Behavioral Animation of Autonomous Virtual Agents Helped by Reinforcement Learning

Size: px
Start display at page:

Download "Behavioral Animation of Autonomous Virtual Agents Helped by Reinforcement Learning"

Transcription

1 Behavioral Animation of Autonomous Virtual Agents Helped by Reinforcement Learning Toni Conde, William Tambellini, and Daniel Thalmann Virtual Reality Lab, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland {Toni.Conde, Abstract. Our research focuses on the behavioral animation of virtual humans who are capable of taking actions by themselves. In this paper we will deal more specifically with Reinforcement Learning methodologies, which integrate in an original way the RL agent and the Autonomous Virtual Agent in a Virtual Environment. With the help of a Virtual Environment in the form of a town, we shall demonstrate that it is indeed the learning process and not the optimization of RL, which is used by the AVAs. 1. Introduction Our research is mainly focused on modeling and behavioral animation of Virtual Humans, and more specifically on the simulation of Autonomous Virtual Agents (AVAs), capable of undertaking actions themselves. In the beginning, research work was concentrated on graphics animation, but this has evolved to the integration of methodologies coupling computer graphics and classical Artificial Intelligence [1], Artificial Life (modeling of motivational level for action selection) [2, 11], behavioral animation (Story-Telling with the help of a rules-based inference engine) [3] and sociology (group movement and social life) [2]. It is in such a context that we are trying to implement humanoids, which have complex behavior. In this paper we are presenting research work in the domain of behavioral animation using methodologies of Reinforcement Learning. Main contribution: Two well-known Reinforcement Learning algorithms are applied to a virtual environment as a behavioral engine for exploration, learning and visiting a virtual environment. Therefore, contrary to the use of reinforcement learning algorithms, our interest here lies more in learning than in the exploitation of this learning. Thus, it is indeed the learning rather than the optimization that allows us to simulate the behavior of Autonomous Virtual Agents (AVAs) and this constitutes a new use of reinforcement learning. T. Rist et al. (Eds.): IVA 2003, LNAI 2792, pp , Springer-Verlag Berlin Heidelberg 2003

2 176 Toni Conde, William Tambellini, and Daniel Thalmann 2. Background Humans are always situated in an environment with which they interact permanently by means of their sensors and their effectors. The classical AI techniques have demonstrated their limits very quickly, as they are mainly based on behavioral animation rules, installed beforehand by the designer. The situated AI can make up for these limitations. In fact, SAI s objective is to conceive adaptive artificial systems evolving in an environment, which is not entirely predictable. The associated methodologies in this field are inspired from biology and can be applied to AVAs, capable of interacting with their Virtual Environment (VE), in which they may pursue several goals, which can be conflicting. In order to evolve, these AVAs must use the information furnished by their sensors: they must actively search for this information by means of their effectors and interpret it in function of the environment met with and the goal pursued [10]. In this context, by behavioral animation we mean the methodologies, which make every AVA intelligent and autonomous, reacting to its environment and taking decisions based on its perceptive, memorial and logic system. By intelligence, we mean the capacity to plan and to carry out tasks based on the model of the actual state of the VE. By autonomy, we mean the capacity to visit and memorize any given VE without the intervention of an Avatar. The objective sought after is to allow the AVA to explore the VE until now unknown and to build structures in the order of cognitive models or cognitive maps based on this exploration. Once its representation has been constructed, the AVA could then easily communicate its knowledge to other naive AVAs, for example. 3. Our Novel Technique Reinforcement learning (RL) is one of the methodologies [ 6, 7] of machine learning and cognitive sciences. The RL algorithms allow one or several agents to carry out a series of optimal actions according to a given environment thanks to reward/penalty techniques. Through the repetition of non-pertinent or pertinent tests, these agents learn the task asked for. The precision of learning is in function of the time allocated. Fast learning will give a bad representation of the task asked for and long-term learning will give a more satisfying result concerning what the agent has to carry out. All RL methodologies require a balance between the research for new strategies and the use of already acquired knowledge. Let us call memory the structure stocking the preceding actions with their score. When the agent uses his memory to choose an action, we then speak about exploitation. Whenever he is looking for new ways, we speak about exploration. Good learning requires the combination of both strategies. The objective of our research is to use RL methodologies with our Virtual Reality platform [8] in order to obtain behavioral animation of AVAs in the discovery of VE.

3 Behavioral Animation of Autonomous Virtual Agents Integration The algorithms of other learning methodologies like Artificial Neural Networks or Genetic Algorithms have library programs at disposal, but concerning our work we have had to conceive an engine carrying out such reinforcement learning (RL); we have taken inspiration from the C++ interface [5] entitled RLI (Reinforcement Learning Interface). 4.1 Implementation of an RL Engine Although the RLI interface, in its C++ version, proposes complete architecture as well as a set of objects, which are fairly compatible with the different RL problems, the vhdrlservice engine doesn t use them directly (see [8] for our middleware platform description.) ATQ SateRep SateAction 1.. * owns 1.. * represents 1.. * memorize vhdrlagent 1.. * perceives vhdrlworld 1.. * perceives Sate 1.. * ATQ vhdrlengine 1.. * is composed Fig. 1. The simplified UML diagram of RL class engine (vhdrlservice). In fact, the RLI interface proposes high-level architecture, which would have made the engine more complex; it also lacks the taking in charge of simulations constituted of several agents fig. 1 shows the simplified UML diagram of the vhdrlservice class. Globally speaking, the Reinforcement Learning engine is composed of three main elements, exactly like the RLI interface: VhdRLWorld, VhdRLAgent and VhdRLEngine. 4.2 Choice of Learning Algorithms Two RL algorithms have been used. Contrary to the common use of RL, the objective here isn t to find the best algorithm and parameters in order to obtain the fastest learning process, as for example in a maze. In this way, both methods have been implemented and then used in their simplest version. For Q-Learning, Q π (s, a) Q π (s, a) + α [ r + γ.q π (s, a ) - Q π (s, a) ] according to [6]. In our case, the reinforcement r is the shortest path type, that is, 1 for all actions. This allows the distance necessary to be evaluated (in number of actions) in order to reach the closest Terminal State (red color in fig. 2). This distance, negative value, is to be found in fig. 2 at the right-hand bottom of each State (in black in fig. 2).

4 178 Toni Conde, William Tambellini, and Daniel Thalmann Typically, the learning rate decreases with the length of the trial. However, in our engine version, it will remain constant (α = 1) during the whole length of the learning. The γ coefficient will also remain at 1. For TD-Learning, V(u) V(u) + α [ r t+1 + γ.v(s t+1 ) V(s t ) ] according to [6]. It should be noted that this algorithm is used so that the weight of the network isn t updated until the end of the trial. In other words, the Agent updates these connections only when he reaches a Terminal State; and this is due to the memorization of the route taken. For example, as indicated in fig. 2, in order to construct this network, the Agent went by Terminal State number 0 three times; therefore, he only updated his value function 3 times. Fig. 2. Network after learning with Q-Learning. 5. Experimental Results In [1, 2] the AVAs navigate inside open virtual environments (e.g. public places, streets). The targeted environment here corresponds to any type of virtual environment type imposing physical constraints of navigation (e.g. city, public buildings, houses, bank, airport, streets). In fact, as RL proposes finding a series of optimal actions in a given environment, this service is unnecessary in an open environment where all States would be interconnected. Finally, the virtual environment must contain Terminal States (defined by the service user). We have tested our new approach with a virtual environment representing a city constituted of a dozen buildings and some streets. The numbers in fig. 3 represent the States of RL. Q-Learning: Following some trials carried out with the environment defined in fig. 3, and by measuring the number of iterations needed to reach the representation of the best path (see fig. 2), we can say that on average an AVA carries out the learning in 15 trials with a choice strategy of random actions. TD-Learning: The AVA also carries out the learning in 4 trials with a choice strategy of random actions.

5 Behavioral Animation of Autonomous Virtual Agents 179 Fig. 3. Sate Graph (Reinforcement Learning) of Virtual City simulation. 6. Discussion and Improvement Proposals The AVAs can be considered as visitors. Thanks to parameters of learning, we can produce good or bad representations of the environment, which then allow us to simulate the behavior of lost AVAs - fig. 4 and of expert AVAs in function of the learning length. Fig. 4. AVA Visitors in a Virtual City. Fig. 5. AVAs lost in a Virtual City. Reinforcement learning seems to be well adapted to simulate the task of a visit in a virtual environment, following precise behavior: - An untargeted visit for an exploration strategy, as the goal of such AVAs is the discovery of the virtual environment without a precise objective - fig Targeted research for strategy exploration for such AVAs only has one objective: reach their objective as quickly as possible. The latter would only use exploration during their first steps in the virtual environment. Reinforcement learning isn t used in its classical approach, but in its introduction into a virtual environment as a behavioral engine for exploration, learning and visiting the virtual environment. Therefore, contrary to reinforcement learning algorithms, our interest lies more in the learning than in the exploitation of this learning. Thus, it is indeed the learning rather than optimization that allows us to simulate the behavioral

6 180 Toni Conde, William Tambellini, and Daniel Thalmann animation of Autonomous Virtual Agents (AVAs); this really constitutes a new use of reinforcement learning methodology. In the actual engine, the network containing RL values indicates the policy, which allows the closest goal to be reached. In this way, the user cannot request an AVA to reach a specific goal, as the AVA directs himself to the closest Terminal State. This drawback can be resolved by using reinforcement learning with multiple goals [4]. With this technique, the engine has as many networks as there are goals at disposal; the AVA can therefore reach any goal, wherever it may be. However, this technique would use more memory, for it would require a network for each goal. The approach presented here is part of a more complex model, which is the object of our research. The goal is to realize a Virtual Life Environment for an Autonomous Virtual Agent including different interfaces and sensorial modalities coupled with different learning methodologies, which can evolve. Acknowledgments. This research has been partially funded by the Swiss National Science Foundation. References 1. Guye-Vuillème and D. Thalmann, "A High-level Architecture for Believable Social Agents", VR Journal, Springer, 5, pp , M. Kallmann, E. de Sevin and D. Thalmann,"Constructing Virtual Human Life Simulations", AVATARS Workshop, Lausanne, Switzerland, J. S. Monzani, A. Caicedo and D. Thalmann, "Integrating Behavioural Animation Techniques", Proc. Eurographics S. Whitehead, J. Karlsson and J. Tenenberg, "Learning Multiple Goal Behavior via Task Decomposition and Dynamic Policy Merging", in Connell and Mahadevan, editors, Robot Learning, Kluwer Academic Publishers, R. S. Sutton and J.-C. Santamaria, "A Standard Interface for Reinforcement Learning Software in C++", version R. S. Sutton and G. Barto, "Reinforcement Learning: an Introduction", MIT Press, L. P. Kaebling, M. Littman and A. Moore, "Reinforcement Learning: a Survey", JAIR, volume 4, pp , May M. Ponder, G. Papagiannakis, T. Molet, N. Magnenat-Thalmann and D. Thalmann, "VHD++ Development Framework: Towards Extendible, Component Based VR/AR Simulation Engine Featuring Advanced Virtual Character Technologies", IEEE Virtual Reality, A. Elizabeth, Employing AI methods to control the behavior of animated interface agents. Applied Artificial Intelligence, 13(4-5): , C. Langton, Artificial Life, Addison-Wesley, L. Steels and R-A. Brooks, The Artificial Life Role to Artificial Intelligence: Building Embodied Situated Agents, Laurence Ferlbaum Associates, 1995.

Reinforcement Learning by Comparing Immediate Reward

Reinforcement Learning by Comparing Immediate Reward Reinforcement Learning by Comparing Immediate Reward Punit Pandey DeepshikhaPandey Dr. Shishir Kumar Abstract This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Seminar - Organic Computing

Seminar - Organic Computing Seminar - Organic Computing Self-Organisation of OC-Systems Markus Franke 25.01.2006 Typeset by FoilTEX Timetable 1. Overview 2. Characteristics of SO-Systems 3. Concern with Nature 4. Design-Concepts

More information

Lecture 10: Reinforcement Learning

Lecture 10: Reinforcement Learning Lecture 1: Reinforcement Learning Cognitive Systems II - Machine Learning SS 25 Part III: Learning Programs and Strategies Q Learning, Dynamic Programming Lecture 1: Reinforcement Learning p. Motivation

More information

Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC On Human Computer Interaction, HCI Dr. Saif al Zahir Electrical and Computer Engineering Department UBC Human Computer Interaction HCI HCI is the study of people, computer technology, and the ways these

More information

An OO Framework for building Intelligence and Learning properties in Software Agents

An OO Framework for building Intelligence and Learning properties in Software Agents An OO Framework for building Intelligence and Learning properties in Software Agents José A. R. P. Sardinha, Ruy L. Milidiú, Carlos J. P. Lucena, Patrick Paranhos Abstract Software agents are defined as

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Proceedings of 28 ISFA 28 International Symposium on Flexible Automation Atlanta, GA, USA June 23-26, 28 ISFA28U_12 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Amit Gil, Helman Stern, Yael Edan, and

More information

DIGITAL GAMING & INTERACTIVE MEDIA BACHELOR S DEGREE. Junior Year. Summer (Bridge Quarter) Fall Winter Spring GAME Credits.

DIGITAL GAMING & INTERACTIVE MEDIA BACHELOR S DEGREE. Junior Year. Summer (Bridge Quarter) Fall Winter Spring GAME Credits. DIGITAL GAMING & INTERACTIVE MEDIA BACHELOR S DEGREE Sample 2-Year Academic Plan DRAFT Junior Year Summer (Bridge Quarter) Fall Winter Spring MMDP/GAME 124 GAME 310 GAME 318 GAME 330 Introduction to Maya

More information

AGENDA LEARNING THEORIES LEARNING THEORIES. Advanced Learning Theories 2/22/2016

AGENDA LEARNING THEORIES LEARNING THEORIES. Advanced Learning Theories 2/22/2016 AGENDA Advanced Learning Theories Alejandra J. Magana, Ph.D. admagana@purdue.edu Introduction to Learning Theories Role of Learning Theories and Frameworks Learning Design Research Design Dual Coding Theory

More information

Speeding Up Reinforcement Learning with Behavior Transfer

Speeding Up Reinforcement Learning with Behavior Transfer Speeding Up Reinforcement Learning with Behavior Transfer Matthew E. Taylor and Peter Stone Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188 {mtaylor, pstone}@cs.utexas.edu

More information

Different Requirements Gathering Techniques and Issues. Javaria Mushtaq

Different Requirements Gathering Techniques and Issues. Javaria Mushtaq 835 Different Requirements Gathering Techniques and Issues Javaria Mushtaq Abstract- Project management is now becoming a very important part of our software industries. To handle projects with success

More information

What s in a Step? Toward General, Abstract Representations of Tutoring System Log Data

What s in a Step? Toward General, Abstract Representations of Tutoring System Log Data What s in a Step? Toward General, Abstract Representations of Tutoring System Log Data Kurt VanLehn 1, Kenneth R. Koedinger 2, Alida Skogsholm 2, Adaeze Nwaigwe 2, Robert G.M. Hausmann 1, Anders Weinstein

More information

A Reinforcement Learning Variant for Control Scheduling

A Reinforcement Learning Variant for Control Scheduling A Reinforcement Learning Variant for Control Scheduling Aloke Guha Honeywell Sensor and System Development Center 3660 Technology Drive Minneapolis MN 55417 Abstract We present an algorithm based on reinforcement

More information

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses Thomas F.C. Woodhall Masters Candidate in Civil Engineering Queen s University at Kingston,

More information

A Case-Based Approach To Imitation Learning in Robotic Agents

A Case-Based Approach To Imitation Learning in Robotic Agents A Case-Based Approach To Imitation Learning in Robotic Agents Tesca Fitzgerald, Ashok Goel School of Interactive Computing Georgia Institute of Technology, Atlanta, GA 30332, USA {tesca.fitzgerald,goel}@cc.gatech.edu

More information

The Strong Minimalist Thesis and Bounded Optimality

The Strong Minimalist Thesis and Bounded Optimality The Strong Minimalist Thesis and Bounded Optimality DRAFT-IN-PROGRESS; SEND COMMENTS TO RICKL@UMICH.EDU Richard L. Lewis Department of Psychology University of Michigan 27 March 2010 1 Purpose of this

More information

Learning Prospective Robot Behavior

Learning Prospective Robot Behavior Learning Prospective Robot Behavior Shichao Ou and Rod Grupen Laboratory for Perceptual Robotics Computer Science Department University of Massachusetts Amherst {chao,grupen}@cs.umass.edu Abstract This

More information

Evolutive Neural Net Fuzzy Filtering: Basic Description

Evolutive Neural Net Fuzzy Filtering: Basic Description Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

More information

Abstractions and the Brain

Abstractions and the Brain Abstractions and the Brain Brian D. Josephson Department of Physics, University of Cambridge Cavendish Lab. Madingley Road Cambridge, UK. CB3 OHE bdj10@cam.ac.uk http://www.tcm.phy.cam.ac.uk/~bdj10 ABSTRACT

More information

Automating the E-learning Personalization

Automating the E-learning Personalization Automating the E-learning Personalization Fathi Essalmi 1, Leila Jemni Ben Ayed 1, Mohamed Jemni 1, Kinshuk 2, and Sabine Graf 2 1 The Research Laboratory of Technologies of Information and Communication

More information

TD(λ) and Q-Learning Based Ludo Players

TD(λ) and Q-Learning Based Ludo Players TD(λ) and Q-Learning Based Ludo Players Majed Alhajry, Faisal Alvi, Member, IEEE and Moataz Ahmed Abstract Reinforcement learning is a popular machine learning technique whose inherent self-learning ability

More information

Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments

Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments Specification and Evaluation of Machine Translation Toy Systems - Criteria for laboratory assignments Cristina Vertan, Walther v. Hahn University of Hamburg, Natural Language Systems Division Hamburg,

More information

Visual CP Representation of Knowledge

Visual CP Representation of Knowledge Visual CP Representation of Knowledge Heather D. Pfeiffer and Roger T. Hartley Department of Computer Science New Mexico State University Las Cruces, NM 88003-8001, USA email: hdp@cs.nmsu.edu and rth@cs.nmsu.edu

More information

BUILD-IT: Intuitive plant layout mediated by natural interaction

BUILD-IT: Intuitive plant layout mediated by natural interaction BUILD-IT: Intuitive plant layout mediated by natural interaction By Morten Fjeld, Martin Bichsel and Matthias Rauterberg Morten Fjeld holds a MSc in Applied Mathematics from Norwegian University of Science

More information

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email Marilyn A. Walker Jeanne C. Fromer Shrikanth Narayanan walker@research.att.com jeannie@ai.mit.edu shri@research.att.com

More information

Georgetown University at TREC 2017 Dynamic Domain Track

Georgetown University at TREC 2017 Dynamic Domain Track Georgetown University at TREC 2017 Dynamic Domain Track Zhiwen Tang Georgetown University zt79@georgetown.edu Grace Hui Yang Georgetown University huiyang@cs.georgetown.edu Abstract TREC Dynamic Domain

More information

Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining

Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining Dave Donnellan, School of Computer Applications Dublin City University Dublin 9 Ireland daviddonnellan@eircom.net Claus Pahl

More information

Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining

Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining Evaluation of Usage Patterns for Web-based Educational Systems using Web Mining Dave Donnellan, School of Computer Applications Dublin City University Dublin 9 Ireland daviddonnellan@eircom.net Claus Pahl

More information

A MULTI-AGENT SYSTEM FOR A DISTANCE SUPPORT IN EDUCATIONAL ROBOTICS

A MULTI-AGENT SYSTEM FOR A DISTANCE SUPPORT IN EDUCATIONAL ROBOTICS A MULTI-AGENT SYSTEM FOR A DISTANCE SUPPORT IN EDUCATIONAL ROBOTICS Sébastien GEORGE Christophe DESPRES Laboratoire d Informatique de l Université du Maine Avenue René Laennec, 72085 Le Mans Cedex 9, France

More information

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

QuickStroke: An Incremental On-line Chinese Handwriting Recognition System QuickStroke: An Incremental On-line Chinese Handwriting Recognition System Nada P. Matić John C. Platt Λ Tony Wang y Synaptics, Inc. 2381 Bering Drive San Jose, CA 95131, USA Abstract This paper presents

More information

Evolution of Symbolisation in Chimpanzees and Neural Nets

Evolution of Symbolisation in Chimpanzees and Neural Nets Evolution of Symbolisation in Chimpanzees and Neural Nets Angelo Cangelosi Centre for Neural and Adaptive Systems University of Plymouth (UK) a.cangelosi@plymouth.ac.uk Introduction Animal communication

More information

Running Head: STUDENT CENTRIC INTEGRATED TECHNOLOGY

Running Head: STUDENT CENTRIC INTEGRATED TECHNOLOGY SCIT Model 1 Running Head: STUDENT CENTRIC INTEGRATED TECHNOLOGY Instructional Design Based on Student Centric Integrated Technology Model Robert Newbury, MS December, 2008 SCIT Model 2 Abstract The ADDIE

More information

Concept Acquisition Without Representation William Dylan Sabo

Concept Acquisition Without Representation William Dylan Sabo Concept Acquisition Without Representation William Dylan Sabo Abstract: Contemporary debates in concept acquisition presuppose that cognizers can only acquire concepts on the basis of concepts they already

More information

UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society

UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society UC Merced Proceedings of the nnual Meeting of the Cognitive Science Society Title Multi-modal Cognitive rchitectures: Partial Solution to the Frame Problem Permalink https://escholarship.org/uc/item/8j2825mm

More information

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology Tiancheng Zhao CMU-LTI-16-006 Language Technologies Institute School of Computer Science Carnegie Mellon

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

ECE-492 SENIOR ADVANCED DESIGN PROJECT

ECE-492 SENIOR ADVANCED DESIGN PROJECT ECE-492 SENIOR ADVANCED DESIGN PROJECT Meeting #3 1 ECE-492 Meeting#3 Q1: Who is not on a team? Q2: Which students/teams still did not select a topic? 2 ENGINEERING DESIGN You have studied a great deal

More information

Agent-Based Software Engineering

Agent-Based Software Engineering Agent-Based Software Engineering Learning Guide Information for Students 1. Description Grade Module Máster Universitario en Ingeniería de Software - European Master on Software Engineering Advanced Software

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

Introduction to Simulation

Introduction to Simulation Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

More information

COMPUTER-AIDED DESIGN TOOLS THAT ADAPT

COMPUTER-AIDED DESIGN TOOLS THAT ADAPT COMPUTER-AIDED DESIGN TOOLS THAT ADAPT WEI PENG CSIRO ICT Centre, Australia and JOHN S GERO Krasnow Institute for Advanced Study, USA 1. Introduction Abstract. This paper describes an approach that enables

More information

PROCESS USE CASES: USE CASES IDENTIFICATION

PROCESS USE CASES: USE CASES IDENTIFICATION International Conference on Enterprise Information Systems, ICEIS 2007, Volume EIS June 12-16, 2007, Funchal, Portugal. PROCESS USE CASES: USE CASES IDENTIFICATION Pedro Valente, Paulo N. M. Sampaio Distributed

More information

IAT 888: Metacreation Machines endowed with creative behavior. Philippe Pasquier Office 565 (floor 14)

IAT 888: Metacreation Machines endowed with creative behavior. Philippe Pasquier Office 565 (floor 14) IAT 888: Metacreation Machines endowed with creative behavior Philippe Pasquier Office 565 (floor 14) pasquier@sfu.ca Outline of today's lecture A little bit about me A little bit about you What will that

More information

Emergency Management Games and Test Case Utility:

Emergency Management Games and Test Case Utility: IST Project N 027568 IRRIIS Project Rome Workshop, 18-19 October 2006 Emergency Management Games and Test Case Utility: a Synthetic Methodological Socio-Cognitive Perspective Adam Maria Gadomski, ENEA

More information

On the Combined Behavior of Autonomous Resource Management Agents

On the Combined Behavior of Autonomous Resource Management Agents On the Combined Behavior of Autonomous Resource Management Agents Siri Fagernes 1 and Alva L. Couch 2 1 Faculty of Engineering Oslo University College Oslo, Norway siri.fagernes@iu.hio.no 2 Computer Science

More information

SAM - Sensors, Actuators and Microcontrollers in Mobile Robots

SAM - Sensors, Actuators and Microcontrollers in Mobile Robots Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering BACHELOR'S

More information

Action Models and their Induction

Action Models and their Induction Action Models and their Induction Michal Čertický, Comenius University, Bratislava certicky@fmph.uniba.sk March 5, 2013 Abstract By action model, we understand any logic-based representation of effects

More information

LEGO MINDSTORMS Education EV3 Coding Activities

LEGO MINDSTORMS Education EV3 Coding Activities LEGO MINDSTORMS Education EV3 Coding Activities s t e e h s k r o W t n e d Stu LEGOeducation.com/MINDSTORMS Contents ACTIVITY 1 Performing a Three Point Turn 3-6 ACTIVITY 2 Written Instructions for a

More information

Robot Shaping: Developing Autonomous Agents through Learning*

Robot Shaping: Developing Autonomous Agents through Learning* TO APPEAR IN ARTIFICIAL INTELLIGENCE JOURNAL ROBOT SHAPING 2 1. Introduction Robot Shaping: Developing Autonomous Agents through Learning* Marco Dorigo # Marco Colombetti + INTERNATIONAL COMPUTER SCIENCE

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

Implementing a tool to Support KAOS-Beta Process Model Using EPF

Implementing a tool to Support KAOS-Beta Process Model Using EPF Implementing a tool to Support KAOS-Beta Process Model Using EPF Malihe Tabatabaie Malihe.Tabatabaie@cs.york.ac.uk Department of Computer Science The University of York United Kingdom Eclipse Process Framework

More information

A student diagnosing and evaluation system for laboratory-based academic exercises

A student diagnosing and evaluation system for laboratory-based academic exercises A student diagnosing and evaluation system for laboratory-based academic exercises Maria Samarakou, Emmanouil Fylladitakis and Pantelis Prentakis Technological Educational Institute (T.E.I.) of Athens

More information

A Context-Driven Use Case Creation Process for Specifying Automotive Driver Assistance Systems

A Context-Driven Use Case Creation Process for Specifying Automotive Driver Assistance Systems A Context-Driven Use Case Creation Process for Specifying Automotive Driver Assistance Systems Hannes Omasreiter, Eduard Metzker DaimlerChrysler AG Research Information and Communication Postfach 23 60

More information

Specification of the Verity Learning Companion and Self-Assessment Tool

Specification of the Verity Learning Companion and Self-Assessment Tool Specification of the Verity Learning Companion and Self-Assessment Tool Sergiu Dascalu* Daniela Saru** Ryan Simpson* Justin Bradley* Eva Sarwar* Joohoon Oh* * Department of Computer Science ** Dept. of

More information

Multiagent Simulation of Learning Environments

Multiagent Simulation of Learning Environments Multiagent Simulation of Learning Environments Elizabeth Sklar and Mathew Davies Dept of Computer Science Columbia University New York, NY 10027 USA sklar,mdavies@cs.columbia.edu ABSTRACT One of the key

More information

Learning and Transferring Relational Instance-Based Policies

Learning and Transferring Relational Instance-Based Policies Learning and Transferring Relational Instance-Based Policies Rocío García-Durán, Fernando Fernández y Daniel Borrajo Universidad Carlos III de Madrid Avda de la Universidad 30, 28911-Leganés (Madrid),

More information

Navigating the PhD Options in CMS

Navigating the PhD Options in CMS Navigating the PhD Options in CMS This document gives an overview of the typical student path through the four Ph.D. programs in the CMS department ACM, CDS, CS, and CMS. Note that it is not a replacement

More information

Rule discovery in Web-based educational systems using Grammar-Based Genetic Programming

Rule discovery in Web-based educational systems using Grammar-Based Genetic Programming Data Mining VI 205 Rule discovery in Web-based educational systems using Grammar-Based Genetic Programming C. Romero, S. Ventura, C. Hervás & P. González Universidad de Córdoba, Campus Universitario de

More information

Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I

Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I Session 1793 Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I John Greco, Ph.D. Department of Electrical and Computer Engineering Lafayette College Easton, PA 18042 Abstract

More information

SOFTWARE EVALUATION TOOL

SOFTWARE EVALUATION TOOL SOFTWARE EVALUATION TOOL Kyle Higgins Randall Boone University of Nevada Las Vegas rboone@unlv.nevada.edu Higgins@unlv.nevada.edu N.B. This form has not been fully validated and is still in development.

More information

Designing Autonomous Robot Systems - Evaluation of the R3-COP Decision Support System Approach

Designing Autonomous Robot Systems - Evaluation of the R3-COP Decision Support System Approach Designing Autonomous Robot Systems - Evaluation of the R3-COP Decision Support System Approach Tapio Heikkilä, Lars Dalgaard, Jukka Koskinen To cite this version: Tapio Heikkilä, Lars Dalgaard, Jukka Koskinen.

More information

Mexico (CONAFE) Dialogue and Discover Model, from the Community Courses Program

Mexico (CONAFE) Dialogue and Discover Model, from the Community Courses Program Mexico (CONAFE) Dialogue and Discover Model, from the Community Courses Program Dialogue and Discover manuals are used by Mexican community instructors (young people without professional teacher education

More information

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA

Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing A Moving Target: How Do We Test Machine Learning Systems? Peter Varhol Technology Strategy Research, USA Testing a Moving Target How Do We Test Machine Learning Systems? Peter Varhol, Technology

More information

WHAT ARE VIRTUAL MANIPULATIVES?

WHAT ARE VIRTUAL MANIPULATIVES? by SCOTT PIERSON AA, Community College of the Air Force, 1992 BS, Eastern Connecticut State University, 2010 A VIRTUAL MANIPULATIVES PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR TECHNOLOGY

More information

Chamilo 2.0: A Second Generation Open Source E-learning and Collaboration Platform

Chamilo 2.0: A Second Generation Open Source E-learning and Collaboration Platform Chamilo 2.0: A Second Generation Open Source E-learning and Collaboration Platform doi:10.3991/ijac.v3i3.1364 Jean-Marie Maes University College Ghent, Ghent, Belgium Abstract Dokeos used to be one of

More information

PRODUCT COMPLEXITY: A NEW MODELLING COURSE IN THE INDUSTRIAL DESIGN PROGRAM AT THE UNIVERSITY OF TWENTE

PRODUCT COMPLEXITY: A NEW MODELLING COURSE IN THE INDUSTRIAL DESIGN PROGRAM AT THE UNIVERSITY OF TWENTE INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION 6 & 7 SEPTEMBER 2012, ARTESIS UNIVERSITY COLLEGE, ANTWERP, BELGIUM PRODUCT COMPLEXITY: A NEW MODELLING COURSE IN THE INDUSTRIAL DESIGN

More information

SITUATING AN ENVIRONMENT TO PROMOTE DESIGN CREATIVITY BY EXPANDING STRUCTURE HOLES

SITUATING AN ENVIRONMENT TO PROMOTE DESIGN CREATIVITY BY EXPANDING STRUCTURE HOLES SITUATING AN ENVIRONMENT TO PROMOTE DESIGN CREATIVITY BY EXPANDING STRUCTURE HOLES Public Places in Campus Buildings HOU YUEMIN Beijing Information Science & Technology University, and Tsinghua University,

More information

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X

The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, / X The 9 th International Scientific Conference elearning and software for Education Bucharest, April 25-26, 2013 10.12753/2066-026X-13-154 DATA MINING SOLUTIONS FOR DETERMINING STUDENT'S PROFILE Adela BÂRA,

More information

An Introduction to Simio for Beginners

An Introduction to Simio for Beginners An Introduction to Simio for Beginners C. Dennis Pegden, Ph.D. This white paper is intended to introduce Simio to a user new to simulation. It is intended for the manufacturing engineer, hospital quality

More information

Notes on The Sciences of the Artificial Adapted from a shorter document written for course (Deciding What to Design) 1

Notes on The Sciences of the Artificial Adapted from a shorter document written for course (Deciding What to Design) 1 Notes on The Sciences of the Artificial Adapted from a shorter document written for course 17-652 (Deciding What to Design) 1 Ali Almossawi December 29, 2005 1 Introduction The Sciences of the Artificial

More information

Modeling user preferences and norms in context-aware systems

Modeling user preferences and norms in context-aware systems Modeling user preferences and norms in context-aware systems Jonas Nilsson, Cecilia Lindmark Jonas Nilsson, Cecilia Lindmark VT 2016 Bachelor's thesis for Computer Science, 15 hp Supervisor: Juan Carlos

More information

Predicting Students Performance with SimStudent: Learning Cognitive Skills from Observation

Predicting Students Performance with SimStudent: Learning Cognitive Skills from Observation School of Computer Science Human-Computer Interaction Institute Carnegie Mellon University Year 2007 Predicting Students Performance with SimStudent: Learning Cognitive Skills from Observation Noboru Matsuda

More information

Knowledge-Based - Systems

Knowledge-Based - Systems Knowledge-Based - Systems ; Rajendra Arvind Akerkar Chairman, Technomathematics Research Foundation and Senior Researcher, Western Norway Research institute Priti Srinivas Sajja Sardar Patel University

More information

High-level Reinforcement Learning in Strategy Games

High-level Reinforcement Learning in Strategy Games High-level Reinforcement Learning in Strategy Games Christopher Amato Department of Computer Science University of Massachusetts Amherst, MA 01003 USA camato@cs.umass.edu Guy Shani Department of Computer

More information

Chapter 2. Intelligent Agents. Outline. Agents and environments. Rationality. PEAS (Performance measure, Environment, Actuators, Sensors)

Chapter 2. Intelligent Agents. Outline. Agents and environments. Rationality. PEAS (Performance measure, Environment, Actuators, Sensors) Intelligent Agents Chapter 2 1 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Agent types 2 Agents and environments sensors environment percepts

More information

Shared Mental Models

Shared Mental Models Shared Mental Models A Conceptual Analysis Catholijn M. Jonker 1, M. Birna van Riemsdijk 1, and Bas Vermeulen 2 1 EEMCS, Delft University of Technology, Delft, The Netherlands {m.b.vanriemsdijk,c.m.jonker}@tudelft.nl

More information

A SURVEY OF FUZZY COGNITIVE MAP LEARNING METHODS

A SURVEY OF FUZZY COGNITIVE MAP LEARNING METHODS A SURVEY OF FUZZY COGNITIVE MAP LEARNING METHODS Wociech Stach, Lukasz Kurgan, and Witold Pedrycz Department of Electrical and Computer Engineering University of Alberta Edmonton, Alberta T6G 2V4, Canada

More information

EECS 571 PRINCIPLES OF REAL-TIME COMPUTING Fall 10. Instructor: Kang G. Shin, 4605 CSE, ;

EECS 571 PRINCIPLES OF REAL-TIME COMPUTING Fall 10. Instructor: Kang G. Shin, 4605 CSE, ; EECS 571 PRINCIPLES OF REAL-TIME COMPUTING Fall 10 Instructor: Kang G. Shin, 4605 CSE, 763-0391; kgshin@umich.edu Number of credit hours: 4 Class meeting time and room: Regular classes: MW 10:30am noon

More information

Grade 4. Common Core Adoption Process. (Unpacked Standards)

Grade 4. Common Core Adoption Process. (Unpacked Standards) Grade 4 Common Core Adoption Process (Unpacked Standards) Grade 4 Reading: Literature RL.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences

More information

The Enterprise Knowledge Portal: The Concept

The Enterprise Knowledge Portal: The Concept The Enterprise Knowledge Portal: The Concept Executive Information Systems, Inc. www.dkms.com eisai@home.com (703) 461-8823 (o) 1 A Beginning Where is the life we have lost in living! Where is the wisdom

More information

Initial English Language Training for Controllers and Pilots. Mr. John Kennedy École Nationale de L Aviation Civile (ENAC) Toulouse, France.

Initial English Language Training for Controllers and Pilots. Mr. John Kennedy École Nationale de L Aviation Civile (ENAC) Toulouse, France. Initial English Language Training for Controllers and Pilots Mr. John Kennedy École Nationale de L Aviation Civile (ENAC) Toulouse, France Summary All French trainee controllers and some French pilots

More information

A Pipelined Approach for Iterative Software Process Model

A Pipelined Approach for Iterative Software Process Model A Pipelined Approach for Iterative Software Process Model Ms.Prasanthi E R, Ms.Aparna Rathi, Ms.Vardhani J P, Mr.Vivek Krishna Electronics and Radar Development Establishment C V Raman Nagar, Bangalore-560093,

More information

Software Security: Integrating Secure Software Engineering in Graduate Computer Science Curriculum

Software Security: Integrating Secure Software Engineering in Graduate Computer Science Curriculum Software Security: Integrating Secure Software Engineering in Graduate Computer Science Curriculum Stephen S. Yau, Fellow, IEEE, and Zhaoji Chen Arizona State University, Tempe, AZ 85287-8809 {yau, zhaoji.chen@asu.edu}

More information

2017 Florence, Italty Conference Abstract

2017 Florence, Italty Conference Abstract 2017 Florence, Italty Conference Abstract Florence, Italy October 23-25, 2017 Venue: NILHOTEL ADD: via Eugenio Barsanti 27 a/b - 50127 Florence, Italy PHONE: (+39) 055 795540 FAX: (+39) 055 79554801 EMAIL:

More information

Cooperative evolutive concept learning: an empirical study

Cooperative evolutive concept learning: an empirical study Cooperative evolutive concept learning: an empirical study Filippo Neri University of Piemonte Orientale Dipartimento di Scienze e Tecnologie Avanzate Piazza Ambrosoli 5, 15100 Alessandria AL, Italy Abstract

More information

An Estimating Method for IT Project Expected Duration Oriented to GERT

An Estimating Method for IT Project Expected Duration Oriented to GERT An Estimating Method for IT Project Expected Duration Oriented to GERT Li Yu and Meiyun Zuo School of Information, Renmin University of China, Beijing 100872, P.R. China buaayuli@mc.e(iuxn zuomeiyun@263.nct

More information

Learning and Teaching

Learning and Teaching Learning and Teaching Set Induction and Closure: Key Teaching Skills John Dallat March 2013 The best kind of teacher is one who helps you do what you couldn t do yourself, but doesn t do it for you (Child,

More information

AQUA: An Ontology-Driven Question Answering System

AQUA: An Ontology-Driven Question Answering System AQUA: An Ontology-Driven Question Answering System Maria Vargas-Vera, Enrico Motta and John Domingue Knowledge Media Institute (KMI) The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom.

More information

Ecology in architecture design: Testing an advanced educational path

Ecology in architecture design: Testing an advanced educational path International Conference Passive and Low Energy Cooling 299 Ecology in architecture design: Testing an advanced educational path P. Caputo, M. Molina, A. Roscetti and J. Vicari Accademia di Architettura

More information

COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS

COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS COMPUTER-ASSISTED INDEPENDENT STUDY IN MULTIVARIATE CALCULUS L. Descalço 1, Paula Carvalho 1, J.P. Cruz 1, Paula Oliveira 1, Dina Seabra 2 1 Departamento de Matemática, Universidade de Aveiro (PORTUGAL)

More information

Causal Link Semantics for Narrative Planning Using Numeric Fluents

Causal Link Semantics for Narrative Planning Using Numeric Fluents Proceedings, The Thirteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17) Causal Link Semantics for Narrative Planning Using Numeric Fluents Rachelyn Farrell,

More information

Mathematics Success Grade 7

Mathematics Success Grade 7 T894 Mathematics Success Grade 7 [OBJECTIVE] The student will find probabilities of compound events using organized lists, tables, tree diagrams, and simulations. [PREREQUISITE SKILLS] Simple probability,

More information

ANGLAIS LANGUE SECONDE

ANGLAIS LANGUE SECONDE ANGLAIS LANGUE SECONDE ANG-5055-6 DEFINITION OF THE DOMAIN SEPTEMBRE 1995 ANGLAIS LANGUE SECONDE ANG-5055-6 DEFINITION OF THE DOMAIN SEPTEMBER 1995 Direction de la formation générale des adultes Service

More information

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics

Machine Learning from Garden Path Sentences: The Application of Computational Linguistics Machine Learning from Garden Path Sentences: The Application of Computational Linguistics http://dx.doi.org/10.3991/ijet.v9i6.4109 J.L. Du 1, P.F. Yu 1 and M.L. Li 2 1 Guangdong University of Foreign Studies,

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

9.85 Cognition in Infancy and Early Childhood. Lecture 7: Number

9.85 Cognition in Infancy and Early Childhood. Lecture 7: Number 9.85 Cognition in Infancy and Early Childhood Lecture 7: Number What else might you know about objects? Spelke Objects i. Continuity. Objects exist continuously and move on paths that are connected over

More information