and applied understanding of fractions to addition and subtraction

More information

Standard 1: Number and Computation

Standard 1: Number and Computation Standard 1: Number and Computation Standard 1: Number and Computation The student uses numerical and computational concepts and procedures in a variety of situations. Benchmark 1: Number Sense The student

More information

Mathematics Assessment Plan

Mathematics Assessment Plan Mathematics Assessment Plan Mission Statement for Academic Unit: Georgia Perimeter College transforms the lives of our students to thrive in a global society. As a diverse, multi campus two year college,

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand

Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand Grade 2: Using a Number Line to Order and Compare Numbers Place Value Horizontal Content Strand Texas Essential Knowledge and Skills (TEKS): (2.1) Number, operation, and quantitative reasoning. The student

More information

Mathematics. Mathematics

Mathematics. Mathematics Mathematics Program Description Successful completion of this major will assure competence in mathematics through differential and integral calculus, providing an adequate background for employment in

More information

Characteristics of Functions

Characteristics of Functions Characteristics of Functions Unit: 01 Lesson: 01 Suggested Duration: 10 days Lesson Synopsis Students will collect and organize data using various representations. They will identify the characteristics

More information

South Carolina College- and Career-Ready Standards for Mathematics. Standards Unpacking Documents Grade 5

South Carolina College- and Career-Ready Standards for Mathematics. Standards Unpacking Documents Grade 5 South Carolina College- and Career-Ready Standards for Mathematics Standards Unpacking Documents Grade 5 South Carolina College- and Career-Ready Standards for Mathematics Standards Unpacking Documents

More information

Objectives. Chapter 2: The Representation of Knowledge. Expert Systems: Principles and Programming, Fourth Edition

Objectives. Chapter 2: The Representation of Knowledge. Expert Systems: Principles and Programming, Fourth Edition Chapter 2: The Representation of Knowledge Expert Systems: Principles and Programming, Fourth Edition Objectives Introduce the study of logic Learn the difference between formal logic and informal logic

More information

Honors Mathematics. Introduction and Definition of Honors Mathematics

Honors Mathematics. Introduction and Definition of Honors Mathematics Honors Mathematics Introduction and Definition of Honors Mathematics Honors Mathematics courses are intended to be more challenging than standard courses and provide multiple opportunities for students

More information

Learning Disability Functional Capacity Evaluation. Dear Doctor,

Learning Disability Functional Capacity Evaluation. Dear Doctor, Dear Doctor, I have been asked to formulate a vocational opinion regarding NAME s employability in light of his/her learning disability. To assist me with this evaluation I would appreciate if you can

More information

STA 225: Introductory Statistics (CT)

STA 225: Introductory Statistics (CT) Marshall University College of Science Mathematics Department STA 225: Introductory Statistics (CT) Course catalog description A critical thinking course in applied statistical reasoning covering basic

More information

Mathematics process categories

Mathematics process categories Mathematics process categories All of the UK curricula define multiple categories of mathematical proficiency that require students to be able to use and apply mathematics, beyond simple recall of facts

More information

SPATIAL SENSE : TRANSLATING CURRICULUM INNOVATION INTO CLASSROOM PRACTICE

SPATIAL SENSE : TRANSLATING CURRICULUM INNOVATION INTO CLASSROOM PRACTICE SPATIAL SENSE : TRANSLATING CURRICULUM INNOVATION INTO CLASSROOM PRACTICE Kate Bennie Mathematics Learning and Teaching Initiative (MALATI) Sarie Smit Centre for Education Development, University of Stellenbosch

More information

CAAP. Content Analysis Report. Sample College. Institution Code: 9011 Institution Type: 4-Year Subgroup: none Test Date: Spring 2011

CAAP. Content Analysis Report. Sample College. Institution Code: 9011 Institution Type: 4-Year Subgroup: none Test Date: Spring 2011 CAAP Content Analysis Report Institution Code: 911 Institution Type: 4-Year Normative Group: 4-year Colleges Introduction This report provides information intended to help postsecondary institutions better

More information

Digital Fabrication and Aunt Sarah: Enabling Quadratic Explorations via Technology. Michael L. Connell University of Houston - Downtown

Digital Fabrication and Aunt Sarah: Enabling Quadratic Explorations via Technology. Michael L. Connell University of Houston - Downtown Digital Fabrication and Aunt Sarah: Enabling Quadratic Explorations via Technology Michael L. Connell University of Houston - Downtown Sergei Abramovich State University of New York at Potsdam Introduction

More information

Mathematics Success Grade 7

Mathematics Success Grade 7 T894 Mathematics Success Grade 7 [OBJECTIVE] The student will find probabilities of compound events using organized lists, tables, tree diagrams, and simulations. [PREREQUISITE SKILLS] Simple probability,

More information

End-of-Module Assessment Task K 2

End-of-Module Assessment Task K 2 Student Name Topic A: Two-Dimensional Flat Shapes Date 1 Date 2 Date 3 Rubric Score: Time Elapsed: Topic A Topic B Materials: (S) Paper cutouts of typical triangles, squares, Topic C rectangles, hexagons,

More information

Alignment of Australian Curriculum Year Levels to the Scope and Sequence of Math-U-See Program

Alignment of Australian Curriculum Year Levels to the Scope and Sequence of Math-U-See Program Alignment of s to the Scope and Sequence of Math-U-See Program This table provides guidance to educators when aligning levels/resources to the Australian Curriculum (AC). The Math-U-See levels do not address

More information

Julia Smith. Effective Classroom Approaches to.

Julia Smith. Effective Classroom Approaches to. Julia Smith @tessmaths Effective Classroom Approaches to GCSE Maths resits julia.smith@writtle.ac.uk Agenda The context of GCSE resit in a post-16 setting An overview of the new GCSE Key features of a

More information

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C

Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C Numeracy Medium term plan: Summer Term Level 2C/2B Year 2 Level 2A/3C Using and applying mathematics objectives (Problem solving, Communicating and Reasoning) Select the maths to use in some classroom

More information

Paper 2. Mathematics test. Calculator allowed. First name. Last name. School KEY STAGE TIER

Paper 2. Mathematics test. Calculator allowed. First name. Last name. School KEY STAGE TIER 259574_P2 5-7_KS3_Ma.qxd 1/4/04 4:14 PM Page 1 Ma KEY STAGE 3 TIER 5 7 2004 Mathematics test Paper 2 Calculator allowed Please read this page, but do not open your booklet until your teacher tells you

More information

Common Core Standards Alignment Chart Grade 5

Common Core Standards Alignment Chart Grade 5 Common Core Standards Alignment Chart Grade 5 Units 5.OA.1 5.OA.2 5.OA.3 5.NBT.1 5.NBT.2 5.NBT.3 5.NBT.4 5.NBT.5 5.NBT.6 5.NBT.7 5.NF.1 5.NF.2 5.NF.3 5.NF.4 5.NF.5 5.NF.6 5.NF.7 5.MD.1 5.MD.2 5.MD.3 5.MD.4

More information

Build on students informal understanding of sharing and proportionality to develop initial fraction concepts.

Build on students informal understanding of sharing and proportionality to develop initial fraction concepts. Recommendation 1 Build on students informal understanding of sharing and proportionality to develop initial fraction concepts. Students come to kindergarten with a rudimentary understanding of basic fraction

More information

Primary National Curriculum Alignment for Wales

Primary National Curriculum Alignment for Wales Mathletics and the Welsh Curriculum This alignment document lists all Mathletics curriculum activities associated with each Wales course, and demonstrates how these fit within the National Curriculum Programme

More information

Geometry. TED Talk: House of the Future Project Teacher Edition. A Project-based Learning Course. Our Superhero. Image Source.

Geometry. TED Talk: House of the Future Project Teacher Edition. A Project-based Learning Course. Our Superhero. Image Source. Geometry A Project-based Learning Course Image Source. TED Talk: House of the Future Project Teacher Edition Our Superhero Curriki 20660 Stevens Creek Boulevard, #332 Cupertino, CA 95014 To learn more

More information

Curriculum Design Project with Virtual Manipulatives. Gwenanne Salkind. George Mason University EDCI 856. Dr. Patricia Moyer-Packenham

Curriculum Design Project with Virtual Manipulatives. Gwenanne Salkind. George Mason University EDCI 856. Dr. Patricia Moyer-Packenham Curriculum Design Project with Virtual Manipulatives Gwenanne Salkind George Mason University EDCI 856 Dr. Patricia Moyer-Packenham Spring 2006 Curriculum Design Project with Virtual Manipulatives Table

More information

THEORETICAL CONSIDERATIONS

THEORETICAL CONSIDERATIONS Cite as: Jones, K. and Fujita, T. (2002), The Design Of Geometry Teaching: learning from the geometry textbooks of Godfrey and Siddons, Proceedings of the British Society for Research into Learning Mathematics,

More information

Focus of the Unit: Much of this unit focuses on extending previous skills of multiplication and division to multi-digit whole numbers.

Focus of the Unit: Much of this unit focuses on extending previous skills of multiplication and division to multi-digit whole numbers. Approximate Time Frame: 3-4 weeks Connections to Previous Learning: In fourth grade, students fluently multiply (4-digit by 1-digit, 2-digit by 2-digit) and divide (4-digit by 1-digit) using strategies

More information

Hardhatting in a Geo-World

Hardhatting in a Geo-World Hardhatting in a Geo-World TM Developed and Published by AIMS Education Foundation This book contains materials developed by the AIMS Education Foundation. AIMS (Activities Integrating Mathematics and

More information

Table of Contents. Development of K-12 Louisiana Connectors in Mathematics and ELA

Table of Contents. Development of K-12 Louisiana Connectors in Mathematics and ELA Table of Contents Introduction Rationale and Purpose Development of K-12 Louisiana Connectors in Mathematics and ELA Implementation Reading the Louisiana Connectors Louisiana Connectors for Mathematics

More information

GUIDE TO THE CUNY ASSESSMENT TESTS

GUIDE TO THE CUNY ASSESSMENT TESTS GUIDE TO THE CUNY ASSESSMENT TESTS IN MATHEMATICS Rev. 117.016110 Contents Welcome... 1 Contact Information...1 Programs Administered by the Office of Testing and Evaluation... 1 CUNY Skills Assessment:...1

More information

Mathematics Success Level E

Mathematics Success Level E T403 [OBJECTIVE] The student will generate two patterns given two rules and identify the relationship between corresponding terms, generate ordered pairs, and graph the ordered pairs on a coordinate plane.

More information

Stacks Teacher notes. Activity description. Suitability. Time. AMP resources. Equipment. Key mathematical language. Key processes

Stacks Teacher notes. Activity description. Suitability. Time. AMP resources. Equipment. Key mathematical language. Key processes Stacks Teacher notes Activity description (Interactive not shown on this sheet.) Pupils start by exploring the patterns generated by moving counters between two stacks according to a fixed rule, doubling

More information

Helping Your Children Learn in the Middle School Years MATH

Helping Your Children Learn in the Middle School Years MATH Helping Your Children Learn in the Middle School Years MATH Grade 7 A GUIDE TO THE MATH COMMON CORE STATE STANDARDS FOR PARENTS AND STUDENTS This brochure is a product of the Tennessee State Personnel

More information

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are Environmental Physics Standards The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy

More information

Answer Key For The California Mathematics Standards Grade 1

Answer Key For The California Mathematics Standards Grade 1 Introduction: Summary of Goals GRADE ONE By the end of grade one, students learn to understand and use the concept of ones and tens in the place value number system. Students add and subtract small numbers

More information

SAT MATH PREP:

SAT MATH PREP: SAT MATH PREP: 2015-2016 NOTE: The College Board has redesigned the SAT Test. This new test will start in March of 2016. Also, the PSAT test given in October of 2015 will have the new format. Therefore

More information

Guest Editorial Motivating Growth of Mathematics Knowledge for Teaching: A Case for Secondary Mathematics Teacher Education

Guest Editorial Motivating Growth of Mathematics Knowledge for Teaching: A Case for Secondary Mathematics Teacher Education The Mathematics Educator 2008, Vol. 18, No. 2, 3 10 Guest Editorial Motivating Growth of Mathematics Knowledge for Teaching: A Case for Secondary Mathematics Teacher Education Azita Manouchehri There is

More information

TABE 9&10. Revised 8/2013- with reference to College and Career Readiness Standards

TABE 9&10. Revised 8/2013- with reference to College and Career Readiness Standards TABE 9&10 Revised 8/2013- with reference to College and Career Readiness Standards LEVEL E Test 1: Reading Name Class E01- INTERPRET GRAPHIC INFORMATION Signs Maps Graphs Consumer Materials Forms Dictionary

More information

2 nd Grade Math Curriculum Map

2 nd Grade Math Curriculum Map .A.,.M.6,.M.8,.N.5,.N.7 Organizing Data in a Table Working with multiples of 5, 0, and 5 Using Patterns in data tables to make predictions and solve problems. Solving problems involving money. Using a

More information

Diagnostic Test. Middle School Mathematics

Diagnostic Test. Middle School Mathematics Diagnostic Test Middle School Mathematics Copyright 2010 XAMonline, Inc. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by

More information

UNIT ONE Tools of Algebra

UNIT ONE Tools of Algebra UNIT ONE Tools of Algebra Subject: Algebra 1 Grade: 9 th 10 th Standards and Benchmarks: 1 a, b,e; 3 a, b; 4 a, b; Overview My Lessons are following the first unit from Prentice Hall Algebra 1 1. Students

More information

Maximizing Learning Through Course Alignment and Experience with Different Types of Knowledge

Maximizing Learning Through Course Alignment and Experience with Different Types of Knowledge Innov High Educ (2009) 34:93 103 DOI 10.1007/s10755-009-9095-2 Maximizing Learning Through Course Alignment and Experience with Different Types of Knowledge Phyllis Blumberg Published online: 3 February

More information

2 nd grade Task 5 Half and Half

2 nd grade Task 5 Half and Half 2 nd grade Task 5 Half and Half Student Task Core Idea Number Properties Core Idea 4 Geometry and Measurement Draw and represent halves of geometric shapes. Describe how to know when a shape will show

More information

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATHEMATICS ASSESSING THE EFFECTIVENESS OF MULTIPLE CHOICE MATH TESTS

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATHEMATICS ASSESSING THE EFFECTIVENESS OF MULTIPLE CHOICE MATH TESTS THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATHEMATICS ASSESSING THE EFFECTIVENESS OF MULTIPLE CHOICE MATH TESTS ELIZABETH ANNE SOMERS Spring 2011 A thesis submitted in partial

More information

Ohio s Learning Standards-Clear Learning Targets

Ohio s Learning Standards-Clear Learning Targets Ohio s Learning Standards-Clear Learning Targets Math Grade 1 Use addition and subtraction within 20 to solve word problems involving situations of 1.OA.1 adding to, taking from, putting together, taking

More information

Syllabus ENGR 190 Introductory Calculus (QR)

Syllabus ENGR 190 Introductory Calculus (QR) Syllabus ENGR 190 Introductory Calculus (QR) Catalog Data: ENGR 190 Introductory Calculus (4 credit hours). Note: This course may not be used for credit toward the J.B. Speed School of Engineering B. S.

More information

Measurement. When Smaller Is Better. Activity:

Measurement. When Smaller Is Better. Activity: Measurement Activity: TEKS: When Smaller Is Better (6.8) Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and

More information

South Carolina English Language Arts

South Carolina English Language Arts South Carolina English Language Arts A S O F J U N E 2 0, 2 0 1 0, T H I S S TAT E H A D A D O P T E D T H E CO M M O N CO R E S TAT E S TA N DA R D S. DOCUMENTS REVIEWED South Carolina Academic Content

More information

Unit 3 Ratios and Rates Math 6

Unit 3 Ratios and Rates Math 6 Number of Days: 20 11/27/17 12/22/17 Unit Goals Stage 1 Unit Description: Students study the concepts and language of ratios and unit rates. They use proportional reasoning to solve problems. In particular,

More information

Characterizing Mathematical Digital Literacy: A Preliminary Investigation. Todd Abel Appalachian State University

Characterizing Mathematical Digital Literacy: A Preliminary Investigation. Todd Abel Appalachian State University Characterizing Mathematical Digital Literacy: A Preliminary Investigation Todd Abel Appalachian State University Jeremy Brazas, Darryl Chamberlain Jr., Aubrey Kemp Georgia State University This preliminary

More information

Introducing the New Iowa Assessments Mathematics Levels 12 14

Introducing the New Iowa Assessments Mathematics Levels 12 14 Introducing the New Iowa Assessments Mathematics Levels 12 14 ITP Assessment Tools Math Interim Assessments: Grades 3 8 Administered online Constructed Response Supplements Reading, Language Arts, Mathematics

More information

LESSON PLANS: AUSTRALIA Year 6: Patterns and Algebra Patterns 50 MINS 10 MINS. Introduction to Lesson. powered by

LESSON PLANS: AUSTRALIA Year 6: Patterns and Algebra Patterns 50 MINS 10 MINS. Introduction to Lesson. powered by Year 6: Patterns and Algebra Patterns 50 MINS Strand: Number and Algebra Substrand: Patterns and Algebra Outcome: Continue and create sequences involving whole numbers, fractions and decimals. Describe

More information

IMPLEMENTING THE NEW MATH SOL S IN THE LIBRARY MEDIA CENTER. Adrian Stevens November 2011 VEMA Conference, Richmond, VA

IMPLEMENTING THE NEW MATH SOL S IN THE LIBRARY MEDIA CENTER. Adrian Stevens November 2011 VEMA Conference, Richmond, VA IMPLEMENTING THE NEW MATH SOL S IN THE LIBRARY MEDIA CENTER Adrian Stevens November 2011 VEMA Conference, Richmond, VA Primary Points Math can be fun Language Arts role in mathematics Fiction and nonfiction

More information

Bittinger, M. L., Ellenbogen, D. J., & Johnson, B. L. (2012). Prealgebra (6th ed.). Boston, MA: Addison-Wesley.

Bittinger, M. L., Ellenbogen, D. J., & Johnson, B. L. (2012). Prealgebra (6th ed.). Boston, MA: Addison-Wesley. Course Syllabus Course Description Explores the basic fundamentals of college-level mathematics. (Note: This course is for institutional credit only and will not be used in meeting degree requirements.

More information

NCSC Alternate Assessments and Instructional Materials Based on Common Core State Standards

NCSC Alternate Assessments and Instructional Materials Based on Common Core State Standards NCSC Alternate Assessments and Instructional Materials Based on Common Core State Standards Ricki Sabia, JD NCSC Parent Training and Technical Assistance Specialist ricki.sabia@uky.edu Background Alternate

More information

Physics 270: Experimental Physics

Physics 270: Experimental Physics 2017 edition Lab Manual Physics 270 3 Physics 270: Experimental Physics Lecture: Lab: Instructor: Office: Email: Tuesdays, 2 3:50 PM Thursdays, 2 4:50 PM Dr. Uttam Manna 313C Moulton Hall umanna@ilstu.edu

More information

Chapter 4 - Fractions

Chapter 4 - Fractions . Fractions Chapter - Fractions 0 Michelle Manes, University of Hawaii Department of Mathematics These materials are intended for use with the University of Hawaii Department of Mathematics Math course

More information

OFFICE SUPPORT SPECIALIST Technical Diploma

OFFICE SUPPORT SPECIALIST Technical Diploma OFFICE SUPPORT SPECIALIST Technical Diploma Program Code: 31-106-8 our graduates INDEMAND 2017/2018 mstc.edu administrative professional career pathway OFFICE SUPPORT SPECIALIST CUSTOMER RELATIONSHIP PROFESSIONAL

More information

PRIMARY ASSESSMENT GRIDS FOR STAFFORDSHIRE MATHEMATICS GRIDS. Inspiring Futures

PRIMARY ASSESSMENT GRIDS FOR STAFFORDSHIRE MATHEMATICS GRIDS. Inspiring Futures PRIMARY ASSESSMENT GRIDS FOR STAFFORDSHIRE MATHEMATICS GRIDS Inspiring Futures ASSESSMENT WITHOUT LEVELS The Entrust Mathematics Assessment Without Levels documentation has been developed by a group of

More information

Are You Ready? Simplify Fractions

Are You Ready? Simplify Fractions SKILL 10 Simplify Fractions Teaching Skill 10 Objective Write a fraction in simplest form. Review the definition of simplest form with students. Ask: Is 3 written in simplest form? Why 7 or why not? (Yes,

More information

Fourth Grade. Reporting Student Progress. Libertyville School District 70. Fourth Grade

Fourth Grade. Reporting Student Progress. Libertyville School District 70. Fourth Grade Fourth Grade Libertyville School District 70 Reporting Student Progress Fourth Grade A Message to Parents/Guardians: Libertyville Elementary District 70 teachers of students in kindergarten-5 utilize a

More information

A Characterization of Calculus I Final Exams in U.S. Colleges and Universities

A Characterization of Calculus I Final Exams in U.S. Colleges and Universities Int. J. Res. Undergrad. Math. Ed. (2016) 2:105 133 DOI 10.1007/s40753-015-0023-9 A Characterization of Calculus I Final Exams in U.S. Colleges and Universities Michael A. Tallman 1,2 & Marilyn P. Carlson

More information

ICTCM 28th International Conference on Technology in Collegiate Mathematics

ICTCM 28th International Conference on Technology in Collegiate Mathematics DEVELOPING DIGITAL LITERACY IN THE CALCULUS SEQUENCE Dr. Jeremy Brazas Georgia State University Department of Mathematics and Statistics 30 Pryor Street Atlanta, GA 30303 jbrazas@gsu.edu Dr. Todd Abel

More information

A Metacognitive Approach to Support Heuristic Solution of Mathematical Problems

A Metacognitive Approach to Support Heuristic Solution of Mathematical Problems A Metacognitive Approach to Support Heuristic Solution of Mathematical Problems John TIONG Yeun Siew Centre for Research in Pedagogy and Practice, National Institute of Education, Nanyang Technological

More information

Edexcel GCSE. Statistics 1389 Paper 1H. June Mark Scheme. Statistics Edexcel GCSE

Edexcel GCSE. Statistics 1389 Paper 1H. June Mark Scheme. Statistics Edexcel GCSE Edexcel GCSE Statistics 1389 Paper 1H June 2007 Mark Scheme Edexcel GCSE Statistics 1389 NOTES ON MARKING PRINCIPLES 1 Types of mark M marks: method marks A marks: accuracy marks B marks: unconditional

More information

Mathematics Scoring Guide for Sample Test 2005

Mathematics Scoring Guide for Sample Test 2005 Mathematics Scoring Guide for Sample Test 2005 Grade 4 Contents Strand and Performance Indicator Map with Answer Key...................... 2 Holistic Rubrics.......................................................

More information

Enhancing Students Understanding Statistics with TinkerPlots: Problem-Based Learning Approach

Enhancing Students Understanding Statistics with TinkerPlots: Problem-Based Learning Approach Enhancing Students Understanding Statistics with TinkerPlots: Problem-Based Learning Approach Krongthong Khairiree drkrongthong@gmail.com International College, Suan Sunandha Rajabhat University, Bangkok,

More information

The lab is designed to remind you how to work with scientific data (including dealing with uncertainty) and to review experimental design.

The lab is designed to remind you how to work with scientific data (including dealing with uncertainty) and to review experimental design. Name: Partner(s): Lab #1 The Scientific Method Due 6/25 Objective The lab is designed to remind you how to work with scientific data (including dealing with uncertainty) and to review experimental design.

More information

EQuIP Review Feedback

EQuIP Review Feedback EQuIP Review Feedback Lesson/Unit Name: On the Rainy River and The Red Convertible (Module 4, Unit 1) Content Area: English language arts Grade Level: 11 Dimension I Alignment to the Depth of the CCSS

More information