# Overview. Overview of the course. Classification, Clustering, and Dimension reduction. The curse of dimensionality

Save this PDF as:
Size: px
Start display at page:

Download "Overview. Overview of the course. Classification, Clustering, and Dimension reduction. The curse of dimensionality"

## Transcription

1 Overview Overview of the course Classification, Clustering, and Dimension reduction The curse of dimensionality Tianwei Yu RSPH Room 334 1

2 Instructor: Course Outline Tianwei Yu Office: GCR Room Office Hours: by appointment. Teaching Assistant: Yunchuan Kong, Teng Fei, Yanting Huang Office Hours: TBA Course Website:

3 Overview Focus of the course: Classification Clustering Dimension reduction 1 Introduction 2 Python Q & A by TAs 3 Statistical background 4 Stat decision theory 1 5 Stat decision theory 2 6 Density estimation and KNN 7 Basis expansion 1 8 Basis expansion 2 9 Linear Machine 10 Support Vector Machine 1 11 Support Vector Machine 2 12 Boosting 13 Decision Tree 14 Random Forest 15 Bump hunting and forward stagewise regression 3

4 Overview 16 Hidden Markov Model 1 17 Hidden Markov Model 2 18 Neural networks 1 19 Neural networks 2 20 Neural networks 3 21 Model generalization 1 22 Model generalization 2 23 Clustering 1 24 Clustering 2 & EM algorithm 25 Clustering 3 26 Dimension reduction 1 27 Dimension reduction 2 28 Dimension reduction 3 4

5 References: Textbook: The elements of statistical learning. Hastie, Tibshirani & Friedman. Python Machine Learning. Raschka & Mirjalili. Other references: Pattern classification. Duda, Hart & Stork. Data clustering: theory, algorithms and application. Gan, Ma & Wu. An introduction to Statistical Learning: with Applications in R. James, Witten, Hastie, Tibshirani. 5

6 References: Python: Evaluation: Four homeworks/projects (20% each for the first 3, and 30% final project) Requirement: complete in Python. Submit code with results. Class participation evaluated by 4 quizzes (10%) 6

7 Overview Machine Learning /Data mining Supervised learning direct data mining Unsupervised learning indirect data mining Semi-supervised learning Classification Estimation Prediction Clustering Association rules Description, dimension reduction and visualization Modified from Figure 1.1 from <Data Clustering> by Gan, Ma and Wu 7

8 Overview In supervised learning, the problem is well-defined: Given a set of observations {x i, y i }, estimate the density Pr(Y, X) Usually the goal is to find the model/parameters to minimize a loss, A common loss is Expected Prediction Error: It is minimized at Objective criteria exists to measure the success of a supervised learning mechanism. 8

9 Overview In unsupervised learning, there is no output variable, all we observe is a set {x i }. The goal is to infer Pr(X) and/or some of its properties. When the dimension is low, nonparametric density estimation is possible; When the dimension is high, may need to find simple properties without density estimation, or apply strong assumptions to estimate the density. There is no objective criteria from the data itself; to justify a result: > Heuristic arguments, > External information, > Evaluate based on properties of the data 9

10 Classification The general scheme. An example. 10

11 Classification In most cases, a single feature is not enough to generate a good classifier. 11

12 Classification Two extremes: overly rigid and overly flexible classifiers. 12

13 Classification Goal: an optimal trade-off between model simplicity and training set performance. 13

14 Classification An example of the overall scheme involving classification: 14

15 Classification A classification project: a systematic view. 15

16 Clustering Assign observations into clusters, such that those within each cluster are more closely related to one another than objects assigned to different clusters. Detect data relations Find natural hierarchy Ascertain the data consists of distinct subgroups... 16

17 Clustering Mathematically, we hope to estimate the number of clusters k, and the membership matrix U In fuzzy clustering, we have 17

18 Clustering Some clusters are well-represented by center+spread model; Some are not. 18

19 Dimension reduction The purpose of dimension reduction: Data simplification Data visualization Reduce noise (if we can assume only the dominating dimensions are signals) Variable selection for prediction

20 Dimension reduction Outcome variable y exists (learning the association rule) No outcome variable (learning intrinsic structure) Data separation Classification, regression Clustering Dimension reduction SIR, Class-preserving projection, Partial least squares PCA, MDS, Factor Analysis, ICA, NCA

21 Curse of Dimensionality Bellman R.E., In p-dimensions, to get a hypercube with volume r, the edge length needed is r 1/p. In 10 dimensions, to capture 1% of the data to get a local average, we need 63% of the range of each input variable. 21

22 Curse of Dimensionality In other words, To get a dense sample, if we need N=100 samples in 1 dimension, then we need N= samples in 10 dimensions. In high-dimension, the data is always sparse and do not support density estimation. More data points are closer to the boundary, rather than to any other data point prediction is much harder near the edge of the training sample. 22

23 Curse of Dimensionality Estimating a 1D density with 40 data points. Standard normal distribution. 23

24 Curse of Dimensionality Estimating a 2D density with 40 data points. 2D normal distribution; zero mean; variance matrix is identity matrix. 24

25 Curse of Dimensionality Another example the EPE of the nearest neighbor predictor. To find E(Y X=x), take the average of data points close to a given x, i.e. the top k nearest neighbors of x Assumes f(x) is well-approximated by a locally constant function When N is large, the neighborhood is small, the prediction is accurate. 25

26 Curse of Dimensionality Data: Uniform in [ 1, 1] p 26

27 Curse of Dimensionality 27

28 Curse of Dimensionality We have talked about the curse of dimensionality in the sense of density estimation. In a classification problem, we do not necessarily need density estimation. Generative model --- care about the mechanism: class density function. Learns p(x, y), and predict using p(y X). In high dimensions, this is difficult. Discriminative model --- care about boundary. Learns p(y X) directly, potentially with a subset of X. 28

29 Curse of Dimensionality X 1 Generative model X 2 y X 3 Discriminative model y Example: Classifying belt fish and carp. Looking at the length/width ratio is enough. Why should we care how many teeth each kind of fish have, or what shape fins they have? 29

30 Curse of Dimensionality Modern problems are almost always high-dimensional. Training data is often limited. Restrictive models: Flexible (adaptive) models: More assumptions (that may be wrong) Less vulnerable to curse of dimensionality Require less training samples Less assumptions More vulnerable to curse of dimensionality Require more training samples (?) The ideal models: Flexible to capture complex data structures Resistant to curse of dimensionality, can train well with limited samples. Can tell us about important predictors and their interactions 30

### Lecture 1: Machine Learning Basics

1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

### Python Machine Learning

Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

### Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

### Generative models and adversarial training

Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

### Business Analytics and Information Tech COURSE NUMBER: 33:136:494 COURSE TITLE: Data Mining and Business Intelligence

Business Analytics and Information Tech COURSE NUMBER: 33:136:494 COURSE TITLE: Data Mining and Business Intelligence COURSE DESCRIPTION This course presents computing tools and concepts for all stages

(Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

### Australian Journal of Basic and Applied Sciences

AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Feature Selection Technique Using Principal Component Analysis For Improving Fuzzy C-Mean

### CSL465/603 - Machine Learning

CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

### Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

### Time series prediction

Chapter 13 Time series prediction Amaury Lendasse, Timo Honkela, Federico Pouzols, Antti Sorjamaa, Yoan Miche, Qi Yu, Eric Severin, Mark van Heeswijk, Erkki Oja, Francesco Corona, Elia Liitiäinen, Zhanxing

### Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

### Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

### CS Machine Learning

CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

### OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

### Evolutive Neural Net Fuzzy Filtering: Basic Description

Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

### Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

### Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

### Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

### CS4491/CS 7265 BIG DATA ANALYTICS INTRODUCTION TO THE COURSE. Mingon Kang, PhD Computer Science, Kennesaw State University

CS4491/CS 7265 BIG DATA ANALYTICS INTRODUCTION TO THE COURSE Mingon Kang, PhD Computer Science, Kennesaw State University Self Introduction Mingon Kang, PhD Homepage: http://ksuweb.kennesaw.edu/~mkang9

### Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

### The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

### Artificial Neural Networks written examination

1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

### Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

### Twitter Sentiment Classification on Sanders Data using Hybrid Approach

IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 4, Ver. I (July Aug. 2015), PP 118-123 www.iosrjournals.org Twitter Sentiment Classification on Sanders

### Human Emotion Recognition From Speech

RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

### Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017

Instructor Syed Zahid Ali Room No. 247 Economics Wing First Floor Office Hours Email szahid@lums.edu.pk Telephone Ext. 8074 Secretary/TA TA Office Hours Course URL (if any) Suraj.lums.edu.pk FINN 321 Econometrics

### AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION

JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037 Marek WIŚNIEWSKI *, Wiesława KUNISZYK-JÓŹKOWIAK *, Elżbieta SMOŁKA *, Waldemar SUSZYŃSKI * HMM, recognition, speech, disorders

### Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

### System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

### Word Segmentation of Off-line Handwritten Documents

Word Segmentation of Off-line Handwritten Documents Chen Huang and Sargur N. Srihari {chuang5, srihari}@cedar.buffalo.edu Center of Excellence for Document Analysis and Recognition (CEDAR), Department

### *Net Perceptions, Inc West 78th Street Suite 300 Minneapolis, MN

From: AAAI Technical Report WS-98-08. Compilation copyright 1998, AAAI (www.aaai.org). All rights reserved. Recommender Systems: A GroupLens Perspective Joseph A. Konstan *t, John Riedl *t, AI Borchers,

### OCR for Arabic using SIFT Descriptors With Online Failure Prediction

OCR for Arabic using SIFT Descriptors With Online Failure Prediction Andrey Stolyarenko, Nachum Dershowitz The Blavatnik School of Computer Science Tel Aviv University Tel Aviv, Israel Email: stloyare@tau.ac.il,

### A study of speaker adaptation for DNN-based speech synthesis

A study of speaker adaptation for DNN-based speech synthesis Zhizheng Wu, Pawel Swietojanski, Christophe Veaux, Steve Renals, Simon King The Centre for Speech Technology Research (CSTR) University of Edinburgh,

### Lecture 1: Basic Concepts of Machine Learning

Lecture 1: Basic Concepts of Machine Learning Cognitive Systems - Machine Learning Ute Schmid (lecture) Johannes Rabold (practice) Based on slides prepared March 2005 by Maximilian Röglinger, updated 2010

### Why Did My Detector Do That?!

Why Did My Detector Do That?! Predicting Keystroke-Dynamics Error Rates Kevin Killourhy and Roy Maxion Dependable Systems Laboratory Computer Science Department Carnegie Mellon University 5000 Forbes Ave,

### Historical maintenance relevant information roadmap for a self-learning maintenance prediction procedural approach

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Historical maintenance relevant information roadmap for a self-learning maintenance prediction procedural approach To cite this

### Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees

Impact of Cluster Validity Measures on Performance of Hybrid Models Based on K-means and Decision Trees Mariusz Łapczy ski 1 and Bartłomiej Jefma ski 2 1 The Chair of Market Analysis and Marketing Research,

### Machine Learning from Garden Path Sentences: The Application of Computational Linguistics

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics http://dx.doi.org/10.3991/ijet.v9i6.4109 J.L. Du 1, P.F. Yu 1 and M.L. Li 2 1 Guangdong University of Foreign Studies,

### Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

### Chinese Language Parsing with Maximum-Entropy-Inspired Parser

Chinese Language Parsing with Maximum-Entropy-Inspired Parser Heng Lian Brown University Abstract The Chinese language has many special characteristics that make parsing difficult. The performance of state-of-the-art

### Speech Recognition at ICSI: Broadcast News and beyond

Speech Recognition at ICSI: Broadcast News and beyond Dan Ellis International Computer Science Institute, Berkeley CA Outline 1 2 3 The DARPA Broadcast News task Aspects of ICSI

### CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH

ISSN: 0976-3104 Danti and Bhushan. ARTICLE OPEN ACCESS CLASSIFICATION OF TEXT DOCUMENTS USING INTEGER REPRESENTATION AND REGRESSION: AN INTEGRATED APPROACH Ajit Danti 1 and SN Bharath Bhushan 2* 1 Department

### Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier

IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver.1 (Mar - Apr.2015), PP 55-61 www.iosrjournals.org Analysis of Emotion

### WHEN THERE IS A mismatch between the acoustic

808 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006 Optimization of Temporal Filters for Constructing Robust Features in Speech Recognition Jeih-Weih Hung, Member,

### Speech Segmentation Using Probabilistic Phonetic Feature Hierarchy and Support Vector Machines

Speech Segmentation Using Probabilistic Phonetic Feature Hierarchy and Support Vector Machines Amit Juneja and Carol Espy-Wilson Department of Electrical and Computer Engineering University of Maryland,

### Lecture 10: Reinforcement Learning

Lecture 1: Reinforcement Learning Cognitive Systems II - Machine Learning SS 25 Part III: Learning Programs and Strategies Q Learning, Dynamic Programming Lecture 1: Reinforcement Learning p. Motivation

### Learning Distributed Linguistic Classes

In: Proceedings of CoNLL-2000 and LLL-2000, pages -60, Lisbon, Portugal, 2000. Learning Distributed Linguistic Classes Stephan Raaijmakers Netherlands Organisation for Applied Scientific Research (TNO)

### arxiv: v2 [cs.cv] 30 Mar 2017

Domain Adaptation for Visual Applications: A Comprehensive Survey Gabriela Csurka arxiv:1702.05374v2 [cs.cv] 30 Mar 2017 Abstract The aim of this paper 1 is to give an overview of domain adaptation and

### Comparison of EM and Two-Step Cluster Method for Mixed Data: An Application

International Journal of Medical Science and Clinical Inventions 4(3): 2768-2773, 2017 DOI:10.18535/ijmsci/ v4i3.8 ICV 2015: 52.82 e-issn: 2348-991X, p-issn: 2454-9576 2017, IJMSCI Research Article Comparison

### Rule Learning with Negation: Issues Regarding Effectiveness

Rule Learning with Negation: Issues Regarding Effectiveness Stephanie Chua, Frans Coenen, and Grant Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX

### Activity Recognition from Accelerometer Data

Activity Recognition from Accelerometer Data Nishkam Ravi and Nikhil Dandekar and Preetham Mysore and Michael L. Littman Department of Computer Science Rutgers University Piscataway, NJ 08854 {nravi,nikhild,preetham,mlittman}@cs.rutgers.edu

### Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

### Learning Methods in Multilingual Speech Recognition

Learning Methods in Multilingual Speech Recognition Hui Lin Department of Electrical Engineering University of Washington Seattle, WA 98125 linhui@u.washington.edu Li Deng, Jasha Droppo, Dong Yu, and Alex

### Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration

INTERSPEECH 2013 Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration Yan Huang, Dong Yu, Yifan Gong, and Chaojun Liu Microsoft Corporation, One

### S T A T 251 C o u r s e S y l l a b u s I n t r o d u c t i o n t o p r o b a b i l i t y

Department of Mathematics, Statistics and Science College of Arts and Sciences Qatar University S T A T 251 C o u r s e S y l l a b u s I n t r o d u c t i o n t o p r o b a b i l i t y A m e e n A l a

### arxiv: v1 [cs.lg] 3 May 2013

Feature Selection Based on Term Frequency and T-Test for Text Categorization Deqing Wang dqwang@nlsde.buaa.edu.cn Hui Zhang hzhang@nlsde.buaa.edu.cn Rui Liu, Weifeng Lv {liurui,lwf}@nlsde.buaa.edu.cn arxiv:1305.0638v1

### Introduction to Causal Inference. Problem Set 1. Required Problems

Introduction to Causal Inference Problem Set 1 Professor: Teppei Yamamoto Due Friday, July 15 (at beginning of class) Only the required problems are due on the above date. The optional problems will not

### Probability and Game Theory Course Syllabus

Probability and Game Theory Course Syllabus DATE ACTIVITY CONCEPT Sunday Learn names; introduction to course, introduce the Battle of the Bismarck Sea as a 2-person zero-sum game. Monday Day 1 Pre-test

### Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

### A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation

A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation SLSP-2016 October 11-12 Natalia Tomashenko 1,2,3 natalia.tomashenko@univ-lemans.fr Yuri Khokhlov 3 khokhlov@speechpro.com Yannick

### Data Fusion Through Statistical Matching

A research and education initiative at the MIT Sloan School of Management Data Fusion Through Statistical Matching Paper 185 Peter Van Der Puttan Joost N. Kok Amar Gupta January 2002 For more information,

### INPE São José dos Campos

INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

### A survey of multi-view machine learning

Noname manuscript No. (will be inserted by the editor) A survey of multi-view machine learning Shiliang Sun Received: date / Accepted: date Abstract Multi-view learning or learning with multiple distinct

### STA 225: Introductory Statistics (CT)

Marshall University College of Science Mathematics Department STA 225: Introductory Statistics (CT) Course catalog description A critical thinking course in applied statistical reasoning covering basic

### ADVANCES IN DEEP NEURAL NETWORK APPROACHES TO SPEAKER RECOGNITION

ADVANCES IN DEEP NEURAL NETWORK APPROACHES TO SPEAKER RECOGNITION Mitchell McLaren 1, Yun Lei 1, Luciana Ferrer 2 1 Speech Technology and Research Laboratory, SRI International, California, USA 2 Departamento

### Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

### The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

### JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD (410)

JONATHAN H. WRIGHT Department of Economics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218. (410) 516 5728 wrightj@jhu.edu EDUCATION Harvard University 1993-1997. Ph.D., Economics (1997).

### Issues in the Mining of Heart Failure Datasets

International Journal of Automation and Computing 11(2), April 2014, 162-179 DOI: 10.1007/s11633-014-0778-5 Issues in the Mining of Heart Failure Datasets Nongnuch Poolsawad 1 Lisa Moore 1 Chandrasekhar

### Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

### Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

### Statewide Framework Document for:

Statewide Framework Document for: 270301 Standards may be added to this document prior to submission, but may not be removed from the framework to meet state credit equivalency requirements. Performance

### PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan Gong, Li Deng Department of Electrical and Computer Engineering,

### IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 3, MARCH

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 3, MARCH 2009 423 Adaptive Multimodal Fusion by Uncertainty Compensation With Application to Audiovisual Speech Recognition George

### ACTL5103 Stochastic Modelling For Actuaries. Course Outline Semester 2, 2014

UNSW Australia Business School School of Risk and Actuarial Studies ACTL5103 Stochastic Modelling For Actuaries Course Outline Semester 2, 2014 Part A: Course-Specific Information Please consult Part B

### Universidade do Minho Escola de Engenharia

Universidade do Minho Escola de Engenharia Universidade do Minho Escola de Engenharia Dissertação de Mestrado Knowledge Discovery is the nontrivial extraction of implicit, previously unknown, and potentially

### Phonetic- and Speaker-Discriminant Features for Speaker Recognition. Research Project

Phonetic- and Speaker-Discriminant Features for Speaker Recognition by Lara Stoll Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California

### Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees Cognitive Skills in Algebra on the SAT

The Journal of Technology, Learning, and Assessment Volume 6, Number 6 February 2008 Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees Cognitive Skills in Algebra on the

### A Survey on Unsupervised Machine Learning Algorithms for Automation, Classification and Maintenance

A Survey on Unsupervised Machine Learning Algorithms for Automation, Classification and Maintenance a Assistant Professor a epartment of Computer Science Memoona Khanum a Tahira Mahboob b b Assistant Professor

### Probability and Statistics Curriculum Pacing Guide

Unit 1 Terms PS.SPMJ.3 PS.SPMJ.5 Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods

### Introduction to Simulation

Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

### QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

### 10.2. Behavior models

User behavior research 10.2. Behavior models Overview Why do users seek information? How do they seek information? How do they search for information? How do they use libraries? These questions are addressed

### A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

### Switchboard Language Model Improvement with Conversational Data from Gigaword

Katholieke Universiteit Leuven Faculty of Engineering Master in Artificial Intelligence (MAI) Speech and Language Technology (SLT) Switchboard Language Model Improvement with Conversational Data from Gigaword

### SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

### Version Space. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Version Space Term 2012/ / 18

Version Space Javier Béjar cbea LSI - FIB Term 2012/2013 Javier Béjar cbea (LSI - FIB) Version Space Term 2012/2013 1 / 18 Outline 1 Learning logical formulas 2 Version space Introduction Search strategy

### Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Tomi Kinnunen and Ismo Kärkkäinen University of Joensuu, Department of Computer Science, P.O. Box 111, 80101 JOENSUU,

### Welcome to. ECML/PKDD 2004 Community meeting

Welcome to ECML/PKDD 2004 Community meeting A brief report from the program chairs Jean-Francois Boulicaut, INSA-Lyon, France Floriana Esposito, University of Bari, Italy Fosca Giannotti, ISTI-CNR, Pisa,

### Support Vector Machines for Speaker and Language Recognition

Support Vector Machines for Speaker and Language Recognition W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer, P. A. Torres-Carrasquillo MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA

### Maximizing Learning Through Course Alignment and Experience with Different Types of Knowledge

Innov High Educ (2009) 34:93 103 DOI 10.1007/s10755-009-9095-2 Maximizing Learning Through Course Alignment and Experience with Different Types of Knowledge Phyllis Blumberg Published online: 3 February

### Chapter 10 APPLYING TOPIC MODELING TO FORENSIC DATA. 1. Introduction. Alta de Waal, Jacobus Venter and Etienne Barnard

Chapter 10 APPLYING TOPIC MODELING TO FORENSIC DATA Alta de Waal, Jacobus Venter and Etienne Barnard Abstract Most actionable evidence is identified during the analysis phase of digital forensic investigations.

### Comparison of network inference packages and methods for multiple networks inference

Comparison of network inference packages and methods for multiple networks inference Nathalie Villa-Vialaneix http://www.nathalievilla.org nathalie.villa@univ-paris1.fr 1ères Rencontres R - BoRdeaux, 3

### Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language

Defragmenting Textual Data by Leveraging the Syntactic Structure of the English Language Nathaniel Hayes Department of Computer Science Simpson College 701 N. C. St. Indianola, IA, 50125 nate.hayes@my.simpson.edu

### Semi-Supervised Face Detection

Semi-Supervised Face Detection Nicu Sebe, Ira Cohen 2, Thomas S. Huang 3, Theo Gevers Faculty of Science, University of Amsterdam, The Netherlands 2 HP Research Labs, USA 3 Beckman Institute, University

### Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

### A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and

A Decision Tree Analysis of the Transfer Student Emma Gunu, MS Research Analyst Robert M Roe, PhD Executive Director of Institutional Research and Planning Overview Motivation for Analyses Analyses and