Reinforcement Learning

Size: px
Start display at page:

Download "Reinforcement Learning"

Transcription

1 Reinforcement Learning Andreas Wichert DEIC (Página da cadeira: Fenix) Reinforcement Learning n No specific learning methods n Actions within & responses from the environment n Any learning method that address this interaction is reinforcement learning n Is reinforcement learning same as supervised learning? n No n Absence of a designated teacher to give positive and negative examples 1

2 n By random move the agent build a predictive model of its environment n Without some feedback about what is good and what is bad, the agent will have no grounds for deciding which move to make n Needs to know when some thing good happened, or that some thin bad has happened n Feedback: reward or reinforcement n Chess, the reinforcement is only received at the end of the game n Agent must recognize the reward n Animals recognize pain and hunger as well as pleasure and food as positive rewards 2

3 n Examine how an agent can learn from success and failure, reward and punishment RL is learning from interaction 3

4 Three agent designs n Utility-based agent n Q-learning n Reflex agent Utility based agents n A utility function maps a state (or a sequence) onto a real number, which describes the agents happiness 4

5 Utility based agents n A utility-based agent must have a model of the environment in order to make decisions n In order to use backgammon evaluation function, a program must know what is a legal moves and how thy affect board positions Q-learning n A Q-learning agent on the other hand can compare the value of its available choices without needing to know their outcomes n It does not need to model its environment n Q-learning agents cannot look ahead 5

6 Reflex agent n Learns a policy that maps directly from state to action n Policy: A solution that specifies what an agent should do for any state that the agent might reach n For state s agent should do π(s) n Passive reinforcement learning 6

7 n Passive learning, agent s policy (actions) is fixed and the task is to learn utilities (happiness) of states (state action parts) Passive Reinforcement Learning n Passive Learner: A passive learner simply watches the world going by, and tries to learn the utility of being in various states n Another way to think of a passive learner is as an agent with a fixed policy trying to determine its benefits n An action recommended by a policy for the a certain state 7

8 n Policy π is fixed n In state s it always executes the action π(s) n Goal to learn a good policy, to learn the utility function U π (s) Passive learning v.s. Active learning n Passive learning n The agent imply watches the world going by and tries to learn the utilities of being in various states n Active learning n The agent not simply watches, but also acts 8

9 n In passive learning, the environment generates state transitions and the agent perceives them n Consider an agent trying to learn the utilities of the states shown below: n Agent can move {North, East, South, West} n Terminate on reading [4,2] or [4,3] 9

10 Passive Learning in a Known Agent is provided: Mi j = a model given the probability of reaching from state i to state j Each state transition to a neighbouring state with equal probability among all neighbouring states Passive learning scenario n The agent see the the sequences of state transitions and associate rewards n The environment generates state transitions and the agent perceive them e.g (1,1) à (1,2) à (1,3) à (2,3) à (3,3) à (4,3)[+1] (1,1)à (1,2) à (1,3) à (1,2) à (1,3) à (1,2) à (1,1) à (2,1) à (3,1) à (4,1) à (4,2)[-1] n Key idea: updating the utility value using the given training sequences 10

11 Passive Learning in a Known Use this information about rewards to learn the expected utility U(i) associated with each nonterminal state i Utilities can be learned using 3 approaches 1) LMS (least mean squares) 2) ADP (adaptive dynamic programming) 3) TD (temporal difference learning) Passive Learning in a Known LMS (Least Mean Squares) Agent makes random runs (sequences of random moves) through environment [1,1]->[1,2]->[1,3]->[2,3]->[3,3]->[4,3] = +1 [1,1]->[2,1]->[3,1]->[3,2]->[4,2] = -1 11

12 Passive Learning in a Known LMS: -Collect statistics on final payoff for each state (eg. when on [2,3], how often reached +1 vs -1?) -Learner computes average for each state Provably converges to true expected value (utilities) -Instance of supervised learning State as input and observed rewared as output n It misses an important source of information n Utilities of states are not independent! n The utility of each state equals its own reward plus the expected utility of its successor 12

13 Passive Learning in a Known LMS Main Drawback: - slow convergence - it takes the agent well over a 1000 training sequences to get close to the correct value Passive Learning in a Known ADP (Adaptive Dynamic Programming) Uses the value or policy iteration algorithm to calculate exact utilities of states given an estimated model 13

14 Passive Learning in a Known ADP In general: - R(i) is reward of being in state i (often non zero for only a few end states) - Mij is the probability of transition from state i to j Passive Learning in a Known ADP Consider U(3,3) U(3,3) = 0.33 x U(4,3) x U(2,3) x U(3,2) = 0.33 x x x =

15 Passive Learning in a Known ADP makes optimal use of the local constraints on utilities of states imposed by the neighborhood structure of the environment somewhat intractable for large state spaces Passive Learning in a Known TD (Temporal Difference Learning) The key is to use the observed transitions to adjust the values of the observed states so that they agree with the constraint equations 15

16 Passive Learning in a Known TD Learning Suppose we observe a transition from state i to state j U(i) = -0.5 and U(j) = +0.5 Suggests that we should increase U(i) to make it agree better with it successor Can be achieved using the following updating rule (R(i) is the reward being in the state) Passive Learning in an Unknown n Least Mean Square(LMS) approach and Temporal-Difference(TD) approach operate unchanged in an initially unknown environment n Adaptive Dynamic Programming(ADP) approach adds a step that updates an estimated model of the environment n Transition probabilities 16

17 Passive Learning in an Unknown ADP Approach n The environment model is learned by direct observation of transitions n The environment model M can be updated by keeping track of the percentage of times each state transitions to each of its neighbors Passive Learning in an Unknown ADP & TD Approaches n The ADP approach and the TD approach are closely related n Both try to make local adjustments to the utility estimates in order to make each state agree with its successors 17

18 Passive Learning in an Unknown Minor differences : n TD adjusts a state to agree with its observed successor n ADP adjusts the state to agree with all of the successors Passive Learning in an Unknown Important differences : n TD makes a single adjustment per observed transition n ADP makes as many adjustments as it needs to restore consistency between the utility estimates U and the environment model M 18

19 Active Learning in an Unknown An active agent must consider : n what actions to take n what their outcomes may be n how they will affect the rewards received Active Learning in an Unknown Minor changes to passive learning agent : n environment model now incorporates the probabilities of transitions to other states given a particular action n maximize its expected utility n agent needs a performance element to choose an action at each step 19

20 n M ij a denotes the probability of reaching state j if action a is taken in state i Active Learning in an Unknown Active ADP Approach n need to learn the probability M a ij of a transition instead of M ij n the input to the function will include the action taken 20

21 Active Learning in an Unknown Active TD Approach n the model acquisition problem for the TD agent is identical to that for the ADP agent n the update rule remains unchanged n the TD algorithm will converge to the same values as ADP as the number of training sequences tends to infinity Exploration Learning also involves the exploration of unknown areas An agent can benefit from actions in 2 ways -immediate rewards (on the current sequence) -received percepts (receive rewards in feature sequence) Trade-off between its immediate good- as reflected in its current utility estimate-and long term well being 21

22 Exploration: Wacky Approach Vs. Greedy Approach Wacky approach acts randomly in the hope that it will eventually explore the whole environment Learn, but never gets better at reaching positive reward Greedy approach acts to maximize its utility function using current estimation Sticks in a solution (never learns utility of other states) n We need an approach between wackiness and greediness n An agent should be more wacky when it has little idea of environment n More greedy when it has a model that is close to being correct 22

23 n Can be implemented using n It assigns a higher utility estimate to relatively unexplored action-state pairs n Let U + (i) denote the optimistic utility of the state i n N(a,i) number of times action has been tried in state i U + (i) R(i) + max a $ f & % f(u,n) is an exploration function j ' M a ij U + ( j),n(a,i) ) ( 23

24 Exploration The Exploration Function: a simple example u= expected utility (greed) n= number of times actions have been tried(wacky) R + = best reward possible N e = fixed parameter, try at least N e times n Important U + rather than U appears n As exploration proceeds, the state and actions near the start state may well be tried a large number of times n Actions that lead to unexplored regions are weighted more highly, rather than just actions that are themselves unfamiliar 24

25 Action-Value Function Q-Learning Learning An Action Value-Function What Are Q-Values? Action-value assigns an expected utility to taking action in a given state 25

26 Learning An Action Value-Function The Q-Values Formula Learning An Action Value-Function The Q-Values Formula Application -just an adaptation of the active learning equation 26

27 Learning An Action Value-Function The TD Q-Learning Update Equation - requires no model - calculated after each transition from state i to j Learning An Action Value-Function The TD Q-Learning Update Equation in Practice Program:Neurogammon - attempted to learn from self-play and implicit representation 27

28 Generalization In Reinforcement Learning Explicit Representation n we have assumed that all the functions learned by the agents(u,m,r,q) are represented in tabular form n explicit representation involves one output value for each input tuple. Explicit Representation n good for small state spaces, but the time to convergence and the time per iteration increase rapidly as the space gets larger n it may be possible to handle 10,000 states or more n this suffices for 2-dimensional, maze-like environments 28

29 n Problem: more realistic worlds are out of question n eg. Chess & backgammon are tiny subsets of the real world, yet their state spaces contain on the order of to states So it would be absurd to suppose that one must visit all these states in order to learn how to play the game. Generalization In Reinforcement Learning Implicit Representation n Overcome the explicit problem n a form that allows one to calculate the output for any input, but that is much more compact than the tabular form 29

30 Weighted linear function n For example, an estimated utility function for game playing can be represented as a weighted linear function of a set of board features f 1 f n : U(i) = w 1 f 1 (i)+w 2 f 2 (i)+.+w n f n (i) Implicit Representation n The utility function is characterized by n weights. n A typical chess evaluation function might only have 10 weights, so this is enormous compression 30

31 Compression n enormous compression : achieved by an implicit representation allows the learning agents to generalize from states it has visited to states it has not visited n the most important aspect : it allows for inductive generalization over input states. n Therefore, such method are said to perform input generalization Cart pole n The cart pole problem: n set up the problem of balancing a long pole upright on the top of a moving cart. 31

32 n The cart can be jerked left or right by a controller that observes x, x, θ, and θ n the earliest work on learning for this problem was carried out by Michie and Chambers(1968) n their BOXES algorithm was able to balance the pole for over an hour after only about 30 trials. Generalization Input Generalisation n The algorithm first discretized the 4- dimensional state into boxes, hence the name n it then ran trials until the pole fell over or the cart hit the end of the track. n Negative reinforcement was associated with the final action in the final box and then propagated back through the sequence 32

33 Input Generalisation n The discretization causes some problems when the apparatus was initialized in a different position n improvement : using the algorithm that adaptively partitions that state space according to the observed variation in the reward 33

Lecture 10: Reinforcement Learning

Lecture 10: Reinforcement Learning Lecture 1: Reinforcement Learning Cognitive Systems II - Machine Learning SS 25 Part III: Learning Programs and Strategies Q Learning, Dynamic Programming Lecture 1: Reinforcement Learning p. Motivation

More information

Reinforcement Learning by Comparing Immediate Reward

Reinforcement Learning by Comparing Immediate Reward Reinforcement Learning by Comparing Immediate Reward Punit Pandey DeepshikhaPandey Dr. Shishir Kumar Abstract This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning 12.1 Instructional Objective The students should understand the concept of learning systems Students should learn about different aspects of a learning system Students should

More information

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots

Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Continual Curiosity-Driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots Varun Raj Kompella, Marijn Stollenga, Matthew Luciw, Juergen Schmidhuber The Swiss AI Lab IDSIA, USI

More information

Exploration. CS : Deep Reinforcement Learning Sergey Levine

Exploration. CS : Deep Reinforcement Learning Sergey Levine Exploration CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 4 due on Wednesday 2. Project proposal feedback sent Today s Lecture 1. What is exploration? Why is it a problem?

More information

Lecture 1: Machine Learning Basics

Lecture 1: Machine Learning Basics 1/69 Lecture 1: Machine Learning Basics Ali Harakeh University of Waterloo WAVE Lab ali.harakeh@uwaterloo.ca May 1, 2017 2/69 Overview 1 Learning Algorithms 2 Capacity, Overfitting, and Underfitting 3

More information

Artificial Neural Networks written examination

Artificial Neural Networks written examination 1 (8) Institutionen för informationsteknologi Olle Gällmo Universitetsadjunkt Adress: Lägerhyddsvägen 2 Box 337 751 05 Uppsala Artificial Neural Networks written examination Monday, May 15, 2006 9 00-14

More information

TD(λ) and Q-Learning Based Ludo Players

TD(λ) and Q-Learning Based Ludo Players TD(λ) and Q-Learning Based Ludo Players Majed Alhajry, Faisal Alvi, Member, IEEE and Moataz Ahmed Abstract Reinforcement learning is a popular machine learning technique whose inherent self-learning ability

More information

A Reinforcement Learning Variant for Control Scheduling

A Reinforcement Learning Variant for Control Scheduling A Reinforcement Learning Variant for Control Scheduling Aloke Guha Honeywell Sensor and System Development Center 3660 Technology Drive Minneapolis MN 55417 Abstract We present an algorithm based on reinforcement

More information

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for

Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email Marilyn A. Walker Jeanne C. Fromer Shrikanth Narayanan walker@research.att.com jeannie@ai.mit.edu shri@research.att.com

More information

A Comparison of Annealing Techniques for Academic Course Scheduling

A Comparison of Annealing Techniques for Academic Course Scheduling A Comparison of Annealing Techniques for Academic Course Scheduling M. A. Saleh Elmohamed 1, Paul Coddington 2, and Geoffrey Fox 1 1 Northeast Parallel Architectures Center Syracuse University, Syracuse,

More information

Major Milestones, Team Activities, and Individual Deliverables

Major Milestones, Team Activities, and Individual Deliverables Major Milestones, Team Activities, and Individual Deliverables Milestone #1: Team Semester Proposal Your team should write a proposal that describes project objectives, existing relevant technology, engineering

More information

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering

ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering ENME 605 Advanced Control Systems, Fall 2015 Department of Mechanical Engineering Lecture Details Instructor Course Objectives Tuesday and Thursday, 4:00 pm to 5:15 pm Information Technology and Engineering

More information

Axiom 2013 Team Description Paper

Axiom 2013 Team Description Paper Axiom 2013 Team Description Paper Mohammad Ghazanfari, S Omid Shirkhorshidi, Farbod Samsamipour, Hossein Rahmatizadeh Zagheli, Mohammad Mahdavi, Payam Mohajeri, S Abbas Alamolhoda Robotics Scientific Association

More information

Intelligent Agents. Chapter 2. Chapter 2 1

Intelligent Agents. Chapter 2. Chapter 2 1 Intelligent Agents Chapter 2 Chapter 2 1 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types The structure of agents Chapter 2 2 Agents

More information

AMULTIAGENT system [1] can be defined as a group of

AMULTIAGENT system [1] can be defined as a group of 156 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 2, MARCH 2008 A Comprehensive Survey of Multiagent Reinforcement Learning Lucian Buşoniu, Robert Babuška,

More information

Generative models and adversarial training

Generative models and adversarial training Day 4 Lecture 1 Generative models and adversarial training Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University What is a generative model?

More information

The Strong Minimalist Thesis and Bounded Optimality

The Strong Minimalist Thesis and Bounded Optimality The Strong Minimalist Thesis and Bounded Optimality DRAFT-IN-PROGRESS; SEND COMMENTS TO RICKL@UMICH.EDU Richard L. Lewis Department of Psychology University of Michigan 27 March 2010 1 Purpose of this

More information

Improving Action Selection in MDP s via Knowledge Transfer

Improving Action Selection in MDP s via Knowledge Transfer In Proc. 20th National Conference on Artificial Intelligence (AAAI-05), July 9 13, 2005, Pittsburgh, USA. Improving Action Selection in MDP s via Knowledge Transfer Alexander A. Sherstov and Peter Stone

More information

The Good Judgment Project: A large scale test of different methods of combining expert predictions

The Good Judgment Project: A large scale test of different methods of combining expert predictions The Good Judgment Project: A large scale test of different methods of combining expert predictions Lyle Ungar, Barb Mellors, Jon Baron, Phil Tetlock, Jaime Ramos, Sam Swift The University of Pennsylvania

More information

Speeding Up Reinforcement Learning with Behavior Transfer

Speeding Up Reinforcement Learning with Behavior Transfer Speeding Up Reinforcement Learning with Behavior Transfer Matthew E. Taylor and Peter Stone Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188 {mtaylor, pstone}@cs.utexas.edu

More information

CS Machine Learning

CS Machine Learning CS 478 - Machine Learning Projects Data Representation Basic testing and evaluation schemes CS 478 Data and Testing 1 Programming Issues l Program in any platform you want l Realize that you will be doing

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

High-level Reinforcement Learning in Strategy Games

High-level Reinforcement Learning in Strategy Games High-level Reinforcement Learning in Strategy Games Christopher Amato Department of Computer Science University of Massachusetts Amherst, MA 01003 USA camato@cs.umass.edu Guy Shani Department of Computer

More information

Introduction to Simulation

Introduction to Simulation Introduction to Simulation Spring 2010 Dr. Louis Luangkesorn University of Pittsburgh January 19, 2010 Dr. Louis Luangkesorn ( University of Pittsburgh ) Introduction to Simulation January 19, 2010 1 /

More information

On the Combined Behavior of Autonomous Resource Management Agents

On the Combined Behavior of Autonomous Resource Management Agents On the Combined Behavior of Autonomous Resource Management Agents Siri Fagernes 1 and Alva L. Couch 2 1 Faculty of Engineering Oslo University College Oslo, Norway siri.fagernes@iu.hio.no 2 Computer Science

More information

Georgetown University at TREC 2017 Dynamic Domain Track

Georgetown University at TREC 2017 Dynamic Domain Track Georgetown University at TREC 2017 Dynamic Domain Track Zhiwen Tang Georgetown University zt79@georgetown.edu Grace Hui Yang Georgetown University huiyang@cs.georgetown.edu Abstract TREC Dynamic Domain

More information

AN EXAMPLE OF THE GOMORY CUTTING PLANE ALGORITHM. max z = 3x 1 + 4x 2. 3x 1 x x x x N 2

AN EXAMPLE OF THE GOMORY CUTTING PLANE ALGORITHM. max z = 3x 1 + 4x 2. 3x 1 x x x x N 2 AN EXAMPLE OF THE GOMORY CUTTING PLANE ALGORITHM Consider the integer programme subject to max z = 3x 1 + 4x 2 3x 1 x 2 12 3x 1 + 11x 2 66 The first linear programming relaxation is subject to x N 2 max

More information

Python Machine Learning

Python Machine Learning Python Machine Learning Unlock deeper insights into machine learning with this vital guide to cuttingedge predictive analytics Sebastian Raschka [ PUBLISHING 1 open source I community experience distilled

More information

Innovative Methods for Teaching Engineering Courses

Innovative Methods for Teaching Engineering Courses Innovative Methods for Teaching Engineering Courses KR Chowdhary Former Professor & Head Department of Computer Science and Engineering MBM Engineering College, Jodhpur Present: Director, JIETSETG Email:

More information

SARDNET: A Self-Organizing Feature Map for Sequences

SARDNET: A Self-Organizing Feature Map for Sequences SARDNET: A Self-Organizing Feature Map for Sequences Daniel L. James and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 dljames,risto~cs.utexas.edu

More information

Using focal point learning to improve human machine tacit coordination

Using focal point learning to improve human machine tacit coordination DOI 10.1007/s10458-010-9126-5 Using focal point learning to improve human machine tacit coordination InonZuckerman SaritKraus Jeffrey S. Rosenschein The Author(s) 2010 Abstract We consider an automated

More information

Software Maintenance

Software Maintenance 1 What is Software Maintenance? Software Maintenance is a very broad activity that includes error corrections, enhancements of capabilities, deletion of obsolete capabilities, and optimization. 2 Categories

More information

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification

Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Class-Discriminative Weighted Distortion Measure for VQ-Based Speaker Identification Tomi Kinnunen and Ismo Kärkkäinen University of Joensuu, Department of Computer Science, P.O. Box 111, 80101 JOENSUU,

More information

Truth Inference in Crowdsourcing: Is the Problem Solved?

Truth Inference in Crowdsourcing: Is the Problem Solved? Truth Inference in Crowdsourcing: Is the Problem Solved? Yudian Zheng, Guoliang Li #, Yuanbing Li #, Caihua Shan, Reynold Cheng # Department of Computer Science, Tsinghua University Department of Computer

More information

Learning and Transferring Relational Instance-Based Policies

Learning and Transferring Relational Instance-Based Policies Learning and Transferring Relational Instance-Based Policies Rocío García-Durán, Fernando Fernández y Daniel Borrajo Universidad Carlos III de Madrid Avda de la Universidad 30, 28911-Leganés (Madrid),

More information

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM

ISFA2008U_120 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Proceedings of 28 ISFA 28 International Symposium on Flexible Automation Atlanta, GA, USA June 23-26, 28 ISFA28U_12 A SCHEDULING REINFORCEMENT LEARNING ALGORITHM Amit Gil, Helman Stern, Yael Edan, and

More information

Assignment 1: Predicting Amazon Review Ratings

Assignment 1: Predicting Amazon Review Ratings Assignment 1: Predicting Amazon Review Ratings 1 Dataset Analysis Richard Park r2park@acsmail.ucsd.edu February 23, 2015 The dataset selected for this assignment comes from the set of Amazon reviews for

More information

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses

Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses Designing a Rubric to Assess the Modelling Phase of Student Design Projects in Upper Year Engineering Courses Thomas F.C. Woodhall Masters Candidate in Civil Engineering Queen s University at Kingston,

More information

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words,

have to be modeled) or isolated words. Output of the system is a grapheme-tophoneme conversion system which takes as its input the spelling of words, A Language-Independent, Data-Oriented Architecture for Grapheme-to-Phoneme Conversion Walter Daelemans and Antal van den Bosch Proceedings ESCA-IEEE speech synthesis conference, New York, September 1994

More information

Physics 270: Experimental Physics

Physics 270: Experimental Physics 2017 edition Lab Manual Physics 270 3 Physics 270: Experimental Physics Lecture: Lab: Instructor: Office: Email: Tuesdays, 2 3:50 PM Thursdays, 2 4:50 PM Dr. Uttam Manna 313C Moulton Hall umanna@ilstu.edu

More information

BMBF Project ROBUKOM: Robust Communication Networks

BMBF Project ROBUKOM: Robust Communication Networks BMBF Project ROBUKOM: Robust Communication Networks Arie M.C.A. Koster Christoph Helmberg Andreas Bley Martin Grötschel Thomas Bauschert supported by BMBF grant 03MS616A: ROBUKOM Robust Communication Networks,

More information

Laboratorio di Intelligenza Artificiale e Robotica

Laboratorio di Intelligenza Artificiale e Robotica Laboratorio di Intelligenza Artificiale e Robotica A.A. 2008-2009 Outline 2 Machine Learning Unsupervised Learning Supervised Learning Reinforcement Learning Genetic Algorithms Genetics-Based Machine Learning

More information

While you are waiting... socrative.com, room number SIMLANG2016

While you are waiting... socrative.com, room number SIMLANG2016 While you are waiting... socrative.com, room number SIMLANG2016 Simulating Language Lecture 4: When will optimal signalling evolve? Simon Kirby simon@ling.ed.ac.uk T H E U N I V E R S I T Y O H F R G E

More information

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models

Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Learning Structural Correspondences Across Different Linguistic Domains with Synchronous Neural Language Models Stephan Gouws and GJ van Rooyen MIH Medialab, Stellenbosch University SOUTH AFRICA {stephan,gvrooyen}@ml.sun.ac.za

More information

Story Problems with. Missing Parts. s e s s i o n 1. 8 A. Story Problems with. More Story Problems with. Missing Parts

Story Problems with. Missing Parts. s e s s i o n 1. 8 A. Story Problems with. More Story Problems with. Missing Parts s e s s i o n 1. 8 A Math Focus Points Developing strategies for solving problems with unknown change/start Developing strategies for recording solutions to story problems Using numbers and standard notation

More information

Radius STEM Readiness TM

Radius STEM Readiness TM Curriculum Guide Radius STEM Readiness TM While today s teens are surrounded by technology, we face a stark and imminent shortage of graduates pursuing careers in Science, Technology, Engineering, and

More information

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology

ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology ReinForest: Multi-Domain Dialogue Management Using Hierarchical Policies and Knowledge Ontology Tiancheng Zhao CMU-LTI-16-006 Language Technologies Institute School of Computer Science Carnegie Mellon

More information

Generating Test Cases From Use Cases

Generating Test Cases From Use Cases 1 of 13 1/10/2007 10:41 AM Generating Test Cases From Use Cases by Jim Heumann Requirements Management Evangelist Rational Software pdf (155 K) In many organizations, software testing accounts for 30 to

More information

(Sub)Gradient Descent

(Sub)Gradient Descent (Sub)Gradient Descent CMSC 422 MARINE CARPUAT marine@cs.umd.edu Figures credit: Piyush Rai Logistics Midterm is on Thursday 3/24 during class time closed book/internet/etc, one page of notes. will include

More information

On-the-Fly Customization of Automated Essay Scoring

On-the-Fly Customization of Automated Essay Scoring Research Report On-the-Fly Customization of Automated Essay Scoring Yigal Attali Research & Development December 2007 RR-07-42 On-the-Fly Customization of Automated Essay Scoring Yigal Attali ETS, Princeton,

More information

Probability and Statistics Curriculum Pacing Guide

Probability and Statistics Curriculum Pacing Guide Unit 1 Terms PS.SPMJ.3 PS.SPMJ.5 Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods

More information

Evolutive Neural Net Fuzzy Filtering: Basic Description

Evolutive Neural Net Fuzzy Filtering: Basic Description Journal of Intelligent Learning Systems and Applications, 2010, 2: 12-18 doi:10.4236/jilsa.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Evolutive Neural Net Fuzzy Filtering:

More information

Spring 2016 Stony Brook University Instructor: Dr. Paul Fodor

Spring 2016 Stony Brook University Instructor: Dr. Paul Fodor CSE215, Foundations of Computer Science Course Information Spring 2016 Stony Brook University Instructor: Dr. Paul Fodor http://www.cs.stonybrook.edu/~cse215 Course Description Introduction to the logical

More information

Arizona s College and Career Ready Standards Mathematics

Arizona s College and Career Ready Standards Mathematics Arizona s College and Career Ready Mathematics Mathematical Practices Explanations and Examples First Grade ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS FOR STUDENTS State Board Approved June

More information

Firms and Markets Saturdays Summer I 2014

Firms and Markets Saturdays Summer I 2014 PRELIMINARY DRAFT VERSION. SUBJECT TO CHANGE. Firms and Markets Saturdays Summer I 2014 Professor Thomas Pugel Office: Room 11-53 KMC E-mail: tpugel@stern.nyu.edu Tel: 212-998-0918 Fax: 212-995-4212 This

More information

Understanding and Interpreting the NRC s Data-Based Assessment of Research-Doctorate Programs in the United States (2010)

Understanding and Interpreting the NRC s Data-Based Assessment of Research-Doctorate Programs in the United States (2010) Understanding and Interpreting the NRC s Data-Based Assessment of Research-Doctorate Programs in the United States (2010) Jaxk Reeves, SCC Director Kim Love-Myers, SCC Associate Director Presented at UGA

More information

ALL-IN-ONE MEETING GUIDE THE ECONOMICS OF WELL-BEING

ALL-IN-ONE MEETING GUIDE THE ECONOMICS OF WELL-BEING ALL-IN-ONE MEETING GUIDE THE ECONOMICS OF WELL-BEING LeanIn.0rg, 2016 1 Overview Do we limit our thinking and focus only on short-term goals when we make trade-offs between career and family? This final

More information

arxiv: v1 [math.at] 10 Jan 2016

arxiv: v1 [math.at] 10 Jan 2016 THE ALGEBRAIC ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE OF REAL PROJECTIVE SPECTRA arxiv:1601.02185v1 [math.at] 10 Jan 2016 GUOZHEN WANG AND ZHOULI XU Abstract. In this note, we use Curtis s algorithm and the

More information

STA 225: Introductory Statistics (CT)

STA 225: Introductory Statistics (CT) Marshall University College of Science Mathematics Department STA 225: Introductory Statistics (CT) Course catalog description A critical thinking course in applied statistical reasoning covering basic

More information

Chinese Language Parsing with Maximum-Entropy-Inspired Parser

Chinese Language Parsing with Maximum-Entropy-Inspired Parser Chinese Language Parsing with Maximum-Entropy-Inspired Parser Heng Lian Brown University Abstract The Chinese language has many special characteristics that make parsing difficult. The performance of state-of-the-art

More information

College Pricing. Ben Johnson. April 30, Abstract. Colleges in the United States price discriminate based on student characteristics

College Pricing. Ben Johnson. April 30, Abstract. Colleges in the United States price discriminate based on student characteristics College Pricing Ben Johnson April 30, 2012 Abstract Colleges in the United States price discriminate based on student characteristics such as ability and income. This paper develops a model of college

More information

Learning to Schedule Straight-Line Code

Learning to Schedule Straight-Line Code Learning to Schedule Straight-Line Code Eliot Moss, Paul Utgoff, John Cavazos Doina Precup, Darko Stefanović Dept. of Comp. Sci., Univ. of Mass. Amherst, MA 01003 Carla Brodley, David Scheeff Sch. of Elec.

More information

Decision Analysis. Decision-Making Problem. Decision Analysis. Part 1 Decision Analysis and Decision Tables. Decision Analysis, Part 1

Decision Analysis. Decision-Making Problem. Decision Analysis. Part 1 Decision Analysis and Decision Tables. Decision Analysis, Part 1 Decision Support: Decision Analysis Jožef Stefan International Postgraduate School, Ljubljana Programme: Information and Communication Technologies [ICT3] Course Web Page: http://kt.ijs.si/markobohanec/ds/ds.html

More information

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS

AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS AGS THE GREAT REVIEW GAME FOR PRE-ALGEBRA (CD) CORRELATED TO CALIFORNIA CONTENT STANDARDS 1 CALIFORNIA CONTENT STANDARDS: Chapter 1 ALGEBRA AND WHOLE NUMBERS Algebra and Functions 1.4 Students use algebraic

More information

Algebra 2- Semester 2 Review

Algebra 2- Semester 2 Review Name Block Date Algebra 2- Semester 2 Review Non-Calculator 5.4 1. Consider the function f x 1 x 2. a) Describe the transformation of the graph of y 1 x. b) Identify the asymptotes. c) What is the domain

More information

The Evolution of Random Phenomena

The Evolution of Random Phenomena The Evolution of Random Phenomena A Look at Markov Chains Glen Wang glenw@uchicago.edu Splash! Chicago: Winter Cascade 2012 Lecture 1: What is Randomness? What is randomness? Can you think of some examples

More information

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks

System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks System Implementation for SemEval-2017 Task 4 Subtask A Based on Interpolated Deep Neural Networks 1 Tzu-Hsuan Yang, 2 Tzu-Hsuan Tseng, and 3 Chia-Ping Chen Department of Computer Science and Engineering

More information

An Online Handwriting Recognition System For Turkish

An Online Handwriting Recognition System For Turkish An Online Handwriting Recognition System For Turkish Esra Vural, Hakan Erdogan, Kemal Oflazer, Berrin Yanikoglu Sabanci University, Tuzla, Istanbul, Turkey 34956 ABSTRACT Despite recent developments in

More information

CSC200: Lecture 4. Allan Borodin

CSC200: Lecture 4. Allan Borodin CSC200: Lecture 4 Allan Borodin 1 / 22 Announcements My apologies for the tutorial room mixup on Wednesday. The room SS 1088 is only reserved for Fridays and I forgot that. My office hours: Tuesdays 2-4

More information

An empirical study of learning speed in backpropagation

An empirical study of learning speed in backpropagation Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science 1988 An empirical study of learning speed in backpropagation networks Scott E. Fahlman Carnegie

More information

Learning goal-oriented strategies in problem solving

Learning goal-oriented strategies in problem solving Learning goal-oriented strategies in problem solving Martin Možina, Timotej Lazar, Ivan Bratko Faculty of Computer and Information Science University of Ljubljana, Ljubljana, Slovenia Abstract The need

More information

Go fishing! Responsibility judgments when cooperation breaks down

Go fishing! Responsibility judgments when cooperation breaks down Go fishing! Responsibility judgments when cooperation breaks down Kelsey Allen (krallen@mit.edu), Julian Jara-Ettinger (jjara@mit.edu), Tobias Gerstenberg (tger@mit.edu), Max Kleiman-Weiner (maxkw@mit.edu)

More information

Grade 6: Correlated to AGS Basic Math Skills

Grade 6: Correlated to AGS Basic Math Skills Grade 6: Correlated to AGS Basic Math Skills Grade 6: Standard 1 Number Sense Students compare and order positive and negative integers, decimals, fractions, and mixed numbers. They find multiples and

More information

Regret-based Reward Elicitation for Markov Decision Processes

Regret-based Reward Elicitation for Markov Decision Processes 444 REGAN & BOUTILIER UAI 2009 Regret-based Reward Elicitation for Markov Decision Processes Kevin Regan Department of Computer Science University of Toronto Toronto, ON, CANADA kmregan@cs.toronto.edu

More information

Fragment Analysis and Test Case Generation using F- Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing

Fragment Analysis and Test Case Generation using F- Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing Fragment Analysis and Test Case Generation using F- Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing D. Indhumathi Research Scholar Department of Information Technology

More information

Math 96: Intermediate Algebra in Context

Math 96: Intermediate Algebra in Context : Intermediate Algebra in Context Syllabus Spring Quarter 2016 Daily, 9:20 10:30am Instructor: Lauri Lindberg Office Hours@ tutoring: Tutoring Center (CAS-504) 8 9am & 1 2pm daily STEM (Math) Center (RAI-338)

More information

Knowledge Transfer in Deep Convolutional Neural Nets

Knowledge Transfer in Deep Convolutional Neural Nets Knowledge Transfer in Deep Convolutional Neural Nets Steven Gutstein, Olac Fuentes and Eric Freudenthal Computer Science Department University of Texas at El Paso El Paso, Texas, 79968, U.S.A. Abstract

More information

Analysis of Enzyme Kinetic Data

Analysis of Enzyme Kinetic Data Analysis of Enzyme Kinetic Data To Marilú Analysis of Enzyme Kinetic Data ATHEL CORNISH-BOWDEN Directeur de Recherche Émérite, Centre National de la Recherche Scientifique, Marseilles OXFORD UNIVERSITY

More information

Learning Methods for Fuzzy Systems

Learning Methods for Fuzzy Systems Learning Methods for Fuzzy Systems Rudolf Kruse and Andreas Nürnberger Department of Computer Science, University of Magdeburg Universitätsplatz, D-396 Magdeburg, Germany Phone : +49.39.67.876, Fax : +49.39.67.8

More information

Intensive English Program Southwest College

Intensive English Program Southwest College Intensive English Program Southwest College ESOL 0352 Advanced Intermediate Grammar for Foreign Speakers CRN 55661-- Summer 2015 Gulfton Center Room 114 11:00 2:45 Mon. Fri. 3 hours lecture / 2 hours lab

More information

A Neural Network GUI Tested on Text-To-Phoneme Mapping

A Neural Network GUI Tested on Text-To-Phoneme Mapping A Neural Network GUI Tested on Text-To-Phoneme Mapping MAARTEN TROMPPER Universiteit Utrecht m.f.a.trompper@students.uu.nl Abstract Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis

More information

RANKING AND UNRANKING LEFT SZILARD LANGUAGES. Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A ER E P S I M S

RANKING AND UNRANKING LEFT SZILARD LANGUAGES. Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A ER E P S I M S N S ER E P S I M TA S UN A I S I T VER RANKING AND UNRANKING LEFT SZILARD LANGUAGES Erkki Mäkinen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A-1997-2 UNIVERSITY OF TAMPERE DEPARTMENT OF

More information

Bridging Lexical Gaps between Queries and Questions on Large Online Q&A Collections with Compact Translation Models

Bridging Lexical Gaps between Queries and Questions on Large Online Q&A Collections with Compact Translation Models Bridging Lexical Gaps between Queries and Questions on Large Online Q&A Collections with Compact Translation Models Jung-Tae Lee and Sang-Bum Kim and Young-In Song and Hae-Chang Rim Dept. of Computer &

More information

AUTHOR COPY. Techniques for cold-starting context-aware mobile recommender systems for tourism

AUTHOR COPY. Techniques for cold-starting context-aware mobile recommender systems for tourism Intelligenza Artificiale 8 (2014) 129 143 DOI 10.3233/IA-140069 IOS Press 129 Techniques for cold-starting context-aware mobile recommender systems for tourism Matthias Braunhofer, Mehdi Elahi and Francesco

More information

Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems

Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems Ajith Abraham School of Business Systems, Monash University, Clayton, Victoria 3800, Australia. Email: ajith.abraham@ieee.org

More information

Cooperative Game Theoretic Models for Decision-Making in Contexts of Library Cooperation 1

Cooperative Game Theoretic Models for Decision-Making in Contexts of Library Cooperation 1 Cooperative Game Theoretic Models for Decision-Making in Contexts of Library Cooperation 1 Robert M. Hayes Abstract This article starts, in Section 1, with a brief summary of Cooperative Economic Game

More information

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley

Challenges in Deep Reinforcement Learning. Sergey Levine UC Berkeley Challenges in Deep Reinforcement Learning Sergey Levine UC Berkeley Discuss some recent work in deep reinforcement learning Present a few major challenges Show some of our recent work toward tackling

More information

Improving Conceptual Understanding of Physics with Technology

Improving Conceptual Understanding of Physics with Technology INTRODUCTION Improving Conceptual Understanding of Physics with Technology Heidi Jackman Research Experience for Undergraduates, 1999 Michigan State University Advisors: Edwin Kashy and Michael Thoennessen

More information

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC

On Human Computer Interaction, HCI. Dr. Saif al Zahir Electrical and Computer Engineering Department UBC On Human Computer Interaction, HCI Dr. Saif al Zahir Electrical and Computer Engineering Department UBC Human Computer Interaction HCI HCI is the study of people, computer technology, and the ways these

More information

This scope and sequence assumes 160 days for instruction, divided among 15 units.

This scope and sequence assumes 160 days for instruction, divided among 15 units. In previous grades, students learned strategies for multiplication and division, developed understanding of structure of the place value system, and applied understanding of fractions to addition and subtraction

More information

Transfer Learning Action Models by Measuring the Similarity of Different Domains

Transfer Learning Action Models by Measuring the Similarity of Different Domains Transfer Learning Action Models by Measuring the Similarity of Different Domains Hankui Zhuo 1, Qiang Yang 2, and Lei Li 1 1 Software Research Institute, Sun Yat-sen University, Guangzhou, China. zhuohank@gmail.com,lnslilei@mail.sysu.edu.cn

More information

A General Class of Noncontext Free Grammars Generating Context Free Languages

A General Class of Noncontext Free Grammars Generating Context Free Languages INFORMATION AND CONTROL 43, 187-194 (1979) A General Class of Noncontext Free Grammars Generating Context Free Languages SARWAN K. AGGARWAL Boeing Wichita Company, Wichita, Kansas 67210 AND JAMES A. HEINEN

More information

DIDACTIC MODEL BRIDGING A CONCEPT WITH PHENOMENA

DIDACTIC MODEL BRIDGING A CONCEPT WITH PHENOMENA DIDACTIC MODEL BRIDGING A CONCEPT WITH PHENOMENA Beba Shternberg, Center for Educational Technology, Israel Michal Yerushalmy University of Haifa, Israel The article focuses on a specific method of constructing

More information

*Net Perceptions, Inc West 78th Street Suite 300 Minneapolis, MN

*Net Perceptions, Inc West 78th Street Suite 300 Minneapolis, MN From: AAAI Technical Report WS-98-08. Compilation copyright 1998, AAAI (www.aaai.org). All rights reserved. Recommender Systems: A GroupLens Perspective Joseph A. Konstan *t, John Riedl *t, AI Borchers,

More information

First Grade Standards

First Grade Standards These are the standards for what is taught throughout the year in First Grade. It is the expectation that these skills will be reinforced after they have been taught. Mathematical Practice Standards Taught

More information

Test Effort Estimation Using Neural Network

Test Effort Estimation Using Neural Network J. Software Engineering & Applications, 2010, 3: 331-340 doi:10.4236/jsea.2010.34038 Published Online April 2010 (http://www.scirp.org/journal/jsea) 331 Chintala Abhishek*, Veginati Pavan Kumar, Harish

More information

Integrating simulation into the engineering curriculum: a case study

Integrating simulation into the engineering curriculum: a case study Integrating simulation into the engineering curriculum: a case study Baidurja Ray and Rajesh Bhaskaran Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA E-mail:

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Thomas Hofmann Presentation by Ioannis Pavlopoulos & Andreas Damianou for the course of Data Mining & Exploration 1 Outline Latent Semantic Analysis o Need o Overview

More information

Discriminative Learning of Beam-Search Heuristics for Planning

Discriminative Learning of Beam-Search Heuristics for Planning Discriminative Learning of Beam-Search Heuristics for Planning Yuehua Xu School of EECS Oregon State University Corvallis,OR 97331 xuyu@eecs.oregonstate.edu Alan Fern School of EECS Oregon State University

More information