# Introduction to Machine Learning 1. Nov., 2018 D. Ratner SLAC National Accelerator Laboratory

Save this PDF as:
Size: px
Start display at page:

Download "Introduction to Machine Learning 1. Nov., 2018 D. Ratner SLAC National Accelerator Laboratory"

## Transcription

1 Introduction to Machine Learning 1 Nov., 2018 D. Ratner SLAC National Accelerator Laboratory

2 Introduction What is machine learning? Arthur Samuel (1959): Ability to learn without being explicitly programmed Tom Mitchell (1998): Computer program learns from experience E with respect to task T if its performance, P, improves after experience E. When is machine learning successful? Tasks which humans can learn, but have trouble explaining how Regression Neural networks Sentient computers

3 Introduction Topics Supervised learning (examples with labels): ML framework/terminology Regression vs. classification Parameteric vs. non-parametric models Unsupervised learning (examples, no labels): Clustering, anomaly/breakout detection, generation Reinforcement learning (examples, partial labels): Control, games, optimization Goal from Lecture 1: Learn terminology and framework of ML Goal from Lecture 2: See examples of ML in accelerator physics Material drawn from: Stanford CS 229, EE103 Michael Nielsen, Neural Networks and Deep Learning

4 Supervised learning: Parametric models Least Squares Regression Start from a simple problem: can we predict house price? Training set consists of m examples Each example has n attributes (x) and one label (y) Our goal: given a new example, x, can we predict its label, y? Hypothesis: example i sum over n attributes guess for y Parameters/weights

5 Supervised learning: Parametric models Least Squares Regression The core of machine learning: how do we learn best q given data x,y? Need a metric for best : Cost/Loss function Examples: mean square error (MSE), absolute error, etc. MSE: # of examples groundtruth=label Optimal q : n+1 x 1 m x n+1 m x 1

6 Supervised learning: Parametric models MSE: Least Squares Regression The core of machine learning: how do we learn best q given data X,y? Need a metric for best : Cost/Loss function Examples: mean square error (MSE), absolute error, etc. # of examples groundtruth Learning rate Stochastic gradient descent : update q after each i

7 Supervised learning: Hyper-parameter choice Least Squares Regression Hyper-parameters : how do we choose model itself? e.g. pick model architecture, cost function, learning rate, etc. p=10 p=2 p=1 attributes features

8 Error (J) Polynomial (p) Supervised learning: Hyper-parameter choice Least Squares Regression Hyper-parameters : how do we choose model itself? e.g. pick model architecture, cost function, learning rate, etc. Split data into training and test (and validation) sets Typical split: 80/20 or 80/10/10 Degree (p) Train error Test error * p= * * * * p=1 p=2 test train

9 Error (J) Supervised learning: Hyper-parameter choice Bias-Variance Tradeoff High bias Collect new attributes, create new features, more parameters High variance Fewer features (e.g. mutual information ), more data High bias High variance test High bias (under-fitting) Polynomial (p) train High variance (over-fitting)

10 Supervised learning: Hyper-parameter choice Bias-Variance Tradeoff Regularization: modify the cost function Penalizes large amplitudes of q

11 Supervised learning: Parametric models Least Squares Regression: Probabilistic interpretation Define Likelihood : Most likely

12 Supervised learning: Parametric models Least Squares Regression: Probabilistic interpretation Maximum Likelihood Estimation (MLE) log likelihood Least squares

13 Supervised learning: Parametric models Least Squares Regression: Bayesian interpretation Sick (1% of pop.) Healthy (99% of pop.) P(A) P(B) Positive test 90% 10% Negative test 10% 90% P(A+B) Given positive result, what is probability of correct diagnosis? Bayes Rule: ~8% Regularization term Maximum a posteriori (MAP)

14 Supervised learning: Parametric models Logistic Regression Classification problem: Did a house sell? Output limited to range [0, 1] full regression seems awkward y=0 h=0.5 Use MLE to derive update rule: y=1 Same as OLS except now h is non-linear

15 Supervised learning: Non-parametric Instance-based learning Parametric model: Non-parametric model: x (4) X (2) X (1) x (5) K-nearest neighbors x 2 x* x (3) x 1

16 Supervised learning: Non-parametric Optimal-margin classifier Alternative classifier definition: find hyperplane that divides classes Optimal-margin classifier: pick line with maximize minimum distance from plane

17 Supervised learning: Non-parametric Optimal-margin classifier Alternative classifier definition: find hyperplane that divides classes Optimal-margin classifier: pick line with maximize minimum distance from plane y = -1 Support vector machine (SVM): y = +1 Prediction rule:

18 Supervised learning: Non-parametric Support Vector Machines What happens if classes aren t separable? Try adding new features: e.g. x 12 + x 2 2

19 Supervised learning: Non-parametric SVMs and Kernels Feature mapping: SVM equation: Define kernel : New SVM equation:

20 Supervised learning: Non-parametric SVMs and Kernels Feature mapping: SVM equation: Define kernel : New SVM equation: Mercer s theorem: K(x,z) is kernel iff symmetric, positive, semi-definite Kernel trick

21 Supervised learning: Non-parametric Presenting Classification Results How do I report how well my model works? Precision-Recall 99% accurate! wikipedia

22 Supervised learning: Non-parametric Presenting Classification Results How do I report how well my model works? Precision-Recall How do I pick the threshold for classification? h=0.3 h=0.5 h=0.7 o x wikipedia

23 Precision Supervised learning: Non-parametric Presenting Classification Results How do I report how well my model works? Precision-Recall How do I pick the threshold for classification? Area under curve (AUC) scikit-learn Recall wikipedia

24 Michael Nielsen, Neural Networks and Deep Learning, Determination Press (2015) Supervised learning: Parametric models The Perceptron w 1 w 2 b w 3 Sigmoid Tanh ReLU

25 Supervised learning: Parametric models Artificial Neural Networks Input Hidden layers Cost function, e.g. MSE Output Problem: O(n 2 ) Clever idea to the rescue: Use the chain rule! Backpropagation Michael Nielsen, Neural Networks and Deep Learning, Determination Press (2015)

26 Michael Nielsen, Neural Networks and Deep Learning, Determination Press (2015) Supervised learning: Parametric models Convolutional Neural Networks

27 Supervised learning: Parametric models ANNs practical tips 1. Training is slow use GPUs 2. Large models can have millions of parameters, prone to over-fitting Use regularization, drop-out, noise-layers, lots of data 3. Always plot training AND validation loss shows bias vs. variance 4. Not training? Try different loss functions, activations, architectures, mini-batch parameters, optimization algorithms, learning rates, data quality Hidden layers Input Output test train

28 Unsupervised learning What can be accomplished without labels? Supervised learning: X, y Unsupervised learning: X What can we hope to accomplish? 1. Clustering (classification) 2. Decomposition (e.g. separating audio signals) 3. Anomaly/breakout detection (e.g. fault detection/prediction) 4. Generation (e.g. creating new examples within a class)

29 Unsupervised learning What can be accomplished without labels? Clustering: Divide x into k categories K-means K-means algorithm: a. Pick k random centroids b. Loop until convergence { 1. Assign examples to nearest centroid 2. Update centroids to mean of clusters } See also: Hierarchical clustering, DBSCAN, etc

30 Unsupervised learning Time series data: Anomaly/Breakout/Changepoint Detection Anomaly detection: identify points that are statistical outliers from a distribution PyAstronomy: Generalized ESD (GESD) (Available from pip install) Breakout/Changepoint detection: Find point in time at which distribution changed X Y

31 Unsupervised learning Generating new data Unsupervised learning with neural networks: train a model to generate new examples based on training set Deep dreaming of dogs Style transfer If you train a network to recognize dogs it will hallucinate dogs Gatys, et al.

32 Unsupervised learning Generating new data Generative Adversarial Network (GAN) Training Set Real Discriminator Generator Noise Fake Cross entropy (log loss)

33 Partial supervision Reinforcement Learning r = p = Third category: partial supervision e.g. when playing a game, will not have a known label for every position Goal is to find policy : optimal action a s, given state s AlphaGo Actions: a States: s Transition probability: p Rewards: r

### Python Machine Learning

Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

### Lecture 1: Machine Learning Basics

1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

### CSL465/603 - Machine Learning

CSL465/603 - Machine Learning Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Introduction CSL465/603 - Machine Learning 1 Administrative Trivia Course Structure 3-0-2 Lecture Timings Monday 9.55-10.45am

### Artificial Neural Networks written examination

1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

### Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

(Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

### Generative models and adversarial training

Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

### Active Learning. Yingyu Liang Computer Sciences 760 Fall

Active Learning Yingyu Liang Computer Sciences 760 Fall 2017 http://pages.cs.wisc.edu/~yliang/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,

### Lecture 1: Basic Concepts of Machine Learning

Lecture 1: Basic Concepts of Machine Learning Cognitive Systems - Machine Learning Ute Schmid (lecture) Johannes Rabold (practice) Based on slides prepared March 2005 by Maximilian Röglinger, updated 2010

### Deep search. Enhancing a search bar using machine learning. Ilgün Ilgün & Cedric Reichenbach

#BaselOne7 Deep search Enhancing a search bar using machine learning Ilgün Ilgün & Cedric Reichenbach We are not researchers Outline I. Periscope: A search tool II. Goals III. Deep learning IV. Applying

### System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

### CS Machine Learning

CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

### Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition

Introduction to Ensemble Learning Featuring Successes in the Netflix Prize Competition Todd Holloway Two Lecture Series for B551 November 20 & 27, 2007 Indiana University Outline Introduction Bias and

### A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention

A Simple VQA Model with a Few Tricks and Image Features from Bottom-up Attention Damien Teney 1, Peter Anderson 2*, David Golub 4*, Po-Sen Huang 3, Lei Zhang 3, Xiaodong He 3, Anton van den Hengel 1 1

### Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

### arxiv: v1 [cs.lg] 15 Jun 2015

Dual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy arxiv:1506.04477v1 [cs.lg] 15 Jun 2015 Sang-Woo Lee Min-Oh Heo School of Computer Science and

### Machine Learning and Data Mining. Ensembles of Learners. Prof. Alexander Ihler

Machine Learning and Data Mining Ensembles of Learners Prof. Alexander Ihler Ensemble methods Why learn one classifier when you can learn many? Ensemble: combine many predictors (Weighted) combina

### Reducing Features to Improve Bug Prediction

Reducing Features to Improve Bug Prediction Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella University of California Santa Cruz {shiv,ejw,ram}@soe.ucsc.edu Sunghun Kim Hong Kong University of Science

### Learning From the Past with Experiment Databases

Learning From the Past with Experiment Databases Joaquin Vanschoren 1, Bernhard Pfahringer 2, and Geoff Holmes 2 1 Computer Science Dept., K.U.Leuven, Leuven, Belgium 2 Computer Science Dept., University

### Model Ensemble for Click Prediction in Bing Search Ads

Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Microsoft Bing xiaoling@microsoft.com Hucheng Zhou Microsoft Research huzho@microsoft.com Weiwei Deng Microsoft Bing dedeng@microsoft.com

### Calibration of Confidence Measures in Speech Recognition

Submitted to IEEE Trans on Audio, Speech, and Language, July 2010 1 Calibration of Confidence Measures in Speech Recognition Dong Yu, Senior Member, IEEE, Jinyu Li, Member, IEEE, Li Deng, Fellow, IEEE

### Probability and Statistics Curriculum Pacing Guide

Unit 1 Terms PS.SPMJ.3 PS.SPMJ.5 Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods

### Semi-Supervised Face Detection

Semi-Supervised Face Detection Nicu Sebe, Ira Cohen 2, Thomas S. Huang 3, Theo Gevers Faculty of Science, University of Amsterdam, The Netherlands 2 HP Research Labs, USA 3 Beckman Institute, University

### The Evolution of Random Phenomena

The Evolution of Random Phenomena A Look at Markov Chains Glen Wang glenw@uchicago.edu Splash! Chicago: Winter Cascade 2012 Lecture 1: What is Randomness? What is randomness? Can you think of some examples

### Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model

Unsupervised Learning of Word Semantic Embedding using the Deep Structured Semantic Model Xinying Song, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

### Course Outline. Course Grading. Where to go for help. Academic Integrity. EE-589 Introduction to Neural Networks NN 1 EE

EE-589 Introduction to Neural Assistant Prof. Dr. Turgay IBRIKCI Room # 305 (322) 338 6868 / 139 Wensdays 9:00-12:00 Course Outline The course is divided in two parts: theory and practice. 1. Theory covers

### Human Emotion Recognition From Speech

RESEARCH ARTICLE OPEN ACCESS Human Emotion Recognition From Speech Miss. Aparna P. Wanare*, Prof. Shankar N. Dandare *(Department of Electronics & Telecommunication Engineering, Sant Gadge Baba Amravati

### OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS

OPTIMIZATINON OF TRAINING SETS FOR HEBBIAN-LEARNING- BASED CLASSIFIERS Václav Kocian, Eva Volná, Michal Janošek, Martin Kotyrba University of Ostrava Department of Informatics and Computers Dvořákova 7,

### Semi-supervised methods of text processing, and an application to medical concept extraction. Yacine Jernite Text-as-Data series September 17.

Semi-supervised methods of text processing, and an application to medical concept extraction Yacine Jernite Text-as-Data series September 17. 2015 What do we want from text? 1. Extract information 2. Link

### A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation

A New Perspective on Combining GMM and DNN Frameworks for Speaker Adaptation SLSP-2016 October 11-12 Natalia Tomashenko 1,2,3 natalia.tomashenko@univ-lemans.fr Yuri Khokhlov 3 khokhlov@speechpro.com Yannick

### Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

### Evolutive Neural Net Fuzzy Filtering: Basic Description

Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

### Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

### QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

### Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling

Experiments with SMS Translation and Stochastic Gradient Descent in Spanish Text Author Profiling Notebook for PAN at CLEF 2013 Andrés Alfonso Caurcel Díaz 1 and José María Gómez Hidalgo 2 1 Universidad

### Knowledge Transfer in Deep Convolutional Neural Nets

Knowledge Transfer in Deep Convolutional Neural Nets Steven Gutstein, Olac Fuentes and Eric Freudenthal Computer Science Department University of Texas at El Paso El Paso, Texas, 79968, U.S.A. Abstract

### Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition Using Support Vector Machine Yixiong Pan, Peipei Shen and Liping Shen Department of Computer Technology Shanghai JiaoTong University, Shanghai, China panyixiong@sjtu.edu.cn,

### Algebra 1, Quarter 3, Unit 3.1. Line of Best Fit. Overview

Algebra 1, Quarter 3, Unit 3.1 Line of Best Fit Overview Number of instructional days 6 (1 day assessment) (1 day = 45 minutes) Content to be learned Analyze scatter plots and construct the line of best

### Test Effort Estimation Using Neural Network

J. Software Engineering & Applications, 2010, 3: 331-340 doi:10.4236/jsea.2010.34038 Published Online April 2010 (http://www.scirp.org/journal/jsea) 331 Chintala Abhishek*, Veginati Pavan Kumar, Harish

### HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION

HIERARCHICAL DEEP LEARNING ARCHITECTURE FOR 10K OBJECTS CLASSIFICATION Atul Laxman Katole 1, Krishna Prasad Yellapragada 1, Amish Kumar Bedi 1, Sehaj Singh Kalra 1 and Mynepalli Siva Chaitanya 1 1 Samsung

### The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

### Phonetic- and Speaker-Discriminant Features for Speaker Recognition. Research Project

Phonetic- and Speaker-Discriminant Features for Speaker Recognition by Lara Stoll Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California

### Softprop: Softmax Neural Network Backpropagation Learning

Softprop: Softmax Neural Networ Bacpropagation Learning Michael Rimer Computer Science Department Brigham Young University Provo, UT 84602, USA E-mail: mrimer@axon.cs.byu.edu Tony Martinez Computer Science

### Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

### WHEN THERE IS A mismatch between the acoustic

808 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006 Optimization of Temporal Filters for Constructing Robust Features in Speech Recognition Jeih-Weih Hung, Member,

### Lecture 10: Reinforcement Learning

Lecture 1: Reinforcement Learning Cognitive Systems II - Machine Learning SS 25 Part III: Learning Programs and Strategies Q Learning, Dynamic Programming Lecture 1: Reinforcement Learning p. Motivation

### Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

### Detailed course syllabus

Detailed course syllabus 1. Linear regression model. Ordinary least squares method. This introductory class covers basic definitions of econometrics, econometric model, and economic data. Classification

### AUTOMATIC DETECTION OF PROLONGED FRICATIVE PHONEMES WITH THE HIDDEN MARKOV MODELS APPROACH 1. INTRODUCTION

JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037 Marek WIŚNIEWSKI *, Wiesława KUNISZYK-JÓŹKOWIAK *, Elżbieta SMOŁKA *, Waldemar SUSZYŃSKI * HMM, recognition, speech, disorders

### Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing a Moving Target How Do We Test Machine Learning Systems? Peter Varhol, Technology

### arxiv: v2 [cs.cv] 30 Mar 2017

Domain Adaptation for Visual Applications: A Comprehensive Survey Gabriela Csurka arxiv:1702.05374v2 [cs.cv] 30 Mar 2017 Abstract The aim of this paper 1 is to give an overview of domain adaptation and

### Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

### Lahore University of Management Sciences. FINN 321 Econometrics Fall Semester 2017

Instructor Syed Zahid Ali Room No. 247 Economics Wing First Floor Office Hours Email szahid@lums.edu.pk Telephone Ext. 8074 Secretary/TA TA Office Hours Course URL (if any) Suraj.lums.edu.pk FINN 321 Econometrics

### Issues in the Mining of Heart Failure Datasets

International Journal of Automation and Computing 11(2), April 2014, 162-179 DOI: 10.1007/s11633-014-0778-5 Issues in the Mining of Heart Failure Datasets Nongnuch Poolsawad 1 Lisa Moore 1 Chandrasekhar

### Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley

Challenges in Deep Reinforcement Learning Sergey Levine UC Berkeley Discuss some recent work in deep reinforcement learning Present a few major challenges Show some of our recent work toward tackling

### Analysis of Emotion Recognition System through Speech Signal Using KNN & GMM Classifier

IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver.1 (Mar - Apr.2015), PP 55-61 www.iosrjournals.org Analysis of Emotion

### Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email Marilyn A. Walker Jeanne C. Fromer Shrikanth Narayanan walker@research.att.com jeannie@ai.mit.edu shri@research.att.com

### INPE São José dos Campos

INPE-5479 PRE/1778 MONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND COVER CLASSIFICATION IN A NEDRAL NETWORK ENVIRONNENT Maria Suelena S. Barros Valter Rodrigues INPE São José dos Campos 1993 SECRETARIA

### A Case Study: News Classification Based on Term Frequency

A Case Study: News Classification Based on Term Frequency Petr Kroha Faculty of Computer Science University of Technology 09107 Chemnitz Germany kroha@informatik.tu-chemnitz.de Ricardo Baeza-Yates Center

### Why Did My Detector Do That?!

Why Did My Detector Do That?! Predicting Keystroke-Dynamics Error Rates Kevin Killourhy and Roy Maxion Dependable Systems Laboratory Computer Science Department Carnegie Mellon University 5000 Forbes Ave,

### Switchboard Language Model Improvement with Conversational Data from Gigaword

Katholieke Universiteit Leuven Faculty of Engineering Master in Artificial Intelligence (MAI) Speech and Language Technology (SLT) Switchboard Language Model Improvement with Conversational Data from Gigaword

### Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski

Training a Neural Network to Answer 8th Grade Science Questions Steven Hewitt, An Ju, Katherine Stasaski Problem Statement and Background Given a collection of 8th grade science questions, possible answer

### Language Acquisition Fall 2010/Winter Lexical Categories. Afra Alishahi, Heiner Drenhaus

Language Acquisition Fall 2010/Winter 2011 Lexical Categories Afra Alishahi, Heiner Drenhaus Computational Linguistics and Phonetics Saarland University Children s Sensitivity to Lexical Categories Look,

### Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

### Indian Institute of Technology, Kanpur

Indian Institute of Technology, Kanpur Course Project - CS671A POS Tagging of Code Mixed Text Ayushman Sisodiya (12188) {ayushmn@iitk.ac.in} Donthu Vamsi Krishna (15111016) {vamsi@iitk.ac.in} Sandeep Kumar

### Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

### Modeling function word errors in DNN-HMM based LVCSR systems

Modeling function word errors in DNN-HMM based LVCSR systems Melvin Jose Johnson Premkumar, Ankur Bapna and Sree Avinash Parchuri Department of Computer Science Department of Electrical Engineering Stanford

### Applications of data mining algorithms to analysis of medical data

Master Thesis Software Engineering Thesis no: MSE-2007:20 August 2007 Applications of data mining algorithms to analysis of medical data Dariusz Matyja School of Engineering Blekinge Institute of Technology

### Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems

Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems Ajith Abraham School of Business Systems, Monash University, Clayton, Victoria 3800, Australia. Email: ajith.abraham@ieee.org

### School of Innovative Technologies and Engineering

School of Innovative Technologies and Engineering Department of Applied Mathematical Sciences Proficiency Course in MATLAB COURSE DOCUMENT VERSION 1.0 PCMv1.0 July 2012 University of Technology, Mauritius

### Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration

INTERSPEECH 2013 Semi-Supervised GMM and DNN Acoustic Model Training with Multi-system Combination and Confidence Re-calibration Yan Huang, Dong Yu, Yifan Gong, and Chaojun Liu Microsoft Corporation, One

### Speech Segmentation Using Probabilistic Phonetic Feature Hierarchy and Support Vector Machines

Speech Segmentation Using Probabilistic Phonetic Feature Hierarchy and Support Vector Machines Amit Juneja and Carol Espy-Wilson Department of Electrical and Computer Engineering University of Maryland,

### Learning Methods in Multilingual Speech Recognition

Learning Methods in Multilingual Speech Recognition Hui Lin Department of Electrical Engineering University of Washington Seattle, WA 98125 linhui@u.washington.edu Li Deng, Jasha Droppo, Dong Yu, and Alex

### PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES

PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan Gong, Li Deng Department of Electrical and Computer Engineering,

### Support Vector Machines for Speaker and Language Recognition

Support Vector Machines for Speaker and Language Recognition W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer, P. A. Torres-Carrasquillo MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA

### Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages

Iterative Cross-Training: An Algorithm for Learning from Unlabeled Web Pages Nuanwan Soonthornphisaj 1 and Boonserm Kijsirikul 2 Machine Intelligence and Knowledge Discovery Laboratory Department of Computer

### A study of speaker adaptation for DNN-based speech synthesis

A study of speaker adaptation for DNN-based speech synthesis Zhizheng Wu, Pawel Swietojanski, Christophe Veaux, Steve Renals, Simon King The Centre for Speech Technology Research (CSTR) University of Edinburgh,

### Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

### Rule Learning With Negation: Issues Regarding Effectiveness

Rule Learning With Negation: Issues Regarding Effectiveness S. Chua, F. Coenen, G. Malcolm University of Liverpool Department of Computer Science, Ashton Building, Ashton Street, L69 3BX Liverpool, United

### Australian Journal of Basic and Applied Sciences

AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Feature Selection Technique Using Principal Component Analysis For Improving Fuzzy C-Mean

### Time series prediction

Chapter 13 Time series prediction Amaury Lendasse, Timo Honkela, Federico Pouzols, Antti Sorjamaa, Yoan Miche, Qi Yu, Eric Severin, Mark van Heeswijk, Erkki Oja, Francesco Corona, Elia Liitiäinen, Zhanxing

### A Review: Speech Recognition with Deep Learning Methods

Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.1017

### Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur)

Quantitative analysis with statistics (and ponies) (Some slides, pony-based examples from Blase Ur) 1 Interviews, diary studies Start stats Thursday: Ethics/IRB Tuesday: More stats New homework is available

### A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

Linking Task: Identifying authors and book titles in verbose queries Anaïs Ollagnier, Sébastien Fournier, and Patrice Bellot Aix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296,

### Hierarchical Linear Modeling with Maximum Likelihood, Restricted Maximum Likelihood, and Fully Bayesian Estimation

A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute

### Speech Recognition at ICSI: Broadcast News and beyond

Speech Recognition at ICSI: Broadcast News and beyond Dan Ellis International Computer Science Institute, Berkeley CA Outline 1 2 3 The DARPA Broadcast News task Aspects of ICSI

### Word learning as Bayesian inference

Word learning as Bayesian inference Joshua B. Tenenbaum Department of Psychology Stanford University jbt@psych.stanford.edu Fei Xu Department of Psychology Northeastern University fxu@neu.edu Abstract

### Detecting Wikipedia Vandalism using Machine Learning Notebook for PAN at CLEF 2011

Detecting Wikipedia Vandalism using Machine Learning Notebook for PAN at CLEF 2011 Cristian-Alexandru Drăgușanu, Marina Cufliuc, Adrian Iftene UAIC: Faculty of Computer Science, Alexandru Ioan Cuza University,

### arxiv: v1 [cs.cv] 10 May 2017

Inferring and Executing Programs for Visual Reasoning Justin Johnson 1 Bharath Hariharan 2 Laurens van der Maaten 2 Judy Hoffman 1 Li Fei-Fei 1 C. Lawrence Zitnick 2 Ross Girshick 2 1 Stanford University

### Attributed Social Network Embedding

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 1 Attributed Social Network Embedding arxiv:1705.04969v1 [cs.si] 14 May 2017 Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua Abstract Embedding

### Deep Facial Action Unit Recognition from Partially Labeled Data

Deep Facial Action Unit Recognition from Partially Labeled Data Shan Wu 1, Shangfei Wang,1, Bowen Pan 1, and Qiang Ji 2 1 University of Science and Technology of China, Hefei, Anhui, China 2 Rensselaer

### CS 446: Machine Learning

CS 446: Machine Learning Introduction to LBJava: a Learning Based Programming Language Writing classifiers Christos Christodoulopoulos Parisa Kordjamshidi Motivation 2 Motivation You still have not learnt

### UNIVERSITY OF CALIFORNIA SANTA CRUZ TOWARDS A UNIVERSAL PARAMETRIC PLAYER MODEL

UNIVERSITY OF CALIFORNIA SANTA CRUZ TOWARDS A UNIVERSAL PARAMETRIC PLAYER MODEL A thesis submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in COMPUTER SCIENCE

### Large-Scale Web Page Classification. Sathi T Marath. Submitted in partial fulfilment of the requirements. for the degree of Doctor of Philosophy

Large-Scale Web Page Classification by Sathi T Marath Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia November 2010

### Statewide Framework Document for:

Statewide Framework Document for: 270301 Standards may be added to this document prior to submission, but may not be removed from the framework to meet state credit equivalency requirements. Performance

### Julia Smith. Effective Classroom Approaches to.

Julia Smith @tessmaths Effective Classroom Approaches to GCSE Maths resits julia.smith@writtle.ac.uk Agenda The context of GCSE resit in a post-16 setting An overview of the new GCSE Key features of a